北师大版数学九年级上册3用树状图或表格求概率1教案与反思
- 格式:docx
- 大小:204.20 KB
- 文档页数:4
用树状图和表格法求概率教案一、教学目标:1. 让学生掌握树状图和表格法的基本概念及应用。
2. 培养学生运用树状图和表格法求解概率问题的能力。
3. 培养学生分析问题、解决问题的能力。
二、教学内容:1. 树状图和表格法的定义及原理。
2. 树状图和表格法的绘制方法。
3. 树状图和表格法在求解概率问题中的应用。
三、教学重点与难点:1. 重点:树状图和表格法的绘制方法,及其在求解概率问题中的应用。
2. 难点:如何引导学生运用树状图和表格法分析问题,并求解复杂概率问题。
四、教学方法:1. 采用讲授法,讲解树状图和表格法的定义、原理及绘制方法。
2. 采用案例分析法,让学生通过实际案例体会树状图和表格法的应用。
3. 采用小组讨论法,引导学生分组讨论,共同解决问题。
4. 采用练习法,让学生在实践中巩固所学知识。
五、教学过程:1. 导入新课:通过一个简单的概率问题,引发学生对树状图和表格法的兴趣。
2. 讲解树状图和表格法的定义、原理及绘制方法。
3. 分析案例:举例讲解树状图和表格法在求解概率问题中的应用。
4. 小组讨论:让学生分组讨论,运用树状图和表格法分析问题。
5. 练习巩固:布置练习题,让学生在实践中运用树状图和表格法解决问题。
6. 总结反馈:对学生的练习情况进行点评,总结树状图和表格法的优点和注意事项。
7. 课后作业:布置课后作业,巩固所学知识。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,了解学生对树状图和表格法的掌握程度。
2. 练习题评价:对学生的练习题进行批改,评估学生运用树状图和表格法解决问题的能力。
3. 课后作业评价:查看学生的课后作业完成情况,检验学生对课堂所学知识的巩固程度。
七、教学资源:1. PPT课件:制作精美的PPT课件,展示树状图和表格法的定义、原理、绘制方法及应用案例。
2. 练习题库:准备一定数量的练习题,供学生在课堂练习和课后巩固使用。
第三章概率的进一步认识1 用树状图或表格求概率第1课时用树状图或表格求概率(1)1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算简单事件发生的概率.【教学难点】运用树状图和列表法计算简单事件发生的概率.一、情境导入,初步认识问题1:求概率的基本步骤是什么?问题2:列举一次试验的所有可能结果时,学过哪些方法?【教学说明】对以前所学方法的步骤进行归纳,温故以利知新.二、思考探究,获取新知自主学习:阅读课本P148,这个游戏为什么对三人不公平?请相互交流.【教学说明】通过自主学习、相互交流可提高学生自学的能力.探究甲乙两地之间有A和B两条道路,小亮从甲地到乙地,大刚从乙地到甲地,二人同时出发.如果每人从A和B两条道路中都任选一条,那么他们途中相遇的概率是多少?思考以下问题:小亮从甲地到乙地,有几条路可走,大刚从乙地到甲地,有几条路可走?如果小亮选了A道路,那么这时大刚选的有可能是哪条路?同样,如果小亮选的是B呢?什么情况下,他们才能相遇?小亮走的道路可能是A或B,当小亮选A时,大刚可能是A或B;当小亮选B时,大刚也可能是A或B,画图如下:【归纳结论】上图像一棵横倒的树,我们叫它树状图.由上图可知,所有等可能性的结果共有4种:AA,AB,BA,BB.其中两人相遇的情况有2种,即AA,BB.由已学过的的概率计算方法,可得P(相遇)=2/4=1/2 .所以,他们途中相遇的概率是1/2 .上表中的第一行表示小亮走道路A或B的两种可能,第一列则表示大刚走道路A或B的两种可能,从而在表中列出了本题所有等可能的4种结果,其中二人相遇的结果有两种,即:可得P(相遇)=2/4=1/2.【教学说明】设计探究学习活动,有利于向学生展示解决问题的不同策略,真正体会解决问题的过程,培养学生的创新精神和克服困难的勇气.三、运用新知,深化理解1.在A、B两个盒子里都装入写有数字0、1的两张卡片,分别从每个盒子里任取1张卡片,两张卡片上的数字之积为0的概率是多少?解法1:画树状图从A盒或B盒中任取一张卡片,上面有数字0或1的可能性相等,由树状图可以看出,两张卡片上的数字之积共有4种等可能的结果,其中两数之积为0的结果有3种,于是P(积为0)= 3/4.解法2:完成下表:由上表可知,两张卡片上的数字之积共有4种等可能的结果,积为0的结果有3种.所以P(积为0)=3/4.2.把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两个盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表法求解).解:画树状图:由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.列表如下:由上表可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.3.袋中有一个红球和两个白球,它们除了颜色外都相同.任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图.(1)请把树状图填写完整.(2)根据树状图可知摸到一红一白两球的概率是______.解答:(1)红白白(2)4/9【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结通过本节课的学习你有什么收获?还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题3.1”中第1、2题.2.完成练习册中相应练习.在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性,以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.第2课时用树状图或表格求概率(2)1.会运用树状图和列表法计算事件发生的概率.2.经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算事件发生的概率.【教学难点】树状图和表格法的运用方法.一、情境导入,初步认识(1)从黑桃1和2中摸一张牌,摸到几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸到红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?【教学说明】学生交流讨论,利用上节课所学知识解答.二、思考探究,获取新知探究 1 若同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?可能出现的结果(1,1)(1,2)(2,1)(2,2).从上面的树状图可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2)而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.探究2 小颖设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.(指针指在分界线上则重转)用树状图来说明:用表格来说明:所以,配成紫色的概率P(配成紫色)=3/6=1/2,所以游戏者获胜的概率为1/2.【教学说明】思考讨论,由两位学生板书展示他们的思维过程.通过学生互学感受思维的条理性和实施的有序性,为后续的教学做好准备.三、运用新知,深化理解1.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数恰好是13的概率.解:(1)P(抽到奇数)=3/4;(2)解法一:列表所以组成的两位数恰好是13的概率P=2/12=1/6.解法二:树状图所以组成的两位数恰好是13的概率P=2/12=1/6.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片上分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)的方法计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?解:(1)利用列表法得出所有可能的结果,如下表:由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率P(甲获胜)=5/16.(2)这个游戏对双方不公平,因为甲获胜的概率P(甲获胜)=5/16,乙获胜的概率P(乙获胜)=11/16,5/16≠11/16,所以,游戏对双方是不公平的.3.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于_______;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.解:(1)1/4(2)正确画出树状图(或列表),图略(表略).任意闭合其中两个开关的情况共有1/2种,其中能使小灯泡发光的情况有6种,所以小灯泡发光的概率是1/2.【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结1.本节课你有哪些收获?有何感想?2.用树状图或表格求概率时应注意什么情况?1.布置作业:教材“习题3.2”中第1 、3题.2.完成练习册中相应练习.以现实生活为背景提出问题,激发学生的学习兴趣和主动参与意识.面对这些问题时,鼓励学生主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,使学生感受数学和生活的密切联系,在解决问题的过程中培养学习兴趣和解题能力.2 用频率估计概率1.能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性.知道大量重复试验时频率可作为事件发生概率的估计值.2.结合生活实例,能进一步明确频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3.培养学生的动手能力和处理数据的能力,培养学生的理性精神.【教学重点】了解用频率估计概率的必要性和合理性.【教学难点】大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、情境导入,初步认识问题1:投掷一枚质地均匀的硬币时,结果正面向上的概率是多少?答:0.5问题2:周末,县体育馆有一场精彩的篮球比赛,小亮手中有一张球票,小强和小明都是班上的篮球迷,两人都想去,小亮很为难,不知给谁,请大家帮小亮想个办法解决这个问题.方案:投掷硬币,若正面朝上,小强获得球票;若反面朝上,小明获得球票.问题3:为什么要用投掷硬币的方法呢?理由:这样做公平.能保证小强和小明得到球票的可能性一样大,即得票概率相同.问题4:如果掷硬币机会均等,若投掷10次硬币,是否一定是5次正面向上?投掷50次,100次……?【教学说明】在此基础上,导出课题试验.二、思考探究,获取新知1.自主学习课本157~159页内容,初步了解如何用频率估计概率.2.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?分析:概率是描述随机现象的数学模型,它不能等同于频率.只有在一定的条件下,大量重复试验时,随机事件的频率所逐渐稳定到的常数,才可估计此事件的概率.解:(1)“3点朝上”的频率是6/60=1/10;“5点朝上”的频率是20/60=1/3.(2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.3.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析:(1)由40000人次中公园游戏场发放的福娃玩具为10000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)因为1000/040000=1/4,所以参加一次这种游戏活动得到福娃玩具的频率为1/4.(2)因为试验次数很大时,频率接近于理论概率.所以估计从袋中任意摸出一个球,恰好是红球的概率是1/4.设袋中白球有x个,则根据题意,得6/(x+6)=1/4,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.【教学说明】利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.【归纳结论】1.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计事件发生的概率,但两者不能简单地等同.2.用频率估计概率的方法,主要适合试验的所有可能结果不是有限个,或者各种可能结果发生的可能性不相等的随机事件.三、运用新知,深化理解1.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为(C)A.1/16B.1/4C.π/16D.π/42.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是1/2.3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有6个.4.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于250/2000=0.125;该镇约有100000×0.125=12500人看中央电视台的早间新闻.【教学说明】让学生进一步感受用频率估计概率方法的适用范围,并用概率值来解释生活经验.四、师生互动,课堂小结通过本节课的学习你有哪些收获?还有哪些疑惑?请与同伴交流.【教学说明】学生根据本节课所学,总结本节课的内容,教师补充强调.1.布置作业:教材“习题3.4”中第1题.2.完成练习册中相应练习.通过本节课的学习,使学生明白通过大量的重复试验,可以把稳定在某个常数附近的频率作为事件发生的概率.教师需要引导学生体会统计概率的本质是估计,用频率估计概率的目的是为了解释现象、解释生活,而不是为了得到一个准确的数值.本章复习1.回顾本章内容,用所学的概率知识去解决某些现实问题,再归纳和总结试验频率与理论概率的关系.2.学会与人合作,进一步发展学生合作交流的意识和能力.3.形成解决问题的一些策略,体验解决问题的多样性,发展实践能力和创新精神.【教学重点】用所学的概率知识去解决某些现实问题.【教学难点】用所学的概率知识去解决某些现实问题.一、知识结构【教学说明】通过回顾知识点,使学生掌握各知识点之间的联系.二、释疑解惑,加深理解1.用树状图或表格求概率.回顾:用树状图或表格求概率时应注意什么情况?2.用频率估计概率.如何用频率估计概率?【教学说明】让学生通过知识性内容的小结,了解本章所学内容,如何用所学知识解决实际问题.三、典例精析,复习新知1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.1/3B.5/12C.1/12D.1/2解析:让黄灯亮的时间处于总时间即为抬头看信号灯时,是黄灯的概率.每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒共60秒,所以是黄灯的概率是5/60=1/12.故选C.解答:C2.以下说法合理的是()A.小明在10次抛图钉的试验中发现有3次钉尖朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正方体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定有2张中奖D.在一次课堂上进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51解析:概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.A选项,10次抛图钉的试验太少,错误;B选项,概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;C选项,概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;D选项,根据概率的统计定义,可知正确.解答:D3.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.2/5B.3/10C.3/20D.1/5解析:列举出所有情况,看转盘停止后,指针都落在奇数上的情况数占总情况数的多少即可.列表得:所以两个转盘的组合有20种结果,其中有6种指针都落在奇数,所以指针都落在奇数上的概率是6/20=3/10,故选B.解答:B4.小明每天骑自行车上学都要经过三个安装有红绿灯的路口,假如每个路口红灯和绿灯亮的时间相等,那么,小明从家随时出发去学校,他至少遇到一次红灯的概率是多少?不遇红灯的概率是多少?分析:用列举法列举出符合题意的各种情况的个数,再根据概率公式解答即可.解:A表示红灯,B表示绿灯,根据题意画出树状图,如图所示:他至少遇到一次红灯的概率是7/8;不遇红灯的概率是1/8.【教学说明】通过例题的分析和讲解,突出本章内容的重点、难点和解题的方法.在整节课中起到画龙点睛的作用.四、复习训练,巩固提高1.某学校的初二(1)班,有男生20人,女生24人,其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则抽到一名走读女生的概率是_______.解析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.共44名学生,其中女生24人,有20人住宿,即4人走读.故抽到一名走读女生的概率是4/44=1/11.解答:1/112.小明与小亮在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是______.解析:小明与小亮在用“锤子、剪刀、布”的方式确定时共9种结果,故在一个回合中两个人都出“布”的概率是1/9.解答:1/93.中央电视台《幸运52》栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是________.解析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有3个,∴他第三次翻牌获奖的概率是3/18=1/6.解答:1/64.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是1/3.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.分析:(1)设口袋中有黄球m个,根据概率的求法求任意摸出一个球是绿色的概率,将1/3代入即可求出m的值;(2)口袋里有红球4个,共有15个球任意摸出一个球是红色的概率为4/15.解:(1)设口袋中有黄球m个,任意摸出一个球是绿色的概率是5/(4+5+m)=1/3,解可得m=6,即有6个黄球;(2)口袋里有红球4个,共有4+5+6=15个球,故任意摸出一个球是红色的概率为4/15.5.将分别标有数字1、2、3的三张硬纸片,反面一样,现把三张硬纸片搅均反面朝上.(1)随机抽取一张,恰好是奇数的概率是多少?(2)先抽取一张作为十位数(不放回),再抽取一张作为个位数,能组成哪些两位数,将它们全部列出来,并求所组成的两位数中大于20的概率.分析:根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数,二者的比值就是其发生的概率.解:(1)根据题意分析可得:有分别标有数字1、2、3的三张硬纸片,其中奇数有2个,故随机抽取一张,恰好是奇数的概率为2/3;(2)共有12、13、21、23、31、32六种情况,大于20的有4个,故其概率为2/3.6.某校九年级1,2班联合举行毕业晚会,组织者为了使晚会气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行游戏,胜者获得一件奖品,负者表演一个节目.1班的文娱委员利用分别标有数字1,2,3和4,5,6,7的两个转盘(如图)设计了一个游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,1班代表胜,否则2班代表胜,你认为该方案对双方是否公平?为什么?分析:本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可:解:该方案对双方是公平的.理由如下:列表如下:由上表可知,该游戏所有可能的结果共有12种,其中两数字之和为偶数的有6种,和为奇数的也有6种.所以1班代表获胜的概率为P1=6/12,2班代表获胜的概率为P2=6/12,即P1=P2,所以该游戏方案对双方是公平的.【教学说明】通过练习,巩固概率的基础知识,加深对概率知识、方法及应用的认识.通过老师的辅导,帮助学生对本节内容进行查漏补缺.五、师生互动,课堂小结你有什么收获?请同学们自己谈谈.【教学说明】师生共同小结.在小结时教师根据学生完成以上练习的情况穿插点评.布置作业:教材“复习题”中第2、4、5题.本节课复习课,力求串起全章主要知识点,达到复习目的.使学生具备随机观念,从而能明智地应付变化和不确定性,是概率教学的主要目标.随机观念的培养需要一个长期的过程,教学中以学生自主活动和合作交流为主,使学生在活动中加深对知识的理解,并能进一步应用.。
第三章 概率的进一步认识1 用树状图或表格求概率教学目标1.了解重复试验时频率可作为事件发生的概率的估计值.2.会借助树状图或列表法计算涉及两步试验的随机事件发生的概率.重点借助树状图或列表法计算涉及两步试验的随机事件发生的概率.难点学会选择适当的方法计算涉及两步试验的随机事件发生的概率.一、情境导入教师:抛掷一枚均匀的硬币,硬币落下后,会出现几种情况?教师:你认为正面朝上和反面朝上的可能性相同吗?二、探究新知1.课件出示:小颖、小明和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?学生分小组进行试验,然后累计各组的试验数据,分别计算“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.教师巡视指导个别有困难的学生.教师:通过刚才的试验,你认为这个游戏公平吗?引导学生思考:在上面掷硬币的试验中,(1)(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)(3)在第一枚硬币正面朝上的情况下,在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?学生分小组讨论后给出答案,教师点评并进一步讲解:为了方便理解,我们通常借助画树状图或画表格列出所有可能出现的结果.①用树状图列出所有可能出现的结果:此图类似于树的形状,所以称为树状图.②用列表法列举所有可能出现的结果:第二枚硬币第一枚硬币 正 反正 (正,正正,正) ) (正,反正,反) )反 (反,正反,正) ) (反,反反,反) )共有4种结果,每种结果出现的可能性相同,其中,小明获胜的结果有1种:种:((正,正正,正)),所以小明获胜的概率是14;小颖获胜的结果有1种:种:((反,反反,反)),所以小颖获胜的概率是14;小凡获胜的结果有2种:种:((正,反正,反)()()(反,正反,正反,正)),所以小凡获胜的概率是24=12.因此,这个游戏对三人是不公平的.教师:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便? 引导学生得出:引导学生得出:(1)(1)(1)利用树状图或表格可以不重复、利用树状图或表格可以不重复、利用树状图或表格可以不重复、不遗漏地列出所有可能出现的结果,从而比较方不遗漏地列出所有可能出现的结果,从而比较方便地求出某些事件发生的概率.便地求出某些事件发生的概率.(2)(2)(2)当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在三步或三步以上时,用树状图法方便.2.课件出示:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)(1)利用画树状图或列表的方法表示游戏所有可能出现的结果.利用画树状图或列表的方法表示游戏所有可能出现的结果. (2)(2)游戏者获胜的概率是多少?游戏者获胜的概率是多少? 学生独立完成后汇报答案,教师点评. 3.课件出示:用如图所示的转盘进行“配紫色”游戏.(1)(1)小颖制作了下图,并据此求出游戏者获胜的概率是小颖制作了下图,并据此求出游戏者获胜的概率是12.(2)(2)小亮则先把转盘小亮则先把转盘A 的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.B 盘 A 盘 红色蓝色红色1 (红1,红,红) ) (红1,蓝,蓝) ) 红色2 (红2,红,红) ) (红2,蓝,蓝) ) 蓝色(蓝,红蓝,红) )(蓝,蓝蓝,蓝) )教师:你认为谁做得对?说说你的理由.学生思考后举手回答,教师点评,并提出问题:用画树状图和列表的方法求概率时应注意些什么? 引导学生得出:用画树状图和列表的方法求概率时应注意各种结果出现的可能性必须相同. 三、举例分析例1 (课件出示教材第62页例1)学生小组内讨论交流,教师板书规范书写过程.解:因为小明和小颖每次出现这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:种:((石头,石头石头,石头)()()(剪刀,剪刀剪刀,剪刀剪刀,剪刀)()()(布,布布,布布,布)),所以小凡获胜的概率为39=13;小明胜小颖的结果有3种:种:((石头,剪刀石头,剪刀)()()(剪刀,布剪刀,布剪刀,布)()()(布,石头布,石头布,石头)),所以小明获胜的概率为39=13; 小颖胜小明的结果也有3种:种:((剪刀,石头剪刀,石头)()()(布,剪刀布,剪刀布,剪刀)()()(石头,布石头,布石头,布)),所以小颖获胜的概率为39=13.因此,这个游戏对三人是公平的.例2 (课件出示教材第67页例2)学生独立完成,教师巡视指导,集体讲评.四、练习巩固1.教材第61页“随堂练习”.2.教材第64页“随堂练习”.3.教材第67页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.利用画树状图和列表的方法求概率时应注意些什么?六、课外作业1.教材第62页习题3.1第1,2题.2.教材第64页习题3.2第2题.3.教材第68页习题3.3第1题.教学反思本节课的内容是利用画树状图和列表的方法求概率.在教学过程中,让学生通过例子比较两种方法的使用条件.体现学生的主体地位,引导学生主动探讨新知识.创造轻松的课堂氛围,使学生愉快地学习.2 用频率估计概率教学目标1.能用试验的方法估计一些复杂随机事件发生的概率.2.理解当试验次数足够大时,试验频率将稳定于理论概率.3.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.重点掌握用频率估计概率的条件及方法. 难点用试验的方法估计复杂随机事件的概率. 一、复习导入1.用列举法求概率的条件是什么? 2.用列举法求概率的方法是什么? 3.A =(事件事件)),P(A)P(A)的取值范围是什么?的取值范围是什么?4.列表法、树状图法是不是列举法,在什么时候运用这种方法? 教师指名学生回答.教师点评:(1)(1)用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果发生的可能性相等.(2)(2)每次试验中,有每次试验中,有n 种可能结果种可能结果((有限个有限个)),发生的可能性相等;事件A 包含m 种结果,则P(A)P(A)==m n. (3)0≤P(A)≤1,其中不可能事件B ,P(B)P(B)==0,必然事件C ,P(C)P(C)==1.(4)(4)列表法、列表法、树状图法是列举法,在列出的所有结果很多或一次试验要涉及3个或更多的因素时采用这种方法.教师:前面的列举法只能在所有可能是等可能并且有限个的大前提下进行,如果不满足这两个条件,是否还可以应用以上的方法呢?这节课我们一起来探究.二、探究新知 1.课件出示:某林业部门要考察某种幼树在一定条件下的移植成活率. (1)(1)能够用列举法求出成活率吗?为什么?能够用列举法求出成活率吗?为什么? (2)(2)用什么方法求出成活率呢?用什么方法求出成活率呢? (3)(3)请完成下表,并求出移植成活率.请完成下表,并求出移植成活率.移植总数移植总数(n) (n)成活数成活数(m) (m)成活的频率成活的频率((mn )10 8 0.8 50 47 270 235 0.817 400 369 75 662 1 500 1 335 0.890 3 500 3 203 0.914 7 000 6 335 900 8 073 14 00012 6280.902学生思考后给出答案,教师点评:(1)(1)由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率.由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率. (2)(2)应该用频率来估计概率.应该用频率来估计概率. (3)(3)移植成活率大约是移植成活率大约是0.9. 2.课件出示:一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?学生分小组讨论交流并得出可行方案.方案1:每次随机摸出一球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.方案2:每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.3.课件出示:某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这种柑橘能够获得利润5 000元,那么在出售柑橘元,那么在出售柑橘((已经去掉损坏的柑橘已经去掉损坏的柑橘))时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.柑橘总 质量质量//千克损坏柑橘 质量质量//千克 柑橘损坏的频率 50 5.50 0.110 100 10.50 0.105 150 15.50 200 19.42 250 24.25 300 30.93 350 35.32 400 39.24 450 44.57 50051.540.103学生完成后给出答案,教师点评. 4.课件出示:一个学习小组有6名男生、名男生、33名女生,老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,你能设计一种试验来估计“被抽取的3人中有2名男生、名男生、11名女生”的概率吗?学生分小组讨论后给出答案,教师点评分析:因为要做“从这9人中抽取3人”的试验的工作量很大,我们可用下面的方法来估计概率:取9张形状完全相同的卡片,在6张卡片上分别写上1~6来表示男生,在其余的3张卡片上分别写上7~9来表示女生,把9张卡片混合起来并搅拌均匀.从卡片中抽3次,随机抽取,每次抽取1张后放回,并记录结果,经大量重复试验,就能够计算相关频率,估计出“被抽取的3人中有2名男生、名男生、11名女生”的概率.教师:通过上面的学习,你能归纳出什么知识呢?引导学生得出:引导学生得出:(1)(1)(1)当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,可可以通过统计频率来估计概率.(2)(2)在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.三、练习巩固教材第70页“随堂练习”第1,2题. 四、小结1.通过本节课的学习,你有什么收获? 2.用频率估计概率的条件是什么? 3.用频率估计概率的方法是什么? 五、课外作业教材第71页习题3.4第1,2题.教学反思本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,由于此方法不受列举法求概率由于此方法不受列举法求概率的两个条件的限制,所以本节课要强调的是在什么情况下用这种方法,怎么用这种方法求概率也是本节的重点和难点之所在.在教学过程中,让学生通过复习和比较列举法引入:每次试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,利用频率求概率的方法.使学生更清楚地明白这两种方法的使用方法及其特点.课堂上,运用生活中的例子,让学生体验生活中的数学.。
3.1 用树状图或表格求概率第 1 课时用树状图或表格求概率教课目的1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步提升学生合作沟通的意识和能力.3.经过自主研究、合作沟通激发学生的学习兴趣,感觉数学的简捷美,及数学应用的宽泛性.教课重难点【教课要点】运用树状图和列表法计算简单事件发生的概率.【教课难点】经过两种求概率方法的选择使用,理解两种方法各自的特色,并能依据不一样情境选择适合的方法 .课前准备课件等 .教课过程一、情境导入 ,生成问题1.某校学生会倡导双休日到养老院参加服务活动,初次活动需要7 位同学参加,现有包含小杰在内的50 位同学报名,所以学生会将从这 50 位同学中随机抽取7 位,小杰被抽到7.参加初次活动的概率是502.将一质地平均的正方体骰子掷一次,察看向上一面的点数,与点数3相差 2的概率是(B)1111A. 2B. 3C.5D.6二、自学互研,生成能力知识模块一研究用树状图或表格求简单随机事件的概率自主研究阅读教材 P60“做一做”前方的内容,而后回答下边的问题:1.这个游戏对三人能否公正?请互相沟通.2.阅读教材P60“议一议”部分内容,达成“议一议”中的三个问题,请互相沟通.合作研究1.分小组达成教材P60“做一做”学习任务.概括结论:经过大批重复试验我们发现,在一般状况下,“一枚正面向上、一枚反面朝上”发生的概率大于其余两个事件发生的概率.所以,这个游戏不公正,它对小凡比较有益.2.深入研究:在上边投掷硬币试验中,(1)投掷第一枚硬币可能出现哪些结果?它们发生的可能性能否同样?(2)投掷第二枚硬币可能出现哪些结果?它们发生的可能性能否同样?(3) 在第一枚硬币正面向上的状况下,第二枚硬币可能出现哪些结果?它们发生的可能性能否同样?假如第一枚硬币反面向上呢?研究领会:因为硬币是平均的,所以投掷第一枚硬币出现“正面向上”和“反面向上”的概率同样.不论投掷第一枚硬币出现如何的结果,投掷第二枚硬币时出现 “正面向上”和“反面向上” 的概率也是同样的. 所以,投掷两枚平均的硬币, 出现的 (正,正 )(正,反 )(反,正)( 反,反 )四种状况是等可能的. 所以,我们能够用下边的树状图或表格表示全部可能出现的结果:第一枚硬币第二枚硬币正反正 (正,正 ) (正,反)反(反,正 )(反,反)此中,小明获胜的结果有一种:(正,正 ). 所以小明获胜的概率是1;小颖获胜的结果4有一种: (反,反 ).所以小颖获胜的概率也是1;小凡获胜的结果有两种: (正,反 )(反,正 ).所42以小凡获胜的概率是4.所以,这个游戏对三人是不公正的.概括结论: 利用树状图或表格, 我们能够不重复, 不遗留地列出全部可能的结果, 进而比较方便地求出某些事件发生的概率.知识模块二 利用树状图或表格求简单事件发生的概率自主研究解答以下问题:1.假如一次试验中,全部可能出现的结果有n 个,并且全部结果出现的可能性同样,那么每个结果出现的概率( B )1D .都 是 nA .都是 1C .不必定相等B .都是 n2.如图,有以下3 个条件:① AC =AB ,② AB ∥CD ,③∠ 1=∠ 2,从这 3 个条件中 任选 2 个作为题设,另1 个作为结论,则构成的命题是真命题的概率是( D )12A . 0B. 3C.3D . 1合作研究典例解说:把大小和形状如出一辙的 6 张卡片分红两组, 每组 3 张,分别标上数字 1,2,3.将这两组卡片分别放入两个盒子中搅匀, 再从中各随机抽取一张, 试求拿出的两张卡片数字之和为偶数的概率 (要求用树状图或列表法求解 ).解:画树状图:由上图可知,全部等可能结果共有 9 种,此中两张卡片数字之和为偶数的结果有5 种.∴ P(和为偶数 )= 5.列表以下:9第一组第二组1 2 3 1 (1, 1) (1, 2) (1,3) 2 (2, 1) (2, 2) (2,3) 3(3, 1)(3, 2)(3,3)由上表可知,全部等可能结果共有9 种,此中两张卡片数字之和为偶数的结果有5 种.∴ P(和为偶数 )= 5.9对应练习:1. 达成教材 P 61 随 堂练习.2.在 A 、B 两个盒子都装入写有数字 0、1 的两张卡片,分别从每个盒子里任取1 张卡片,两张卡片上的数字之积为 0 的概率是多少?解法 1:画树状图以下:从 A 盒或 B 盒中任取一张卡片, 上边有数字 0 或 1 的可能性相等, 由树状图能够看出,两张卡片上的数字之积有4 种等可能的结果,此中两数之积为0 的结果有 3 种,于是 P(积3为 0)= 4.解法 2:列表以下:B1[根源学A科 网 Z,X,X,K]0 0 0 11由表可知, 两张卡片上的数字之积共有4 种等可能的结果, 积为 0 的结果有 3 种.所以3P(积为 0)= 4.三、沟通展现,生成新知1.将阅读教材时“生成的问题”和经过“自主研究、合作研究”得出的“结论”展现在各小组的小黑板上. 并将疑难问题也板演到黑板上, 再一次经过小组间就上述疑难问题互相释疑.2.各小组由组长一致分派展现任务,由代表将“问题和结论”展现在黑板上,经过沟通“生成新知” .四、检测反应,达成目标1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都同样,随机从中摸出一个球,记下颜色后放回袋子中,充足摇匀后,再随机摸出一个球,两次都摸到黑球的概率是 ( A)1112A. 4B.3C.2D.32.在a24a 4 的空格中,随意填上“+”或“-” ,在所得的代数式中,能够构成完好平方式的概率是( B)111A . 1 B. 2 C.3 D. 43.长城企业为希望小学捐献甲、乙两种品牌的体育器械,甲品牌有A、B、C 三种型号,乙品牌有 D、E 两种型号,现要从甲、乙两种品牌的器械中各选购一种型号进行捐献.将下边所画树状图增补完好.一共有 6 种结果,每种结果出现的可能性同样.那么 A 型号器械被选中的概率为1.3五、课后反省,查漏补缺1.收获:_________________________________________________________2 .存在疑惑:____________________________________________________。
课题:3.1.1用树状图或表格求概率教学目标:1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,积累数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系.3.会用列表或画树状图等方法计算简单事件发生的概率.4.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.教学重点与难点:重点:用列表或画树状图等方法计算简单事件发生的概率.难点:用列表或画树状图等方法列举简单事件发生的所有结果.课前准备:多媒体课件、学生课前做抛硬币试验并记录试验数据.教学过程:一、温故而知新活动内容:(多媒体出示)思考下列问题:1.小明和小颖一起做游戏。
在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小颖获胜。
(1)这个游戏对双方公平吗?(2)如果是你,你会设计一个什么游戏活动判断胜负?2.抛掷一枚均匀的硬币,硬币落下后,会出现几种情况?分别是什么?每一种结果出现的可能性相同吗?正面朝上反面朝上3.小颖小明和小凡都想去看周末的电影,但只有一张电影票,三人决定一起做游戏谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币.若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上一枚反面朝上则小凡获胜.你认为这个游戏公平吗?处理方式:第1、2个问题由学生口答,第3个问题可找2—3人回答,并适当阐述理由,根据学生回答情况适时引入新课并板书课题.设计意图:使学生再次体会“游戏对双方是否公平”,并由学生用自己的语言描述出“游戏公平吗”的含义是游戏的双方获胜的概率要相同.同时,巧妙的利用一个“如果是你,你会设计一个什么游戏活动判断胜负?”的问题,引发学生的思考及参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容.二、百花齐放春满园活动内容1:(多媒体出示)同学们,请将你们课前的试验数据汇总表进行分析,根据汇总过程及结果你会有什么发现?请把你的发现与大家交流一下.(附:试验数据表格)表格一:表格二:表格三:师:通过大量试验及数据分析我们发现,在一般情况下,“一枚正面朝上、一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,对小凡有利.处理方式:所同学在课前将小组内的试验数据进行整理汇总,并根据汇总结果分析游戏是否公平?课堂上让学生适当交流通过实验发现的结论,然后通过提问的形式让学生展示自己的试验心得及发现的结论.设计意图:本环节的设置,让学生在试验活动中,积累活动经验,通过试验数据的整理汇总,初步感受游戏的不公平性,并对频率与概率的关系有个初步的了解.活动内容2:在这个问题情境中,小明、小颖和小凡获得电影票的概率究竟是多大?请同学们思考如下问题:(多媒体出示自主探究题目)师:经过同学们的认真思考及讨论,我们知道了无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.根据同学们自己列举的图示,我们改进之后可以形成如下形式:(利用多媒体出示以下内容)处理方式:学生结合自主探究题目,独自思考2分钟左右后在小组内进行讨论交流;然后利用幻灯片对第1、2题找1—2生进行回答,第三题在学生回答后提出“你能否尝试用图形表示它们的结果?”,在学生思考讨论后,根据巡查中学生出现的情况,找3---4个学生在黑板上展示其讨论结果.对学生在黑板上展示的讨论结果中出现的问题,进行针对性的修改,并利用多媒体展示规范的利用“树状图”或“列表法”列举所有可能出现的结果.设计意图:这一环节,学生实践的基础上,进行深入的探索,从感性认知上升为理性思维,从而更深刻的认识到抛掷一枚均匀的硬币“正面朝上”和“反面朝上”的可能性是相同的;第三问的设计先让学生尝试用图形表示出现的结果,既激发学生的探索欲望,又为下一步的教学作铺垫.然后通过多媒体的直观展示,让学生更加深刻的理解如何利用“树状图”或“列表法”列举一个事件发生的所有结果.三、学贵于行之活动内容1:我们已经能够利用“树状图”或“列表法”来列举一个事件发生所可能出现的所有结果,你能利用所学知识帮助小颖解决这个问题吗?请同学们仔细审题,完整的写下你的答案.(多媒体出示学以致用题目)处理方式:找2生在黑板上进行展示,其他学生在练习本上处理,然后针对学生出现的问题,进行纠正,在解题过程中,要特别强调列表或树状图后文字语言的描述,从而使解题过程更加规范.设计意图:本环节的设计既让学生练习了用“树状图”或“列表法”求概率的方法,同时又规范了用“树状图”或“列表法”求概率的解题步骤.四、问渠那得清如许,为有源头活水来师:同学们,知识的积累、能力的提升在于及时的总结.通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.你又有哪些困惑,提出来让大家来帮你解决.学生间畅谈自己本节课的收获及困惑.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、操千曲而后晓声师:通过本节课的学习,同学们的收获一定很多!收获的质量如何呢?请完成下面的达标检测题.(多媒体出示)1.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上 C .掷2次必有1次正面朝上 D .不可能10次正面朝上2.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A.12B.13C.23D.143.从两组牌面分别是1,2的牌中各摸一张牌,则其牌面数字之和为3的概率为()A.13B.14C.12D.154.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会相同,小红希望上学时经过每个路口都是绿灯,出现这种情况的概率是()A.12B.14C.1 D.0处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、学而时习之必做题:习题3.1 第1,2题.选做题:小明和小颖做掷骰子的游戏,规则如下:1.游戏前,每人选一个数字:2.每次同时掷两枚均匀骰子;3.如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.板书设计:学生展示区。
北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教案一. 教材分析《北师大版数学九年级上册3.1《用树状图或表格求概率(三)》》这一节主要讲述了如何利用树状图或表格来求解概率问题。
本节课的内容是学生在学习了概率的基本知识、如何列举等可能结果和如何求解概率之后的内容,是进一步培养学生解决实际问题的能力,使学生能够灵活运用所学的知识来解决生活中的问题。
二. 学情分析学生在学习这一节之前,已经学习了概率的基本概念,掌握了如何列举等可能的结果和求解概率的方法。
但是,对于如何利用树状图或表格来求解概率问题,可能还存在一定的困难。
因此,在教学过程中,我需要引导学生将已学的知识运用到实际问题中,通过实际问题来理解和掌握如何利用树状图或表格来求解概率问题的方法。
三. 教学目标1.理解并掌握如何利用树状图或表格来求解概率问题的方法。
2.能够灵活运用所学的知识来解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:如何利用树状图或表格来求解概率问题的方法。
2.难点:如何引导学生将所学的知识运用到实际问题中,灵活求解概率问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握如何利用树状图或表格来求解概率问题的方法。
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生解决概率问题。
2.准备树状图和表格,用于辅助学生理解和掌握求解概率问题的方法。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何求解概率问题。
例如:一个袋子里有5个红球和4个蓝球,随机取出一个球,求取到红球的概率。
2.呈现(10分钟)呈现树状图和表格,引导学生理解树状图和表格的作用,以及如何利用它们来求解概率问题。
通过具体的例子,解释树状图和表格的每一项代表什么,如何计算概率。
3.操练(10分钟)让学生分组,每组解决一个实际问题,利用树状图或表格来求解概率问题。
一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作交流、思考问题的能力。
二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。
2. 教学难点:如何运用树状图和表格求复杂事件的概率。
三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。
2. 学生准备:笔记本、彩笔。
四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。
2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。
3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。
4. 练习环节:让学生独立完成练习题,巩固所学方法。
五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。
六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。
七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。
八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。
A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
3.1.2用树状图或表格求概率教学设计人民喜爱.那么同学们想一想“石头、剪刀、布”有没有规则漏洞可钻呢?如果三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪刀、布”的方式确定,那么在一个回合中,三个人都出“剪刀”的概率是多少?问题1:这个游戏是几步试验完成?问题2:每种都有几个可能性?问题3:一共有多少种可能性?下面让我们一起来研究。
例 1 小明、小颖和小凡做“石头、剪刀、布”游戏。
游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布)所以小凡获胜的概率为:31 = 93小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为:31=93;小颖胜小明的结果有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为:31 = 93你能用列表法来解决这个问题吗?解:利用表格列出所有可能的结果:【做一做】小明和小军两人一起做游戏。
游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数字等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负。
如果你是游戏者,你会选择哪个数?方法指导:这个问题看上去复杂,实际上等同于:两人各掷一次均匀的骰子,将两人掷得的点数相加,点数之和为几的概率最大?所以掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就大。
利用列表法列出所有可能出现的结果:从表格中,能看出和为7出现的次数最多,所以选择7,概率最大!【想一想】这个题目用树状图合适吗?解:因为小明和小军掷骰子出现的可能性相同,所以可以利用树状图列出所有可能出现的结果:共有36种等可能的结果.和为7出现的次数最多,所以得到点数之和是7的概率最大;所以一般来说,选择7这个数获胜的可能性最大.123456123456小明小军234567345678456789567891067891011789101112。
数学辅导教案教学课题北师大版初三数学九年级上册第三章用树状图或表格求概率预习教案教学目标知识目标:学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.能力目标:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感态度价值观:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.教学重点与难点重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率.难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.用树状图或表格求概率【知识梳理】一、用树状图求概率当一次试验要涉及3个或更多的因素时,为了不重复不漏掉地列出所有可能的结果,通常采用树状图.重点注意:画树状图时,每个“分支”的意义不同,但它们具有相同的等可能性,因此不能忽略任何一种情况,更不能遗漏任何一种情况.二、用表格求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率,当一次试验要涉及两个因素(例如摇两个骰子)并且可能出现的结果数目较多时,为了不重复不漏掉地列出所有可能的结果,通常采用表格求概率.重点注意:用表格求概率的适用范围是:(1)某次试验仅涉及两个因素;(2)可能出现的结果数目较多.用树状图与表格求概率的联系与区别联系:用树状图或表格求概率的共同前提是:(1)各种情况m现的可能性是相等的;(2)某事件发生的概率公式均为P(A)=各种种情况出现的次某事件发事件发生;(3)在列出并计算各种情况出现的总次数和某事件发生的次数时不能重复也不能遗漏.区别:当随机事件包含两步时,尤其是转盘游戏问题,当其中一个盘被等分成2份以上时,选用表格比较方便,当然此时也可用树状图;当随机事件包含三步或三步以上时,用树状图方便,此时难以列表.注意:在用表格求随机事件发生的概率时,要注意列表时数据或事件的顺序不能相互混淆,如(1,2)与(2,1)不是相同的事件,尽管在有些情况下它们的意义或结果是相同的.【典型例题】如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数 第二张 牌的牌面数1231 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)【例1】 甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?在用树形图时,必须将树形图与具体的结果写下来,这也是中考的要求.考点1 用树状图求概率【变式1】经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行(2)两辆车右转,一辆车左转(3)至少有两辆车左转【变式2】3.某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛组合,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?【例2】同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2.考点2 用表格求概率【变式1】某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上是4,5,7(两个转盘除表面数字不同外,其他完全相同).选择2名同学分别转动A 、B 两个转盘,停止后指针所指数字较大的一方为获胜者,另一方需表演节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.【变式2】在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?【课堂训练】1.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球.用列表法写出所有可能的结果.1 2 3 4 5 6 1 2 3 4 5 6填写表格过程中,注意数对的有序性.45 7游戏转盘B16 8游戏转盘A A2.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H和I.从甲、乙、丙三个口袋中各随机地取出1个小球.你能写出所有可能的结果吗?3.两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是__________.4.小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种.5.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?1)从盒子中取出一个小球,小球是红球;2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.6.在一个口袋有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机摸一个小球,求下列事件的概率:(1)两次取的小球标号相同;(2)两次取的小球标号的和为4.【课后作业】一、填空题:用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .二、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4)三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】1.有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(3)底面上的数字之和为偶数的概率是多少?2.一天晚上小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,此时突然停电了,小伟只好把杯盖和茶杯随即地搭配在一起,求颜色搭配正确和颜色搭配错误的概率各是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.。
北师大版数学九年级上册 3.1 用树状图或表格求概率第1课时教案第三章概率的进一步认识3.1用树状图或表格求概率第1课时整体设计教学目标【知识与技能】1.通过大量试验发现概率的大小.2.会用树状图或表格求概率.【过程与方法】通过试验活动培养学生发现、总结问题的能力.【情感态度与价值观】培养学生的交流与合作意识.教学重难点【重点】用树状图或表格求概率.【难点】通过大量试验发现概率的大小.教学准备【教师准备】试验用的表格、硬币等.【学生准备】复习有关概率的知识.教学过程新课导入导入一:抛两枚一模一样的质地均匀的正方体骰子可能出现哪些结果它们发生的可能性是否一样向上点数一样的可能性又是多少这些问题都可以用画树状图法或列表法进行求解.导入二:十一黄金周期间,梁先生驾驶汽车从甲地经乙地到丙地游玩.甲地到乙地有三条公路,乙地到丙地也有三条公路,每条公路的长度如图所示,梁先生任选一条从甲地到丙地的路线,这条路正好是最短路线的可能性是多少说说你是怎么算出来的.新知构建[过渡语]抛两枚硬币正反面朝上的概率情况是怎样的探究活动一:这个游戏公平吗小明、小颖和小凡都想周末去看电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.师生活动:学生分小组进行试验,然后累计各组的试验数据,分别计算这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.教师参与到学生当中,给有困难的学生个别指导.[设计意图]本课问题情境的建立可以立足于自己班级学生的实际情况,也可以采用不同的问题环境进行呈现,不需要局限于电影票.这样可以很好地吸引学生的参与,引发热烈的研究兴趣.教师提问:(1)掷第一枚硬币可能出现哪些结果它们发生的可能性是否一样(2)掷第二枚硬币可能出现哪些结果它们发生的可能性是否一样(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果它们发生的可能性是否一样如果第一枚硬币反面朝上呢学生思考并回答问题.教师活动:我们通常借助树状图或表格列出所有可能出现的结果:第一枚硬币和第二枚硬币所有可能出现的结果总共有4种,每种结果出现的可能性相同,其中:小明获胜的结果有1种:(正,正),所以小明获胜的概率是.小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是.小凡获胜的结果有2种:(正,反)(反,正),所以小凡获胜的概率是.因此,这个游戏对三人是不公平的.探究活动二:验证游戏的公平性.师发给学生下面表格:情况正,正正,反反,正反,反次数每个小组做20次试验,汇总后看看结果如何总结:在计算复杂事件发生的概率时往往采用画树状图或列表格法(下面统称列表法)进行分析,利用树状图或表格,可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.树状图法适合两步或两步以上完成的事件,列表法适合两步完成的事件.[知识拓展]在利用画树状图法或列表法求概率时,各种情况出现的可能性必须相同,把可能性不同的情况当成等可能的情况处理是错误的.课堂小结检测反馈1.从1,2,-3三个数中,随机抽取2个数相乘,积为正数的概率为()答案:2.小刚3掷一枚质地均匀的正方体骰子,骰子的6个面分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为()答案:3.我们可以用和的方法来计算发生的概率.答案:列表法画树状图随机事件4.用列出表格的方法来分析和求解某些事件的概率的方法叫,用画树状图的方法列出某事件的所有可能的结果,求出其概率的方法叫.答案:列表法树状图法板书设计第1课时1.探究活动一树状图法列表法2.探究活动二布置作业【必做题】教材第62页习题3.1的1,2题.【选做题】教材第62页习题3.1的3题.。
6.1 用树状图或表格求概率(一)一、学生知识状况分析七年级下学期学生在学习第六章“概率初步”时,已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,了解到事件的概率,体会到概率是描述随机现象的数学模型。
本章在此基础上结合具体的情景,让学生经历猜测、试验、收集试验数据、设计试验方案、分析试验结果等活动过程,进一步让学生体会数学在生活中的价值及发展合作意识。
二、教学任务分析本课时介绍两种计算概率的方法——树状图和表格法; 要求会借助树状图和表格法计算简单的事件发生概率.为此建立教学目标如下:1.知识与技能目标:①进一步理解当试验次数较大时试验频率稳定于概率.②会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.2.方法与过程目标:合作探究,培养合作交流的意识和良好思维习惯.3.情感态度价值观积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率.教学难点:理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率.三、教学过程分析本节设计五个教学环节第一环节:温故而知新,可以为师矣第二环节:一花独放不是春,百花齐放春满园第三环节:会当凌绝顶,一览众山小第四环节:问渠哪得清如许为有源头活水来第五环节:学而时习之,不亦乐乎.第一环节:温故而知新,可以为师矣问题再现:小明和小凡一起做游戏。
在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。
(1)这个游戏对双方公平吗?(2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?遇到了新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。
北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计一. 教材分析《树状图或表格求简单事件的概率》是北师大版数学九年级上册的一节内容。
本节课的主要内容是让学生掌握利用树状图或表格求简单事件的概率的方法。
通过学习本节课,学生能够理解概率的基本概念,学会使用树状图或表格来求解事件的概率,为后续学习更复杂的概率问题打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的数学概念和运算规则有一定的了解。
但是,学生在学习概率这一概念时,可能会感到较为抽象和难以理解。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,并通过树状图或表格的形式来进行分析和计算。
三. 教学目标1.知识与技能:让学生掌握利用树状图或表格求简单事件的概率的方法,并能够运用到实际问题中。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:让学生体验到数学与生活的紧密联系,激发学生对数学学习的兴趣。
四. 教学重难点1.重点:让学生掌握利用树状图或表格求简单事件的概率的方法。
2.难点:如何引导学生从实际问题中抽象出概率模型,并运用树状图或表格来进行分析和计算。
五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生从实际问题中抽象出概率模型。
2.启发式教学法:在教学过程中,教师引导学生进行自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.直观教学法:通过树状图或表格的展示,使学生更加直观地理解和掌握概率的计算方法。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示树状图或表格的例子。
2.教学素材:准备一些实际问题,作为学生练习的题目。
3.学生活动材料:准备一些纸张,供学生绘制树状图或表格。
七. 教学过程1.导入(5分钟)教师通过生活实例的引入,引导学生思考事件的概率问题。
例如,抛硬币实验,让学生思考抛两次硬币,正面向上的概率是多少。
3.1.1用树状图或表格求概率教学设计
抛掷一枚硬币,得到正面概率是多少?反面呢?
小明、小颖和小凡都想去看周末电影,但只有一张
电影票,三人决定一起做游戏,谁获胜谁就去看电
影。
你能帮他们设计吗?
其实他们三个做了一个这样的游戏
游戏规则如下:
连续抛掷两枚均匀的硬币,如果两枚正面朝
上,则小明获胜;如果两枚反面朝上,则小颖获胜;
如果一枚正面朝上、一枚反面朝上,小凡获胜。
一样?
答案:第二枚硬币可能出现“正面朝上”、“反面朝上”两种结果;它们发生的可能性一样
(4)在掷第一枚硬币反面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?
答案:第二枚硬币可能出现“正面朝上”、“反面朝上”两种结果;它们发生的可能性一样
归纳:由于硬币质地均匀.因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
树状图:
表格:
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获
胜的概率是1
4
;
小颖获胜的结果有1种:(反,反),所以小颖获
胜的概率也是1
4
;
小凡获胜的结果有2种:(正,反)(反,正),
所以小凡获胜的概率是21 42 ;。
《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是反映事件发生可能性大小的量。
强调概率的取值范围:0≤P(A)≤1。
1.2 必然事件和不可能事件必然事件的概率为1,不可能事件的概率为0。
举例说明。
第二章:树状图法求概率2.1 树状图的概念介绍树状图是一种图形化表示事件的方法。
强调树状图的优点:直观、清晰。
2.2 树状图法求概率步骤一:画出树状图。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第三章:列表法求概率3.1 列表法的概念介绍列表法是将所有可能的结果列出来,便于计算概率的方法。
强调列表法的优点:简单、直观。
3.2 列表法求概率步骤一:列出所有可能的结果。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指在一次试验中,一个事件的发生不影响另一个事件的发生。
强调独立事件概率的乘法规则。
4.2 独立事件的概率计算步骤一:列出所有独立事件的组合。
步骤二:计算每个独立事件的概率。
步骤三:将各独立事件的概率相乘。
第五章:互斥事件的概率5.1 互斥事件的定义解释互斥事件是指在一次试验中,两个事件不可能发生。
强调互斥事件概率的加法规则。
5.2 互斥事件的概率计算步骤一:列出所有互斥事件的组合。
步骤二:计算每个互斥事件的概率。
步骤三:将各互斥事件的概率相加。
本教案通过讲解概率的基本概念,以及树状图法、列表法求概率,重点介绍了独立事件和互斥事件的概率计算方法。
希望对您的教学有所帮助!第六章:条件概率6.1 条件概率的定义解释条件概率是指在某一事件已经发生的条件下,另一事件发生的概率。
强调条件概率的取值范围:0≤P(B|A)≤1。
6.2 条件概率的计算步骤一:计算事件A的概率P(A)。
步骤二:计算事件A和事件B发生的概率P(AB)。
步骤三:计算条件概率P(B|A)=P(AB)/P(A)。
第七章:全概率公式7.1 全概率公式的概念介绍全概率公式是用来计算一个事件发生的总概率的公式。
3.1用树状图或表格求概率
第1课时用树状图或表格求概率
1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)
2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)
一、情景导入
游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?
二、合作探究
探究点:用树状图或表格求概率
【类型一】两步决定的概率问题
明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?
解析:可采用画树状图或列表法把所有的情况都列举出来.
解:解法1:画树状图如图所示:
由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为1 6;
解法2:将可能出现的结果列表如下:
由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为1 6 .
方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.
【类型二】两步以上决定的概率问题
小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?
解:用树状图分析所有可能的结果,如图.
由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,
所以在一个回合中三个人都出“剪子”的概率为
1 27 .
方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.
【类型三】有无放试验
一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同.
(1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;
(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.
解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.
解:(1)列表如下:
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白
球的结果有2种,所以P(两次摸出的球都是白球)=2
6
=错误!未定义书签。
;
(2)列表如下:
由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白
球的结果有4种,所以P (两次摸出的球都是白球)=4
9
.
方法总结:试验中,常出现“放回和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.
三、板书设计
用树状图或表格求概率⎩⎪⎨⎪⎧画树状图法
列表法
通过与学生现实生活相联系的游戏为载,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
【素材积累】
不要叹人生苦短,若把人一生的足迹连接起来,也是一条长长的路;若把人一生的光阴装订起来,也是一本厚厚的书。
开拓一条怎样的路,装订一本怎样的书,这是一个人生命价值与内涵的体现。
有的人的足迹云烟一样消散无痕,有的人却是一本耐读的厚书,被历史的清风轻轻翻动着,给一代又一代的人以深情的启迪与深刻的昭示。