新河县一中九年级数学下册第4章概率4.2概率及其计算4.2.2用列举法求概率第2课时用树状图法求概率
- 格式:doc
- 大小:359.00 KB
- 文档页数:9
第2课时用树状图法求概率【知识与技能】1.会用画树状图法列举试验的所有结果.2.掌握用树状图求简单事件的概率.【过程与方法】通过生活中简单的例子,掌握画树状图的方法,进而掌握用树状图求概率的一般步骤.【情感态度】通过小组讨论,培养学生合作、探究的意识和品质.【教学重点】用树状图求概率.【教学难点】如何正确地画出树状图.一、情境导入,初步认识活动1:将一枚质地均匀的硬币连掷三次,问:(1)列举出所有可能出现的结果.(2)求结果为一次正面,两次反面的概率.教师问:该问题可以用列表法来解决吗?请试一试看(学生分组讨论).经探究发现,上述问题用列表法不易解决,因为列表法适用于试验只需两步完成的事件,而上述掷硬币需三步完成,所以不易用列表来解决,这就需要一种新的方法来解决——树状图法.二、思考探究,获取新知如何用树状图来解决[活动1]中的问题呢?先让我们一起来画树状图.从所画树状图可知共有正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反8种结果,而结果为一次正面两次反面的结果,有正反反,反正反,反反正3种,∴P(一次正面,两次反面)=3 8【教学说明】列表法求概率适用的对象是两步完成或涉及两个因素的试验,而树状图法既运用于两步完成的试验,又适用于三步及三步以上较复杂的试验.例1 小明和小华做“剪刀、石头、布”的游戏,游戏规则是:若两人出的不同,则石头胜剪刀,剪刀胜布,布胜石头;若两人出的相同,则为平局.(1)怎样表示和列举一次游戏的所有可能结果?(2)用A、B、C表示指定事件:A:“小明胜” B.“小华胜” C.“平局”分别求出事件A、B、C的概率.【教学说明】本例为教材P129“动脑筋”,教师要求学生先小组讨论,后独立完成,再以小组交流的方法去完成,过程见P130.例2 教材P130例2【教学说明】用列表法或画树状图法都可以不重不漏地列举出试验所有可能出现的结果,只是适用的范围不同,一般来讲,可用列表法解决的问题都可以用树状图来解决,反过来,就不一定.画树状图时,一定要看清题意,注意试验是几步完成,一般来讲试验分几步完成.树状就“分枝”几次;树状图可以横着画,也可以竖着画.四、运用新知,深化理解1.要从小强、小红和小华三人中随机选取两人作为旗手,则小强和小红同时入选的概率是( )2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过的每个路口都是绿灯,但实际这样的机会是( )3.一套书共有上、中、下三册,将他们任意摆放到书架的同一层上,这三册书从左到右恰好成上、中、下顺序的概率为________.4.三个同学同一天生日,他们做了一个游戏:买来了三张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则他们拿到的贺卡都不是自己所写的概率是________.5.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?【教学说明】学生自主完成,加深对新知识的掌握.【答案】1.B 2.B 3.164.135.解:画树形图如下:P(1个男婴,2个女婴)=38.四、师生互动,课堂小结1.师生共同回顾用树状图求概率的方法,特别要注意树状图的画法.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问,请与同学们交流.1.教材P131第1、2题.2.完成同步练习册中本课时的练习.本节课由三次掷硬币引出用树状图求概率,与上节课“两次掷硬币”用列表法求概率相比较,让同学们学会比较、观察、探究问题的能力,加深对求概率知识的掌握.学习目标:1.会用因式分解法(提公因式法、公式法)法解某些简单的数字系数的一元二次方程。
2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。
重点、难点1、重点:应用分解因式法解一元二次方程2、难点:灵活应用各种分解因式的方法解一元二次方程.【课前预习】阅读教材P38 — 40 , 完成课前预习1:知识准备将下列各题因式分解am+bm+cm= ; a2-b2= ; a2±2ab+b2=因式分解的方法:解下列方程.(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)2:探究仔细观察方程特征,除配方法或公式法,你能找到其它的解法吗?3、归纳:(1)对于一元二次方程,先因式分解使方程化为__________ _______的形式,再使_________________________,从而实现_____ ____________,这种解法叫做__________________。
(2)如果,那么或,这是因式分解法的根据。
如:如果,那么或_______,即或________。
练习1、用因式分解法解下列方程:(1) x2-4x=0 (2) 4x2-49=0 (3) 5x2-10x+20=0【课堂活动】活动1:预习反馈活动2:典型例题活动3:随堂训练1、用因式分解法解下列方程(1)x2+x=0 (2)x2-2x=0(3)3x2-6x=-3 (4)4x2-121=0(5)3x(2x+1)=4x+2 (6)(x-4)2=(5-2x)22、把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径。
活动4:课堂小结因式分解法解一元二次方程的一般步骤(1)将方程右边化为(2)将方程左边分解成两个一次因式的(3)令每个因式分别为,得两个一元一次方程(4)解这两个一元一次方程,它们的解就是原方程的解【课后巩固】1.方程的根是2.方程的根是________________3.方程2x(x-2)=3(x-2)的解是_________4.方程(x-1)(x-2)=0的两根为x1、x2,且x1>x2,则x1-2x2的值等于___ 5.若(2x+3y)2+2(2x+3y)+4=0,则2x+3y的值为_________.6.已知y=x2-6x+9,当x=______时,y的值为0;当x=_____时,y的值等于9.7.方程x(x+1)(x-2)=0的根是()A.-1,2 B.1,-2 C.0,-1,2 D.0,1,28.若关于x的一元二次方程的根分别为-5,7,则该方程可以为()A.(x+5)(x-7)=0 B.(x-5)(x+7)=0C.(x+5)(x+7)=0 D.(x-5)(x-7)=09.方程(x+4)(x-5)=1的根为()A.x=-4 B.x=5 C.x1=-4,x2=5 D.以上结论都不对10、用因式分解法解下列方程:(1) 3x(x-1)=2(x-1) (2)x2+x(x-5)=03.1 投影第1课时平行投影与中心投影【知识与技能】1。
了解投影、投影线、投影面的概念,掌握平行投影和中心投影的概念及性质.2。
能够确定物体在平行光线和点光源发出的光线在某一平面上的投影。
【过程与方法】经过观察、想象,体会中心投影与平行投影之间的区别.【情感态度】1。
积极参与探索,总结,与同伴交流,勇于解决问题。
2。
通过了解,感受我国古代灿烂的文化,并会用数学的眼光观察世界。
【教学重点】平行投影、中心投影的含义及其特征.【教学难点】平行投影与中心投影的区别及判断方法。
一、情境导入,初步认识媒体展示:①物体在日光或灯光的照射下,在墙壁或地面形成影子;②皮影戏;③灯光下,做不同的手势形成各种各样的手影.(可让学生参与现场表演,激发学生求知欲〕二、思考探究,获取新知1.投影及平行投影的概念阅读教材P95,了解投影的定义及平行投影的定义。
〔1〕投影的定义:光线照射物体,在某个平面(地面或墙壁等〕上得到的影子叫做物体的投影,照射光线叫投影线,投影所在的平面叫投影面。
(2〕平行投影的定义:由平行光线形成的投影。
如物体在太阳光的照射下形成影子。
【教学说明】平行投影的特征:同一物体在不同时刻太阳光下影子的方向和长短是不一样的。
一般上午的影子由西→西北→北变化,影子越来越短,下午的影子由北→东北→东变化,影子越来越长.例1 如图,有两根木棒AB,CD在同一平面上竖着,其中AB这根木棒在太阳光下的影子为BE,请画出CD的影子DF,并说明你是怎样画的。
【分析】因为是太阳光下的影子,所以光线应是平行的,木棒的顶端A与影子E的连线AE即为太阳光线。
解:过点C作CF∥AE,交BD所在的直线于F,那么DF就是所求的CD的影子,如下图。
2。
中心投影中心投影的定义:探照灯,路灯或台灯的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影。
【教学说明】①中心投影会改变物体的形状和大小.我们前面学过的位似图就可以看作中心投影。
②中心投影的点光源,物体边缘上的点及它在影子上的对应点在同一条直线上,根据其中两点,就可以求出第三个点位置.例2 如图,垂直于地面的两根木杆AB,CD在同一路灯下的影子分别是BE,DF,试画出路灯灯泡的位置.【分析】因为路灯发出的光线均从同一点〔即灯泡〕出发,故光线AE,CF的交点即为灯泡所在位置.解:连接EA,FC并延长,交点为P,那么点P是灯泡的位置。
三、运用新知,深化理解1。
晚上小华出去散步,在经过一盏路灯时,他发现自己的身影〔 )A.变长B.变短C。
先变长后变短 D.先变短后变长2。
(湖北宜昌中考〕如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影大小的变化情况是〔〕A.越来越小 B。
越来越大C.大小不变D.不能确定3.在一个晴朗的白天里,小亮在向正北方向走路时,发现自己的身影向左偏,你知道当时所处的时间是( 〕A。
上午 B.中午C.下午 D。
无法确定4。
从早上太阳升起的某一时刻开始到晚上,操场上旗杆在地面上的影子变化规律是( 〕A.先变长,后变短B.先变短,后变长C.方向改变,长短不变 D。
以上都不正确5。
在同一时刻,身高为1。
6米的小强的影长是1。
2米,旗杆的影长是15米,那么旗杆高为_______。
6。
确定图中路灯灯泡的位置,并画出小赵在灯光下的影子。
7。
如图,我国某大使馆内有一单杠支架,支架高2。
8m,在办公楼前竖立着高28m的旗杆,旗杆底部离大使办公楼墙根的垂直距离为17m,在阳光灿烂的某一时刻,单杠支架的影长为2。
24m,办公室窗口离地面5m,问此刻旗子的影子是否能到达办公室的窗口?【教学说明】学生自主完成加深对新知的理解。
【答案】1。
D 2。
A 3. A 4。
B 5。
20米 6.略7。
解:能到达。
设旗杆的影长为xm,依题意,∴x=22。
4,22。
4—17=5.4,再设影子落在办公楼上的影高为ym,依题意得,∴y=6。
75>5,∴旗子的影子能到达办公室的窗口.四、师生互动,课堂小结1.本堂课主要学习了投影、平行投影、中心投影的有关概念,初步认识了平行投影和中心投影的特征,通过例题和练习掌握了平行投影的简单应用。