二次函数中的三角形面积问题
- 格式:doc
- 大小:209.21 KB
- 文档页数:4
二次函数中三角形面积最大值问题的处理方法二次函数是高中数学中一个经常出现的重要知识点,它在数学中有着广泛的应用,其中一个重要的应用就是处理三角形面积最大值问题。
在本文中,我们将介绍二次函数在处理三角形面积最大值问题中的基本方法和应用技巧。
1. 三角形面积最大值问题的基本原理三角形面积最大值问题指的是给定三边长度为a、b、c,求出以这三条边为边长的三角形的面积最大值。
根据海伦公式,三角形面积公式为:S = √[p(p-a)(p-b)(p-c)]其中p=(a+b+c)/2,是三角形半周长。
我们可以通过求解出上式的最大值来得到三角形的最大面积。
2. 二次函数相关知识介绍二次函数是形如y=ax^2+bx+c的函数,其中a、b、c 是常数,而x是自变量。
二次函数在数学中有着广泛的应用,其标准形式为:y=ax^2+bx+c(a≠0)其中a表示二次函数的开口方向和大小,常被称为二次函数的开口因子;b表示二次函数的对称轴的位置,常被称为二次函数的对称轴;c表示二次函数在y轴上的截距,即当x=0时,二次函数的函数值。
3. 二次函数求解三角形面积最大值的应用在二次函数求解三角形面积最大值的应用中,我们可以将三角形面积公式中的p表示为:p=(a+b+c)/2 = (x+y+z)/2然后使用二次函数y=f(x)表示√[p(p-a)(p-b)(p-c)],其中x、y、z分别表示三角形的三边长度a、b、c。
由于p=(x+y+z)/2是一个常数,因此我们可以将其视为一个固定值,从而将y=f(x)表示为:y=√[(x+y+z)/2(x+y+z)/2-x(x+y+z)/2-y(x+y+z)/2+z(x+y+z)/2]化简得:y=√[xyz(x+y+z)]这就是一个二次函数的标准形式。
通过求解这个二次函数的最大值,我们就可以得到三角形的最大面积。
4. 二次函数求解三角形面积最大值的具体方法为了求解上述的二次函数的最大值,我们需要使用二次函数y=f(x)的顶点公式:x=-b/2a,y=f(-b/2a)其中x=-b/2a即为二次函数的对称轴坐标,f(-b/2a)即为二次函数的顶点坐标。
二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。
解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。
一、知识梳理1.三角形面积公式:S 2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)=21×底×高2.平行四边形的性质:对边相等、对角相等、对角线互相平分3.判别式法求最值:通过判别式判断二次方程的根的情况,进而求出最值二、问题分析1.三角形面积最值存在性问题:∙利用二次函数的性质和对称性,找到合适的底和高,计算三角形的面积;∙设置关于底和高的二次方程,利用判别式判断方程的根的情况,进而求出面积的最值。
2.平行四边形存在性问题:∙利用二次函数的对称性和性质,找到满足平行四边形性质的点;∙利用平行四边形的性质证明这些点构成平行四边形。
三、例题解析【例1】已知抛物线y=x2−2x和直线y=2x+b相交于A、B两点,且∠AOB=90°,其中O为坐标原点。
求△AOB的面积。
【答案】联立方程组:y=x2−2x,y=2x+b.消去y得:x2−4x−b=0.由于直线与抛物线有两个交点,所以判别式Δ>0:Δ=16+4b>0⇒b>−4.设交点A、B坐标分别为(x1,y1)和(x2,y2),由韦达定理得:x1+x2=4,x1x2=−b.由于∠AOB=90,所以x1x2+y1y2=0。
代入y1=2x1+b和y2=2x2+b,解得:−b+(2x1+b)(2x2+b)=0.化简得:−b−4b+8b+b2=0⇒b2+3b=0.解得:b=−3或b=0。
当b=0时,A、B坐标分别为(0,0)和(4,8),点A和点O重合,不符合条件。
因此,b =−3,代入方程组得A (1,-1),B (3,3)。
所以,△AOB 的面积为:S =21×∣O A ∣×∣O B ∣=21×2211)()(-+×2233)()(+=21×2×18=3.【例2】抛物线6221y 2--=x x 与x 轴相交于点A 、点B ,与y 轴相交于点C 。
二次函数求三角形面积最大值的典型题目篇一:哎呀呀,说到二次函数求三角形面积最大值的题目,这可真是让我头疼了好一阵子呢!就比如说有这么一道题:在平面直角坐标系中,有一个二次函数图像,然后给了一堆点的坐标,让咱们求由这些点构成的三角形面积的最大值。
这可咋整?我一开始看到这题,那真是脑袋都大了!心里就想:“这啥呀?怎么这么难!”我瞪大眼睛,死死地盯着题目,手里的笔都快被我捏出汗来了。
我同桌小明呢,他倒是挺自信,还跟我说:“这有啥难的,看我的!”我心里暗暗不服气,哼,你就吹吧!然后老师开始讲题啦,老师说:“同学们,咱们得先找到这个二次函数的顶点坐标,这就好比是找到宝藏的钥匙!”我一听,宝藏?这比喻还挺有意思的。
老师接着说:“然后再看看那些给定的点,能不能通过一些巧妙的方法把三角形的面积表示出来。
”我就在那拼命点头,好像听懂了,其实心里还是有点迷糊。
我扭头看看后面的学霸小红,她一脸轻松,好像这题对她来说就是小菜一碟。
我忍不住问她:“小红,你咋这么厉害,这题你都懂啦?”小红笑了笑说:“多做几道类似的题,你也能懂!”我又埋头苦想,想着要是能像玩游戏一样,一下子就找到解题的秘诀该多好啊!经过一番折腾,我终于有点明白了。
原来求这个三角形面积最大值,就像是爬山,得找到那个最高的山峰,而我们要找的就是能让面积最大的那个点或者那条线。
你说,数学咋就这么难呢?但我就不信我搞不定它!我一定要把这些难题都攻克下来,让数学成为我的强项!总之,我觉得做这种二次函数求三角形面积最大值的题目,虽然过程很艰难,但只要我们不放弃,多思考,多练习,就一定能找到解题的窍门,取得胜利!篇二:哎呀!说起二次函数求三角形面积最大值的题目,这可真是让我又爱又恨呀!有一次上课,数学老师在黑板上出了一道这样的题:已知一个二次函数图像,还有三角形的三个顶点坐标都在这个函数图像上,让我们求三角形面积的最大值。
当时我一看,脑袋就嗡嗡响,这啥呀?我就开始在草稿纸上乱画,心里想着:“这咋这么难呢?”同桌小明凑过来,瞅了瞅我的草稿纸,说:“你这算的啥呀,思路都不对!”我瞪了他一眼,回道:“那你行你上啊!”然后我俩就你一句我一句地争论起来。
二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。
三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。
第一种求解三角形面积的方法是通过使用二次函数的半径求解。
首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。
这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。
第二种求解三角形面积的方法是使用三角函数求解。
有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。
举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。
这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。
第三种求解三角形面积的方法是使用二次函数求解。
如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。
椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。
这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。
以上就是介绍了三种求解三角形面积的方法。
不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。
∙∙∙∙初中数学二次函数中三角形面积问题解析一、命题意图二次函数中三角形面积相结合的题目是近年来中考数学中常见的问题,题型常考常新,体现了数形结合、化归转化、分类讨论数学思想等。
如果将三角形这一平面图形问题与二次函数相结合,就需要学生以逻辑思维和空间思维相结合的方式进行学习,以培养学生逻辑思维与空间思维能力相结合的基本数学思想,让学生学会自主思考问题的过程。
二、考点及对应的考纲要求初中数学课程教学中关于三角形面积问题的讨论一直是教学重点,这其中牵涉了二次函数与几何问题的融合,是初中数学课程中的一个难点。
求面积常用的方法:(1)直接法,若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的高,那么三角形的面积能直接用公式算出来。
(2)简单的组合,解决问题的途径常需要进行图形割补、等积变形等图形变换。
(3)面积不变同底等高或等底等高的转换,利用平行线得到三角形同底等高进行面积转化。
(4)如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”. 可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半。
三、试题讲解过程如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,-4)三点.(1)求该抛物线的解析式; (2)若点D 是该抛物线上一动点,且在第四象限,当∆面积最大时,求点D 的坐标.解:(1)解法一: 由题意得,c=-4, ∴⎩⎨⎧=-+=--0441604b a b a ,解得:⎩⎨⎧-==31b a , ∴=x y 解法二: 由题意得,设y=a (x+1)(x-4), ∴∴y=(x+1)(x-4), ∴432--=x x y ,(2)解法一:由(1)可知,y=x 2-3x -4,设点D 为(x, x 2-3x -4),过点D 作DE ∥OC 交BC 设直线BC 的解析式为y=kx +b,则∙∙∙⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4, ∴E (x, x -4)∴DE=(x -4)-(x 2-3x -4)= -x 2+4x,∵a=-1<0, ∴当x=2时, DE 取最大值,S △BCD 解法二:由(1)可知,y=x 2-3x -4, 设点D 为(x,y ),过点D 作DF ⊥OB 于点F,S △BCD =S 梯形OCDF +S △BDF -S △OBC=21x (4-y )+21(-y )(4-x )-8 =2x -2y -8=2x -2(x 2-3x -4)-8=-2x 2+8x,∵a=-2<0, ∴当x=2时, S △BCD 取最大值,∴D (2,-6解法三:由(1)可知,y=x 2-3x -4, 过点D 作DE ∥设直线BC 的解析式为y=kx +b, 则⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4,∴设直线DE 的解析式为y=x +d,则x 2-3x -4=x +d, x 2∴当△=(-4)2-4(-4-d )=0, d=-8, S △BCD 取最大值, ∴x 2-4x +4=0, ∴(x-2)2=0, ∴x 1=x 2=2, ∴D (2,-6). 四、试题的拓展延伸及变式分析如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,3)三点.(1)若点D 是抛物线的对称轴上一点,当ACD ∆求点D 的坐标;(2)在(1)的情况下,抛物线上是否存在除点A 得PCD ∆ 的面积与ACD ∆P 的坐标;若不存在,请说明理由.解:(1)∵抛物线c bx ax y ++=2经过A (1,0),B (3∴抛物线的对称轴l 是x=231+=2, ∵△ACD 的周长=AD+AC+CD, AC 是定值, ∴当AD+CD 最小时,△ACD 的周长最小,∵点A 、点B 关于对称轴l 对称,∴连接BC 交l 于点D ,即点D 为所求的点, 设直线BC 的解析式为n kx y +=,∴ ⎩⎨⎧=+=033n k n ,∴⎩⎨⎧=-=31n k ,∴直线BC 的解析式为3+-=x y ,∙∙当x=2时,y=-x+3=-2+3=1,∴点D 的坐标是(2,1).(2)解:由(1)可知,∵抛物线c bx ax y ++=2经过A (1,0),B (3,0),C (0,3)三点,∴c=3, ∴⎩⎨⎧=++=++033903b a b a ,解得:⎩⎨⎧-==41b a ,∴342+-=x x y ,解法一:如图,①过点A 作AP 1∥CD 交抛物线于点P 1,∴设直线AP 1的解析式为d x y +-=, ∴∴d=1,∴直线AP 1的解析式为1+-=x y , 解方程1+-x =342+-x x ,(x-1)(x-2)∴x 1=1, x 2=2,当x 1=1时,11+-=x y =0当x 2=2时,12+-=x y =-1,∴点P 1②设直线AP 1交y 轴于点E (0,1)把直线BC 向上平移2个单位交抛物线于P 2得直线P 2P 3的解析式为5+-=x y ,解方程5+-x =342+-x x , x 2-3x -2=0,∴x 3=2173+, x 4=2173-, 当x 3=2173+时,53+-=x y =2177-, 当x 4=2173-时,54+-=x y =2177+, ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 解法二:如图,过A 点作AE∥y 轴,交BC 于点E .则E 点的纵坐标为231=+-.∴ AE=2. 设点P 为(n ,342+-n n ),过P 点作PF∥y 轴,交BC 于点F ,则点F 为(n ,n -3),PF∥AE. 若PF =AE ,则△PCD 与△ACD 的面积相等.∙∙①若P 点在直线BC 的下方,则PF =(n -3)-(342+-n n )=n 2-∴n n 32+-=2.解得21=n ,12=n .当2=n 时,3-n-2∴P 1点坐标为(2,-1). 同理 当1=n 时,P 点坐标为(1,0)(不合题意,舍去).②若P 点在直线BC 的上方,则PF=(342+-n n )-(n -3)=n n 32-∴232=-n n .解得21733+=n ,4=n 当21733+=n 时,P 点的纵坐标为2177221733-=++-; 当21734-=n 时,P 点的纵坐标为2177221733+=+--. ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 在以上问题的分析中研究思路为:(1)分析图形的成因;(2)识别图形的形状;(3)找出图形的计算方法。
二次函数中的三角形面积问题教案《二次函数中的三角形面积问题教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容二次函数中的三角形面积问题教案球溪高级中学郭燕教学目标知识与技能1.复习巩固二次函数的性质;2.通过观察分析,能够概括总结出二次函数中三角形面积问题的基本类型;3.能够用直接法和割补法求二次函数中的三角形面积;过程与方法在求面积的过程中,体会数形结合和转化思想在二次函数三角形面积问题中的应用。
情感态度与价值观5.进一步培养学生学习数学的兴趣和增强学生学习的自信心6.在转化,建模的过程中,体验解决问题的方法,培养学生合作交流意识和探索精神。
二、教学重难点重点:直接法和割补法(铅垂法)求二次函数中的三角形面积问题;难点:二次函数中三角形面积的最值问题。
三、教学过程【复习旧知】1.已知二次函数,请用五点法在方格纸上画出草图,并结合图像尽可能多地写出你认为正确的结论。
师生活动:学生作图,思考,发言;教师总结二次函数的性质可从开口方向,顶点,与坐标轴的交点,对称轴,最值,增减性,对称性等方面研究。
设计意图:复习巩固五点法作二次函数草图,同时简单回顾二次函数的性质。
【问题探究】若二次函数与x轴交于A,B两点(B在A的左边),与y轴交于点C,顶点为点D。
【问题1】:任意连接ABCDO五点中的三个点,能组成哪些三角形?师生活动:学生思考后举手口答。
设计意图:引入今天的复习课内容——二次函数中的三角形面积问题。
【追问1】:在这四个三角形中,哪些三角形的面积比较好求,请写下来。
【追问2】:这些三角形面积为什么相对容易求解?——有一边在坐标轴上。
师生活动:学生思考求解,并积极发言,同时观察分析,总结规律。
设计意图:会利用公式直接计算至少有一边在坐标轴上的三角形面积。
【追问3】:若二次函数与y轴的交点关于对称轴的对称点为点E,你能求出和的面积吗?【追问4】:这两个三角形面积为什么也相对容易求解?——有一边平行于坐标轴。
二次函数与三角形面积问题二次函数与三角形面积问题的关系是通过求解二次函数图像与x轴交点来得到三角形的面积。
具体而言,如果给定二次函数的表达式,我们可以求解方程f(x) = 0的解,这些解就是二次函数图像与x轴交点的横坐标。
通过这些横坐标,我们可以确定三角形的底边的长度。
同时,我们可以求解二次函数的最值来确定三角形的高,进而计算出三角形的面积。
首先,让我们来回顾一下二次函数的定义和性质。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c是实数且a不等于零。
二次函数的图像是一个抛物线,它的开口方向由a的正负号决定,当a 大于零时开口向上,当a小于零时开口向下。
二次函数的顶点是抛物线的最值点,当a大于零时顶点是最小值点,当a小于零时顶点是最大值点。
现在,让我们将二次函数与三角形面积问题联系起来。
假设我们有一个给定的二次函数f(x) = ax^2 + bx + c,我们希望求解该二次函数图像与x轴交点的横坐标,并计算出通过这些交点确定的三角形的面积。
首先,我们需要求解方程f(x) = 0,也就是求解ax^2 + bx + c = 0。
这可以通过使用求根公式来进行计算。
根据求根公式,对于一个二次方程ax^2 + bx + c = 0,它的解为x = (-b ± √(b^2 - 4ac)) / (2a)。
根据这个公式,我们可以求解出具体的x值。
假设我们求解得到了两个根,x1和x2。
接下来,我们可以通过计算这两个根之间的距离来确定三角形的底边的长度。
根据数学知识,我们知道两个点(x1, 0)和(x2, 0)之间的距离等于|x2 - x1|。
因此,通过计算|x2 - x1|,我们可以得到底边的长度。
接下来,我们需要确定三角形的高。
为了做到这一点,我们需要找到二次函数的顶点。
二次函数的顶点的横坐标可以通过使用公式x = -b / (2a)来计算。
通过计算出的顶点横坐标,我们可以计算出顶点在x轴上的纵坐标。
数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。
二次函数三角形面积定值问题二次函数三角形面积定值问题1.引言二次函数三角形面积定值问题是数学中的一个经典问题,它涉及到二次函数和三角形的关系,对于理解数学概念和解决实际问题具有重要意义。
本文将从浅入深,逐步介绍二次函数三角形面积定值问题,并探讨其相关概念和原理。
2.二次函数的基本概念2.1 二次函数的定义二次函数是指函数的表达式中含有二次项的函数。
一般形式可表示为y=ax^2+bx+c,其中a、b、c为常数,x为自变量,y为因变量。
二次函数在数学中具有广泛的应用,如物理学中的抛物线运动、经济学中的成本-收益分析等。
2.2 二次函数图像特征二次函数的图像是一条抛物线,其开口方向取决于a的正负,开口向上表示a大于0,开口向下表示a小于0。
抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数的值。
3.三角形面积定值问题3.1 问题描述三角形面积定值问题是指已知二次函数的表达式,求解在该函数图像上构成的三角形的面积为固定值的条件下,确定三角形的顶点坐标。
3.2 求解思路解决三角形面积定值问题的一种常用方法是通过求解二次方程组来确定顶点坐标。
设三角形的顶点坐标为(x1, f(x1))、(x2, f(x2))、(x3,f(x3)),其中f(x)为二次函数的值。
由三角形的面积公式可得:S=1/2 * |x1*(f(x2)-f(x3))+x2*(f(x3)-f(x1))+x3*(f(x1)-f(x2))|。
当已知三角形的面积为A时,将该表达式等于A,然后解方程组,即可得到三角形的顶点坐标。
4.案例分析4.1 案例描述以二次函数y=x^2为例,已知三角形的面积为4,求解三角形的顶点坐标。
4.2 案例解答根据3.2节的求解思路,将面积公式等于4得到方程|x1*(f(x2)-f(x3))+x2*(f(x3)-f(x1))+x3*(f(x1)-f(x2))|=8。
根据二次函数y=x^2的图像特征,顶点坐标为(-b/2a,f(-b/2a)),代入顶点坐标并解方程组,得到x1=-2,x2=0,x3=2。
二次函数中三角形面积问题的三种求解方法
二次函数中三角形面积问题的三种求解方法
求二次函数中三角形面积问题是一个常见的数学问题,很多学生和老师都有求解它的困惑。
那么,我们应该如何求解这个问题呢?答案是:有三种求解方法。
第一种求解方法是使用牛顿勒让公式进行计算。
牛顿勒让公式是一种高级数学方法,它试图用参数表示二次函数上的点,然后把它们连接起来从而确定三角形的面积。
第二种求解方法是使用初等函数进行计算。
初等函数是指利用函数的一阶导数或二阶导数计算函数的极值,进而求得存在的三角形的面积。
第三种求解方法是使用微积分中的定积分。
定积分是指将该函数在指定的范围内进行积分,解出积分值,从而得出三角形的面积。
通过以上三种方法,我们可以求出二次函数中三角形的面积。
其中,牛顿勒让公式是一种高级数学方法,初等函数是一种直接使用函数的导数,定积分是把函数分段积分的方法。
而这三种方法对求解二次函数中三角形面积问题都有用处,都可以取得精确而完整的结果。
二次函数三角形面积二次函数是高中数学中的重要内容之一,而二次函数与三角形面积之间的关系也是数学中的一个经典问题。
本文将通过简单的例子和详细的讲解,介绍二次函数与三角形面积的关系。
我们来看一个简单的例子:假设有一个三角形,它的底边长为3,高为2。
我们想要求这个三角形的面积。
这时我们可以使用二次函数来求解。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,x为自变量,y为因变量。
而三角形的面积可以通过底边长和高来计算,公式为S = 1/2 * 底边长 * 高。
我们可以将三角形的面积S表示为二次函数的形式,即S = ax^2 + bx + c。
由于我们已知底边长为3,高为2,代入公式可得2 = a * 3^2 + b * 3 + c。
接下来,我们需要求解二次函数的系数a、b、c。
由于已知三个点(3,2),我们可以通过代入这三个点的坐标来求解。
代入第一个点(3,2),可得2 = 9a + 3b + c。
接着,代入第二个点(0,c),可得c = a * 0^2 + b * 0 + c,即 c = c。
最后,代入第三个点(-3,2),可得2 = 9a - 3b + c。
通过以上三个方程,我们可以解得a、b、c的值。
进一步求解,我们可以得到二次函数的解析式。
在得到二次函数的解析式之后,我们可以进一步求解三角形的面积。
将求得的系数a、b、c代入二次函数的解析式中,我们可以得到三角形的面积函数S(x)。
通过对S(x)进行化简,我们可以得到一个简化的表达式,即二次函数与三角形面积的关系式。
在进一步讨论之前,我们可以先来看一下二次函数的图像。
由于二次函数是一个抛物线,它的图像可以分为两种情况:开口向上和开口向下。
当二次函数的系数a大于0时,它的图像开口向上;当系数a小于0时,它的图像开口向下。
对于开口向上的二次函数,它的最低点即为抛物线的顶点。
而顶点的横坐标就是二次函数的极值点。
我们可以通过求导来找到这个极值点。