电场中的导体与电介质
- 格式:doc
- 大小:94.00 KB
- 文档页数:8
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
备注体和电介质引言:一、导体、电介质、半导体导体:导电性能很好的材料;例如:各种金属、电解质溶液。
电介质(绝缘体):导电性能很差的材料;例如:云母、胶木等。
半导体:导电性能介于导体和绝缘体之间的材料;二、本章内容简介三、本章重点和难点1. 重点(1)导体的静电平衡性质;(2)空腔导体及静电屏蔽;(3)电容、电容器;2. 难点导体静电平衡下电场强度矢量、电势和电荷分布的计算;第一节静电场中的导体一、静电感应静电平衡1. 静电感应(1)金属导体的电结构从微观角度来看,金属导体是由带正电的晶格点阵和自由电子构成,晶格不动,相当于骨架,而自由电子可自由运动,充满整个导体,是公有化的。
例如:金属铜中的自由电子密度为:()328n=m⨯8-10Cu。
当没有外电场时,导体中的正负电荷等量均匀分布,宏观上呈电中性。
(2)静电感应当导体处于外电场E0中时,电子受力后作定向运动,引起导体中电荷的重新分布。
结果在导体一侧因电子的堆积而出现负电荷,在另一侧因相对缺少负电荷而出现正电荷。
这就是静电感应现象,出现的电荷叫感应电荷。
2. 静电平衡不管导体原来是否带电和有无外电场的作用,导体内部和表面都没有电荷的宏观定向运动的状态称为导体的静电平衡状态。
备 注(a )自由电子定向运动 (b )静电平衡状态3. 静电平衡条件(静电平衡态下导体的电性质)(1)导体内部任何一点处的电场强度为零;导体表面处电场强度的方向,都与导体表面垂直。
(2)在静电平衡时,导体内上的电势处处相等,导体是一个等势体。
证明: 假设导体表面电场强度有切向分量,即0≠τE ,则自由电子将沿导体表面有宏观定向运动,导体未达到静电平衡状态,和命题条件矛盾。
因为00==τE E,内,所以0,0==τd dU dl dU ,即导体为等势体,导体表面为等势面。
二、静电平衡时导体上电荷的分布1. 实心导体(1)处于静电平衡态的实心导体,其内部各处净电荷为零,电荷只能分布于导体外表面。
第二章 静电场中的导体与电介质2.1 导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很大(相差10多个数量级,而不同导体间电导率数量级最多就相差几个数量级)。
(2)微观上导体内部存在大量的自由电子,在外电场下会发生定向移动,产生宏观上的电流而电介质内部的电子处于束缚状态,在外场下不会发生定向移动(电介质被击穿除外)。
2.2静电场中的导体1. 导体对电场的响应:静电场中的导体,其内部的自由电子会发生定向漂移,电荷分布会发生变化,这是导体对电场的响应方式称为静电感应,导体表面会产生感应电荷,感应电荷激发的附加场会在导体内部削弱外电场直至导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,这时导体处于静电平衡状态。
2. 导体处于静电平衡状态的必要条件:0i E =(当导体处于静电平衡状态时,导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,自然其内部电场(指外场与感应电荷产生的电场相叠加的总电场)必为0。
3. 静电平衡下导体的电学性质:(1)导体内部没有净电荷,电荷(包括感应电荷和导体本身带的电荷)只分布在导体表面。
这个可以由高斯定理推得:ii sq E ds ε⋅=⎰⎰,S 是导体内“紧贴”表面的高斯面,所以0i q =。
(2)导体是等势体,导体表面是等势面。
显然()()0b a b i a V V E dl -=⋅=⎰,a,b 为导体内或导体表面的任意两点,只需将积分路径取在导体内部即可。
(3)导体表面以处附近空间的场强为:0ˆEn δε=,δ为邻近场点的导体表面面元处的电荷密度,ˆn为该面元的处法向。
简单的证明下:以导体表面面元为中截面作一穿过导体的高斯柱面,柱面的处底面过场点,下底面处于导体内部。
由高斯定理可得:12i s s dsE ds E ds δε⋅+⋅=⎰⎰⎰⎰,1s ,2s 分别为高斯柱面的上、下底面。
因为导体表面为等势面所以ˆE En=,所以1s E ds Eds ⋅=⎰⎰而i E =0所以0ds Eds δε=,即0ˆE n δε=(0δ>E 沿导体表面面元处法线方向,0δ<E 沿导体表面面元处法线指向导体内部)。
电场中的导体与电介质
一般的物体分为导体与电介质两类。
导体中含有大量自由电子;而电介质中各个分子的正负电荷结合得比较紧密。
处于束缚状态,几乎没有自由电荷,而只有束缚电子当它们处于电场中时,导体与电介质中的电子均会逆着原静电场方向偏移,由此产生的附加电场起着反抗原电场的作用,但由于它们内部电子的束缚程度不同。
使它们处于电场中表现现不同的现象。
1.3.1、静电感应、静电平衡和静电屏蔽
①静电感应与静电平衡
把金属放入电场中时,自由电子除了无规则的热运动外,还要沿场强反方向做定向移动,结果会使导体两个端面上分别出现正、负净电荷。
这种现象叫做“静电感应”。
所产生的电荷叫“感应电荷”。
由于感应电荷的聚集,在导体内部将建立起一个与外电场方向相反的内电场(称附加电场),随着自由电荷的定向移动,感应电荷的不断增加,附加电场也不断增强,最终使导体内部的合场强为零,自由电荷的移动停止,导体这时所处的状态称为静电平衡状态。
处于静电平衡状态下的导体具有下列四个特点:
(a)导体内部场强为零;
(b)净电荷仅分布在导体表面上(孤立导体的净电
荷仅分布在导体的外表面上);
(c)导体为等势体,导体表面为等势面;
(d)电场线与导体表面处处垂直,表面处合场强不
为0。
图1-3-1
②静电屏蔽
静电平衡时内部场强为零这一现象,在技术上用来实现静电屏蔽。
金属外
壳或金属网罩可以使其内部不受外电场的影响。
如图1-3-1所示,由于感应电
荷的存在,金属壳外的电场线依然存在,此时,金属壳的电势高于零,但如图
把外壳接地,金属壳外的感应电荷流入大地(实际上自由电子沿相反方向移
动),壳外电场线消失。
可见,接地的金属壳既能屏蔽外场,也能屏蔽内场。
在无线电技术中,为了防止不同电子器件互相干扰,它们都装有金属外壳,
在使用时,这些外壳都必须接地,如精密的电磁测量仪器都装有金属外壳,示
波管的外部也套有一个金属罩就是为了实现静电屏蔽,高压带电作用时工作人
员穿的等电势服也是根据静电屏蔽的原理制成。
1.3.2、 电介质及其极化
①电介质
电介质分为两类:一类是外电场不存在时,分子的正负电荷中心是重合的,
这种电介质称为非极性分子电介质,如、等及所有
的单质气体;另一类是外电场不存在时,分子的正负电荷中
心也不相重合,这种电介质称为极性分子电介质,如、等。
对于有极分子,由于分子的无规则热运动,不加外
电场时,分子的取向是混乱的(如图1-3-2),因此,不加外电场时,无论是
极性分子电介质,还是非极性分子电介质,宏观上都不显电性。
②电介质的极化
当把介质放入电场后,非极性分子正负电荷的中心
被拉开,分子成为一个偶极子;极性分子在外电场作
用下发生转动,趋向于有序排列。
因此,无论是极性
图
1-3-2
图1-3-3
分子还是非极性分子,在外电场作用下偶极子沿外电场方向进行有序排列(如图1-3-3),在介质表面上出现等量异种的极化电荷(不能自由移动,也不能离开介质而移到其他物体上),这个过程称为极化。
极化电荷在电介质内部产生一个与外电场相反的附加电场,因此与真空相比,电介质内部的电场要减弱,但又不能像导体一样可使体内场强削弱到处处为零。
减弱的程度随电介质而不同,故物理上引入相对介电常数来表示电介质的这一特性,对电介质均大于1,对真空等于1,对空气可近似认为等于1。
真空中场强为的区域内充满电介质后,设场强减小到E,那么比值就叫做这种电介质的介常数,用表示,则
引入介电常数后,极化电荷的附加电场和总电场原则上解决了。
但实际上附加电场和总电场的分布是很复杂的,只有在电介质表现为各向同性,且对称性极强的情况下,才有较为简单的解。
如:
点电荷在电介质中产生的电场的表达式为:
电势的表达式为:
库仑定律的表达式为:
例5、有一空气平行板电容器,极板面积为S,与电池连接,极板上充有电荷和,断开电源后,保持两板间距离不变,在极板中
部占极板间的一半体积的空间填满(相对)介电常数为
的电介质,如图1-3-4所示。
求:
(1)图中极板间a点的电场强度?
(2)图中极板间b点的电场强度?
(3)图中与电介质接触的那部分正极板上的电荷?
(4)图中与空气接触的那部分正极板上的电荷?
(5)图中与正极板相接触的那部分介质界面上的极化电荷?
解:设未插入电介质时平行板电容器的电容为,则
(1)
(2)
(3)
(4)
(5)因故
解得
负号表示上极板处的极化电荷为负。
1.3.3.电像法
电像法的实质在于将一给定的静电场变换为另一易于计算的等效静电场,
多用于求解在边界面(例如接地或保持电势不变的导体)前面有一个或一个以上点电荷的问题,在某些情况下,从边界面和电荷
的几何位置能够推断:在所考察的区域外,适当放
几个量值合适的电荷,就能够模拟所需要的边界条
件。
这些电荷称为像电荷,而这种用一个带有像电
荷的、无界的扩大区域,来代替有界区域的实际问
题的方法,就称为电像法。
例如:
①一无限大接地导体板A 前面有一点电荷Q ,如图1-3-5所示,则导体板A 有(图中左半平面)的空间电场,可看作是在没有导体板A 存在情况下,由点电荷Q 与其像电荷-Q 所共同激发产生。
像电荷—Q 的位置就是把导体板A 当作平面镜时,由电荷Q 在此镜中的像点位置。
于是左半空间任一点的P 的电势为
式中和分别是点电荷Q 和像电荷-Q 到点P 的距离,并且
,此处d 是点电荷Q 到导体板A 的距离。
电像法的正确性可用静电场的唯一性定理来论证,定性分析可从电场线等效的角度去说明。
②一半径为r 的接地导体球置于电荷q 的电场中,点电
荷到球心的距离为h ,球上感应电荷同点电荷q 之间的相互
作用也可以用一像电荷替代,显然由对称性易知像电荷在
导体球的球心O 与点电荷q 的连线上,设其电量为
,离图
1-3-5
图1-3-6
球心O 的距离为,如图1-3-6所示,则对球面上任一点P ,其电势
整理化简得
要使此式对任意成立,则必须满足
解得
③对(2)中情况,如将q 移到无限远处,同时增大q ,使在球心处的电场保持有限(相当于匀强电场的场强),这时,像电荷对应的无限趋近球心,但保持有限,因而像电荷和在球心形成一个电偶极子,其电偶极矩。
无限远的一个带无限多电量的点电荷在导体附
近产生的电场可看作是均匀的,因此一个绝缘的
金属球在匀强电场中
受感应后,它的感应电荷在球外空间的作用相当于一个处在球心,电偶极矩为的电偶极子。
例6、在距离一个接地的很大的导体板为d 的A 处放一个带电量为
的点
电荷(图1-3-7)。
图1-3-7
(1)求板上感应电荷在导体内P 点(
)产生的电场强度。
(2)求板上感应电荷在导体外
点产生的电场强度,已知
点与P 点以导体板右表面对称。
(3)求证导体板表面化的电场强度矢量总与导体板表面垂直。
(4)求导体板上感应电荷对电荷的作用力,
(5)若切断导体板跟地的连接线,再把
电荷置于导体板上,试说明这部分电荷在导体板上应如何分布才可以达到静电平衡(略去边缘效应)。
分析: 由于导体板很大且接地,因此只有右边表面才分布有正的感应电荷,而左边接地那一表面是没有感电荷的。
静电平衡的条件是导体内场强为零,故P 点处的场强为零,而P 点处的零场强是导体外及表面电荷产生场强叠加的结果。
解: (1)因为静电平衡后导体内部合场强为零,所以感应电荷在P 点的场强和在P 点的场强大小相等,方向相反,即
方向如图1-3-8乙,是
到P 点的距离。
(2)由于导体板接地,因此感应电荷分布在导体的右边。
根据对称原理,可知感应电荷在导体外任意一点
处场生的场强一定和感应电荷在对称点
图1-3-8乙 图1-3-8丙
图1-3-8丁 图1-3-8 戍
处产生的场强镜像对称(如图1-3-8丙),即,而,式中为到的距离,因此,方向如图1-3-8丙所示。
(3)根据(2)的讨论将取在导体的外表面,此处的场强由和叠加而成(如图1-3-8丁所示),不难看出,这两个场强的合场强是垂直于导体表面的。
(4)在导体板内取一点和所在点A对称的点,的场强由和
叠加而为零。
由对称可知,A处的和应是大小相等,方向相反的(如图1-3-8戍),所以所受的电场力大小为
方向垂直板面向左。
(5)因为和在导体内处处平衡,所以+Q只有均匀分布在导体两侧,才能保持导体内部场强处处为零。
从以上(2)、(3)、(4)的分析中可看出:导体外部的电场分布与等量异种电荷的电场分布完全相似,即感应电荷的作用和在与A点对称的位置上放一个的作用完全等效,这就是所谓的“电像法”。