九年级数学试卷及答案
- 格式:doc
- 大小:455.43 KB
- 文档页数:10
数学金试卷九年级上册答案【含答案】专业课原理概述部分一、选择题1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?()A. 7厘米B. 23厘米C. 17厘米D. 20厘米2. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少厘米?()A. 36厘米B. 42厘米C. 26厘米D. 46厘米3. 一个数的算术平方根是9,那么这个数是()A. 81B. 18C. 162D. 824. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -2x + 3B. y = x^2C. y = 3/xD. y = 2x 15. 一个正方形的对角线长度是10厘米,那么它的面积是多少平方厘米?()A. 50平方厘米B. 100平方厘米C. 200平方厘米D. 80平方厘米二、判断题6. 任何两个等边三角形的面积一定相等。
()7. 一个数的立方根和它的平方根相等。
()8. 两个负数相乘的结果是正数。
()9. 一元二次方程的解可以是两个相等的实数根。
()10. 在直角坐标系中,点(3, 4)和点(4, 3)的距离相等。
()三、填空题11. 一个等差数列的前三项分别是2,5,8,那么第四项是______。
12. 如果一个数的平方是64,那么这个数是______。
13. 一个圆的半径是5厘米,那么这个圆的面积是______平方厘米。
14. 两个函数y = 2x + 3和y = -0.5x + 7的交点坐标是______。
15. 一个正方体的体积是1000立方厘米,那么它的边长是______厘米。
四、简答题16. 请简述勾股定理的内容。
17. 什么是算术平方根?如何计算一个数的算术平方根?18. 请解释等差数列和等比数列的区别。
19. 什么是函数的单调性?如何判断一个函数的单调性?20. 请解释直角坐标系中两点之间的距离公式。
五、应用题21. 一个长方形的长是10厘米,宽是6厘米,求它的面积和周长。
人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。
(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是素数?()A.21B.29C.35D.39答案:B3.若一个三角形的两边长分别是8cm和10cm,则第三边的长度可能是()A.3cmB.5cmC.12cmD.17cm答案:C二、判断题(每题1分,共20分)4.任何两个奇数之和都是偶数。
()答案:正确5.方程x^25x+6=0的解是x=2和x=3。
()答案:正确6.一个等边三角形的三个角都是60度。
()答案:正确三、填空题(每空1分,共10分)7.若3x7=2x+5,则x=________。
答案:128.一个长方体的长、宽、高分别是4cm、3cm和2cm,其体积是________cm^3。
答案:249.若sin(θ)=1/2,且θ是锐角,则θ的度数是________度。
答案:30四、简答题(每题10分,共10分)答案:算术平均数是一组数的总和除以数的个数。
这组数的平均数是(2+4+6+8+10)/5=30/5=6。
五、综合题(1和2两题7分,3和4两题8分,共30分)11.已知直角三角形的两条直角边长分别是3cm和4cm,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3^2+4^2)=√(9+16)=√25=5cm。
12.解方程组:2x+3y=8,xy=1。
答案:从第二个方程得x=y+1。
将x=y+1代入第一个方程得2(y+1)+3y=8,解得y=2,进而得x=3。
所以方程组的解是x=3,y=2。
13.画出一个边长为5cm的正方形,并计算其对角线的长度。
答案:对角线长度为√(5^2+5^2)=√(25+25)=√50=5√2cm。
14.已知圆的半径是4cm,求这个圆的面积。
答案:圆的面积公式是A=πr^2,所以面积是π(4^2)=16πcm^2。
九年级数学上册考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x 13. 已知等差数列{an}中,a1=3,d=2,则a5的值为()A. 7B. 9C. 11D. 134. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为90度,则这个三角形的周长为()A. 26cmB. 27cmC. 28cmD. 29cm5. 若|a|=3,则a的值为()A. 3或-3B. 3C. -3D. 无法确定二、判断题(每题1分,共5分)1. 若两个角的和为180度,则这两个角互为补角。
()2. 任何数乘以0都等于0。
()3. 在同一平面内,垂直于同一直线的两条直线互相平行。
()4. 任何正数都有两个平方根,它们互为相反数。
()5. 若a/b=c/d,则a、b、c、d成比例。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。
2. 若一个数的算术平方根为4,则这个数为______。
3. 若|a|=5,则a的值为______或______。
4. 在直角三角形中,若一个锐角的正弦值为1/2,则这个角的度数为______度。
5. 若一个等差数列的首项为2,公差为3,则这个数列的通项公式为______。
四、简答题(每题2分,共10分)1. 请简要解释什么是等差数列。
2. 请说明如何计算一个三角形的面积。
3. 请解释什么是算术平方根。
4. 请简要说明什么是函数的单调性。
5. 请解释什么是平行四边形。
五、应用题(每题2分,共10分)1. 已知一个等差数列的前三项分别为2、5、8,求这个数列的第10项。
2. 计算下列函数的值:f(x) = 2x + 3,当x = -1时。
九年级数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)²4. 下列哪个式子是等边三角形的面积公式?()A. 面积 = 1/2 底高B. 面积 = 1/2 边长高C. 面积= √3/4 边长²D. 面积 = 1/4 边长²5. 若一个圆的半径为r,则它的周长为()。
A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)1. 若a、b为实数,且a≠b,则a²≠b²。
()2. 任何一个正整数都可以表示为两个质数的和。
()3. 两个等腰三角形的面积相等,则它们的周长也相等。
()4. 任何一个偶数都可以表示为两个奇数的和。
()5. 任何一个正整数都可以表示为三个连续整数的和。
()三、填空题(每题1分,共5分)1. 若一个正方形的边长为4,则它的面积为______。
2. 若一个圆的半径为3,则它的面积为______。
3. 若一个等腰三角形的底边长为8,腰长为5,则它的高为______。
4. 若一个等差数列的首项为2,公差为3,第5项为______。
5. 若一个等比数列的首项为3,公比为2,第4项为______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述等差数列的定义。
3. 简述等比数列的定义。
九年级数学试卷及答案试卷部分一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -52. 已知等差数列的前5项和为25,公差为2,首项为:A. 1B. 3C. 5D. 73. 下列函数中,奇函数是:A. y = x^2B. y = |x|C. y = x^3D. y = 2x4. 下列图形中,是圆的是:A. 所有点距离某一点相等的图形B. 所有点距离某一点且垂直于半径的图形C. 所有点距离某两点相等的图形D. 所有点距离某一点不相等的图形5. 解方程:2x - 5 = 36. 计算:√(16) + √(25)7. 若a:b=4:3,则a/b的值为:8. 已知直角三角形的两个直角边分别为6和8,求斜边长。
9. 若一组数据的平均数为10,标准差为2,则这组数据中最大与最小的差值为:10. 下列哪个数是360度的正弦值:二、填空题(每题4分,共40分)11. 在直角坐标系中,点(3, -2)关于原点的对称点坐标为______。
12. 若等差数列的首项为5,公差为3,则第10项为______。
13. 函数y = 2x + 3的零点为______。
14. 在三角形ABC中,∠A = 60°,∠B = 70°,则∠C =______。
15. 一个圆的半径为5cm,则其直径等于______cm。
16. 若a:b=2:3,b:c=4:5,则a:b:c=______。
17. 解不等式:3x - 7 > 218. 计算:2√(18) - 3√(27)19. 下列哪个数是120度的余弦值:20. 若一组数据:2, 4, 6, 8, 10的平均数为6,则这组数据中缺失的数为______。
三、解答题(每题10分,共60分)21. 已知直角三角形的两个直角边分别为8和15,求斜边及面积。
22. 解方程:x^2 - 5x + 6 = 023. 函数y = x^3 - 6x^2 + 9x - 1的极大值和极小值分别是多少?24. 在三角形ABC中,AB = 5cm,BC = 8cm,AC = 10cm,证明该三角形为直角三角形。
九年级(上)期末数学试卷一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<23.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.64.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm25.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4二、填空题9.一元二次方程x2=3x的解是:.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点评】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<2【考点】根的判别式;一元一次方程的解;一元二次方程的定义.【分析】分类讨论:当m=0,方程变形为﹣4x+2=0,一元一次方程有实数解;当m≠0,根据判别式的意义得到△=(﹣4)2﹣4m×2≥0,解得m≤2,然后综合两种情况即可.【解答】解:当m=0,方程变形为﹣4x+2=0,方程的解为x=;当m≠0,△=(﹣4)2﹣4m×2≥0,解得m≤2;综上所知当m≤2时,方程有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.6【考点】垂径定理的应用;勾股定理.【分析】过O作OD⊥AB交AB于C,交圆于点D,根据垂径定理求出BC的长,再根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:过O作OD⊥AB交AB于C,交圆于点D,如图所示:∴OD=OB=10,∵AB=16,∴由垂径定理得:BC=AB=8,∴OC===6,∴CD=OD﹣OC=10﹣6=4.故选A.【点评】本题考查了垂径定理的应用、勾股定理等知识;熟练掌握垂径定理与勾股定理是解决问题的关键.4.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm2【考点】正多边形和圆.【分析】根据正六边形的边长等于半径进行解答即可.【解答】解:∵正六边形内接于半径为2cm的圆内,∴正六边形的半径为2cm,∵正六边形的半径等于边长,∴正六边形的边长a=2cm;∴正六边形的面积S=6××2×2sin60°=6cm2.故选B.【点评】本题考查的是正六边形的性质,熟知正六边形的边长等于半径是解答此题的关键.5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】根据x1、x2与对称轴的大小关系,判断y1、y2的大小关系.【解答】解:∵y=﹣2x2﹣8x+m,∴此函数的对称轴为:x=﹣=﹣=﹣2,∵x1<x2<﹣2,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y2.故选:A.【点评】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象.【分析】可根据a>0时,﹣a<0和a<0时,﹣a>0分别判定.【解答】解:当a>0时,﹣a<0,二次函数开口向上,当b>0时一次函数过一,二,四象限,当b <0时一次函数过二,三,四象限;当a<0时,﹣a>0,二次函数开口向下,当b>0时一次函数过一,二,三象限,当b<0时一次函数过一,三,四象限.所以B正确.故选:B.【点评】本题主要考查了二次函数及一次函数的图象,解题的关键是根据a,b的取值来判定二次函数及一次函数的图象的正误.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P 在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.【点评】本题考查的是平面展开﹣最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.二、填空题9.一元二次方程x2=3x的解是:x1=0,x2=3.【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程.【解答】解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.【点评】本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为y=3(x+2)2﹣5.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=3x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律得到点(0,﹣2)平移后所得对应点的坐标为(﹣2,﹣5),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣5),所以所得抛物线的解析式为y=3(x+2)2﹣5.故答案为y=3(x+2)2﹣5.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为13.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为:13.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为(﹣3,2).【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】如图,作PQ⊥y轴于点Q,由P点坐标得PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,根据旋转的性质得∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,然后根据第二象限点的坐标特征可写出P′点的坐标.【解答】解:如图,作PQ⊥y轴于点Q,∵点P坐标为(﹣2,3),∴PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,∴∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,∴P′点的坐标为(﹣3,2).故答案为(﹣3,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把点旋转的问题转化为直角三角形旋转的问题和画出旋转图形.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【考点】抛物线与x轴的交点;一次函数的性质.【专题】分类讨论.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.【点评】此题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.【考点】实数的运算;平方根;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出解;(2)原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义计算,第三项利用负整数指数幂、零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.【解答】解:(1)开方得:2x﹣3=3或2x﹣3=﹣3,解得:x1=3,x2=0;(2)原式=﹣1﹣+1+4﹣2=4﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.【考点】根的判别式;根与系数的关系.【专题】计算题.【分析】(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程和根与系数的关系.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?【考点】一元二次方程的应用.【专题】销售问题.【分析】首先根据1月份和3月份的销售量求得月平均增长率,然后求得4月份的销量即可【解答】解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.【点评】本题考查了一元二次方程的应用,解题关键是根据题意列出方程,这也是本题的难点.20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.【考点】作图-旋转变换;作图-轴对称变换.【专题】计算题;作图题.【分析】(1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长==π;(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式,结合摸出一个球是白球的概率为求出答案;(2)采用列表法或树状图法,解题时要注意是放回实验还是不放回实验.【解答】解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.【点评】此题主要考查了树状图法求概率,解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【考点】二次函数的应用.【专题】方程思想.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90﹣3(x﹣50),然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(3分)(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3分)(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.【考点】三角形的内切圆与内心.【分析】根据切线长定理,可设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根据题意列方程组,即可求解.【解答】解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.【点评】此题要熟练运用切线长定理.注意解方程组的简便方法:三个方程相加,得到x+y+z的值,再进一步用减法求得x,y,z的值.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.【点评】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.。
九年级上册数学全部试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列哪个数是负数?()A. -(-5)B. | -5 |C. (-5)²D. -5²3. 在直角坐标系中,点P(2, -3)关于y轴的对称点是()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, 3)4. 若一个等差数列的首项是3,公差是2,则第10项是()A. 21B. 19C. 17D. 155. 若一个圆的半径为r,则它的周长是()A. 2πrB. πr²C. 2rD. r/π二、判断题(每题1分,共5分)1. 任何数乘以0都等于0。
()2. 平方根的定义是:一个数的平方根是另一个数,它们的平方相等。
()3. 在直角坐标系中,点P(a, b)和点Q(-a, -b)关于原点对称。
()4. 等差数列的任意两项之和等于首项与末项之和。
()5. 圆的面积公式是A = πr²。
()三、填空题(每题1分,共5分)1. 若一个数的平方是16,则这个数是______。
2. 等边三角形的内角和是______度。
3. 在直角坐标系中,点(0, b)在______轴上。
4. 若一个等差数列的第5项是11,公差是3,则首项是______。
5. 若一个圆的周长是31.4,则它的半径是______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 解释什么是等差数列?3. 如何计算一个圆的面积?4. 什么是直角坐标系?它有什么作用?5. 简述负数乘以负数等于正数的原理。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 若一个等差数列的首项是2,公差是3,求第7项。
3. 一个圆的半径增加了50%,求新圆的面积增加了多少百分比。
数学九年级上册全册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则 -a 与 -b 的大小关系是()A. -a > -bB. -a < -bC. -a = -bD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 二项式 (a+b)^10 展开后的项数为()A. 10B. 11C. 20D. 214. 若直线 y = 2x + 3 与 x 轴相交于点 A,与 y 轴相交于点 B,则三角形 OAB(O 为坐标原点)的面积是()A. 3B. 4.5C. 6D. 95. 在等差数列 {an} 中,若 a1 = 3,d = 2,则 a10 = ()A. 19B. 20C. 21D. 22二、判断题(每题1分,共5分)6. 若两个实数的和为0,则这两个实数互为相反数。
()7. 任何两个奇函数的乘积一定是偶函数。
()8. 一元二次方程的解一定为实数。
()9. 在直角坐标系中,所有平行于 y 轴的直线都是 y 的函数。
()10. 等差数列的公差可以为0。
()三、填空题(每题1分,共5分)11. 若 |x| = 5,则 x = _______。
12. 二项式系数 C(10, 2) 的值为 _______。
13. 函数 y = 3x + 4 的图像是一条 _______。
14. 在等差数列 {an} 中,若 a3 = 8,a7 = 20,则公差 d = _______。
15. 若一个正方形的边长为 a,则其面积为 _______。
四、简答题(每题2分,共10分)16. 简述等差数列的定义及其通项公式。
17. 解释一元二次方程的判别式及其意义。
18. 描述直角坐标系中,一次函数图像的特点。
19. 什么是奇函数和偶函数?给出一个例子。
20. 解释二次函数的顶点公式及其应用。
五、应用题(每题2分,共10分)21. 解一元二次方程 x^2 5x + 6 = 0。
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,是中心对称图形的是( )A .B .C .D .2.已知2x =是一元二次方程220x mx ++=的一个根,则m 的值是( )A .3-B .3C .0D .0或3-3.下列事件中,是必然事件的是( )A .从一个只有白球的盒子里摸出一个球是白球B .掷一枚硬币,正面朝上C .任意买一张电影票座位是3D .汽车经过红绿灯路口时前方正好是绿灯4.把抛物线y =﹣(x+1)2向左平移1个单位,然后向上平移3个单位,则平移后抛物线为( )A .y =﹣(x+2)2﹣3B .y =﹣x 2﹣3C .y =﹣x 2+3D .y =﹣(x+2)2+35.如图,点A ,B ,C 在O 上,若BC ,AB ,AC 分别是O 内接正三角形.正方形,正n 边形的一边,则n =( )A .9B .10C .12D .156.若二次函数y =ax 2的图象经过点(1,﹣2),则它也经过( )A .(﹣1,﹣2)B .(﹣1,2)C .(1,2)D .(2,1) 7.如图,在ABC 中,64C ∠=︒,将ABC 绕着点A 顺时针旋转后,得到AB C '',且点C '在BC 上,则B C B ∠''的度数为( )A .42°B .48°C .52°D .58°8.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( )A .2100(1)y x =-B .100(1)y x =-C .2100y x =-D .2100(1)y x =+ 9.如图,圆锥侧面展开得到扇形,此扇形半径6CA =,圆心角120ACB ∠=︒,则此圆锥高OC 的长度是( )A .2B .C .D .10.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;①3a +c >0;①当y >0时,x 的取值范围是-1≤x <3;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题11.在平面直角坐标系中点A (2,1)关于原点对称点的坐标是 ___.12.已知一元二次方程x 2+2x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____.13.如图:四边形ABCD 内接于①O ,E 为BC 延长线上一点,若①A =72°,则①DCE =______°.14.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为________m .15.如图,一名男生推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系是y =﹣22531312x x ++,则他将铅球推出的距离是 _____m .16.如图,反比例函数的图象与一次函数y =﹣2x+3的图象相交于点P ,点P 到y 轴的距离是1,则这个反比例函数的解析式是__________________.17.方程x (x ﹣2)﹣x+2=0的正根为_____.三、解答题18.如图,①ABC 绕着顶点A 逆时针旋转到①ADE ,①B =40°,①E =60°,AB//DE ,求①DAC 的度数.19.如图,AB 是①O 直径,弦CD 交AB 于点E ,OE =DE ,①BOD =α,求①AOC (用含α的式子表示).20.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.21.如图所示,点D是①ABC的AB边上一点,且AD=1,BD=2,AC①ACD①①ABC.22.如图,墙壁EF长24米,需要借助墙壁围成一个矩形花园ABCD,现有围栏40米,设AB长x米.(1)BC的长为米(用含x的式子表示);(2)求这个花园的面积最大值.23.如图1,AB是①O的直径,弦CD与AB相交于点E,①C+①D=90°,BF①CD.(1)求证:BF是①O的切线;(2)延长AC交直线FB于点P(如图2),若点E为OB中点,CD=6,求PC的长.24.如图,AB是①O的直径,AC是弦,P为AB延长线上一点,①BCP=①BAC,①ACB 的平分线交①O于点D,交AB于点E,(1)求证:PC是①O的切线;(2)求证:①PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.25.如图,抛物线2=++与x轴交于A,B两点,与y轴交于C点,OA=1,OB=OC=3.y ax bx c(1)求抛物线的表达式;(2)如图1,点D为第一象限抛物线上一动点,连接DC,DB,BC,设点D的横坐标为m,①BCD的面积为S,求S的最大值;(3)如图2,点P(0,n)是线段OC上一点(不与点O、C重合),连接PB,将线段PB以点P为中心,旋转90°得到线段PQ,是否存在n的值,使点Q落在抛物线上?若存在,请求出满足条件的n的值,若不存在,请说明理由.26.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.①当t>0时,①BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案1.C【详解】解:A、不是中心对称图形,选项说法错误,不符合题意;B、不是中心对称图形,选项说法错误,不符合题意;C、是中心对称图形,选项说法正确,符合题意;D、不是中心对称图形,选项说法错误,不符合题意;故选:C.2.A【详解】解:①x=2是一元二次方程x2+mx+2=0的一个解,①4+2m+2=0,①m=3 .故选:A.3.A【详解】解:A 、“从一个只有白球的盒子里摸出一个球是白球”是必然事件,此项符合题意;B 、“掷一枚硬币,正面朝上”是随机事件,此项不符题意;C 、“任意买一张电影票座位是3”是随机事件,此项不符题意;D 、“汽车经过红绿灯路口时前方正好是绿灯”是随机事件,此项不符题意;故选:A .4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“上加下减,左加右减”的原则可知,平移后的抛物线解析式为2(11)3y x =-+++即为2(2)3y x =-++故选D5.C【分析】分别连接OB 、OA 、OC ,根据正多边形的中心角=360n︒,可分别求得①BOC 、①AOB 的度数,从而可得①AOC 的度数,再根据正多边形的中心角=360n ︒,可求得边数n . 【详解】分别连接OB 、OA 、OC ,如图所示①BC 是O 内接正三角形的一边 ①①BOC=3601203︒=︒ 同理,可得:①AOB=90°①①AOC=①BOC−①AOB=30°①AC 是O 正n 边形的一边①36030n︒=︒ ①n=12故选:C .【点睛】本题考查了正多边形与圆,正多边形的中心角=360n︒,掌握这一知识是解决本题的关键.6.A【分析】先根据题意求出a 的值,然后逐项分析判断即可.【详解】解:①二次函数2y ax =的图象经过点(1,﹣2),①将(1,﹣2)代入2y ax =得:2a =-,①二次函数的解析式为:22y x =-,当1x =-时,2y =-,即原函数图象经过点(﹣1,﹣2),当2x =时,8y =-,即原函数图象经过点(2,﹣8),当1x =时,2y =-,即原函数图象经过点(1,﹣2),故选:A .【点睛】本题考查二次函数2y ax =的图象与性质,掌握函数图象上点坐标的特征,准确求解函数解析式是解题关键.7.C【分析】根据旋转的性质可以得到AC AC =',然后根据64C ∠=︒,即可得到旋转角的度数,然后三角形内角和,即可得到B C B ∠''的度数. 【详解】解:将ABC 绕着点A 顺时针旋转后,得到AB C '',64C ∠=︒, AC AC ∴=',CAC BAB ∠'=∠',B B ∠=∠',64C AC C ∴∠=∠'=︒,18052CAC C AC C ∴∠'=︒-∠-∠'=︒,52BAB ∴∠'=︒,52B AD ∴∠'=︒,B B ∠=∠',BDC B DA ∠'=∠',52BC D B AD ∴∠'=∠'=︒,即B C B ∠''的度数为52︒,故选:C.【点睛】本题考查旋转的性质、三角形内角和、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.A【分析】原价为100万元,一年后的价格是100×(1-x),二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式求得.【详解】解:由题意得:二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式是:y=100(1-x)2.故选A.【点睛】本题考查了根据实际问题列二次函数关系式的知识,需注意第二年的价位是在第一年的价位的基础上降价的.9.C【分析】设圆锥底面圆的半径为r,根据圆锥的侧面展开图求出圆锥的底面圆的周长,进而求得OA,最后用勾股定理求出CA即可.【详解】解:设圆锥底面圆的半径为r①AC=6,①ACB=120°①12062180l AB rππ⨯==,即:r=OA=2在Rt①AOC中,OA=2,AC=6,由勾股定理得,OC==故填:【点睛】本题主要考查了扇形的弧长公式、勾股定理等知识点,根据弧长公式和圆的周长公式求得OA是解答本题的关键.10.B【详解】解:①抛物线与x轴有2个交点,①b2﹣4ac>0,所以①正确;①抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),①方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以①正确;①x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0, ①a+2a+c=0,所以①错误;①抛物线与x 轴的两点坐标为(﹣1,0),(3,0),①当﹣1<x <3时,y >0,所以①错误;①抛物线的对称轴为直线x=1,①当x <1时,y 随x 增大而增大,所以①正确.故选:B .11.(-2,-1)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】解:点A (2,1)关于原点的对称点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.m>-1【分析】根据一元二次方程根的判别式,当①>0时,方程有两个不相等的实数根,列不等式求出m 的范围即可.【详解】①方程有两个不相等的实数根①①>0①22 -4×1• (-m)>04+4m>0m>-1①m 的取值范围是m>-1故答案为:m>-1【点睛】本题主要考查一元二次方程根的判别式,对于一元二次方程ax 2+bx+c=0, ①>0时,方程有两个不相等的实数根;①=0时,方程有两个相等的实数根;①<0时方程没有实数根.掌握以上知识是解题的关键.13.72【分析】根据圆内接四边形对角和为180°再结合补角的性质即可得到①DCE=①A .【详解】解:①四边形ABCD 内接于①O ,①①A+①BCD=180°①①BCD+①DCE=180°①①DCE=①A=72°,故答案为:72.【点睛】本题考查的是圆内接四边形的性质和补角性质,掌握圆这些是本题关键. 14.54【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm ,①在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为60m , ①1.8390h =, 解得h=54(m ).故答案为54.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.10【分析】成绩就是当高度y=0时x 的值,所以解方程可求解.【详解】解:当y=0时,-22531312x x ++=0, 解之得x 1=10,x 2=-2(不合题意,舍去),所以推铅球的距离是10米.故答案为10【点睛】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.16.5y x=- 【分析】根据点P 到到y 轴的距离及其象限,确定横坐标,代入一次函数解析式,得到其纵坐标,再将点P 的坐标代入反比例函数解析式k y x=中求得k 值,即可得解; 【详解】解:①点P 到y 轴的距离是1,且由图可知,点P 在第二象限,①点P 的横坐标为x=-1,代入一次函数y =﹣2x+3中得到:y =﹣2×(-1)+3=5,①点P 的坐标为(-1,5), 设反比例函数的解析式为:k y x=,点P 在反比例函数图象上, ①51k =-, ①k=-5,①反比例函数解析式为:5y x=-, 故答案为:5y x=- 【点睛】本题考查了一次函数与反比例函数的交点问题,利用待定系数法,熟练掌握待定系数法是解本题的关键.17.x =1或x =2【分析】利用提取公因式法解方程即可得答案.【详解】①x (x ﹣2)﹣(x ﹣2)=0,①(x ﹣2)(x ﹣1)=0,①x ﹣2=0或x ﹣1=0,解得:x =2或x =1,故答案为:x =1或x =2【点睛】本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.18.40°【分析】根据旋转的性质可知,①B =①D ,①C =①E ;根据三角形内角和即可求出①BAC 的度数;再根据AB①DE ,可得①BAD =①D ,因此可求解①DAC 的度数.【详解】①①ABC 旋转到①ADE ,①B =40°,①E =60°①①B =①D =40°,①C =①E =60°①①BAC =180°-40°-60°=80°①AB①DE①①BAD =①D =40°①①DAC =①BAC -①BAD =80°-40°=40°【点睛】本题考查了旋转的性质、平行线的性质、三角形的内角和定理,运用旋转的性质得出①C的度数是本题的关键.19.①AOC=3α【分析】利用等腰三角形的性质得到①D=①BOD=α,利用三角形外角性质得到①CEO=2α,由于OC=OD,则①C=①D=α,然后根据三角形外角性质得到①AOC=3α.【详解】解:①OE=DE,①①D=①BOD=α,①①CEO=①D+①BOD,①①CEO=2α,①OC=OD,①①C=①D=α,①①AOC=①C+①CEO,①①AOC=3α.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆心角、弧、弦的关系.20.(1)23(2)P(两次取出的小球标号相同)1 3【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.(1)①在1,2,3三个数中,其中奇数有1,3共2个数,①随机摸取一个小球的标号是奇数,该事件的概率为23故答案为:23;(2)画树状图如下:由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,①P (两次取出的小球标号相同)3193==. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.见解析 【分析】首先利用已知得出AD AC AC AB=,进而利用相似三角形的判定方法得出即可.【详解】证明:①AD AC =,AC AB ==,, ①AD AC AC AB =, ①①A=①A ,①①ACD①①ABC .【点睛】本题主要考查了相似三角形的判定,正确把握相似三角形的判定方法是解题关键.22.(1)(40-2x )(2)200平方米【分析】(1)由AB+BC+CD=40米,AB=CD=x 米可得答案;(2)根据矩形的面积公式得出y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,再利用二次函数的性质求解即可.(1)解:由题意知AB+BC+CD=40米,AB=CD=x 米,所以BC 的长为(40-2x )米,故答案为:(40-2x );(2)解:设这个花园的面积为y 平方米,由题意得:y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,①-2<0,①当x=10时,y 取得最大值,最大值为200,答:这个花园的面积最大值为200平方米.【点睛】本题考查二次函数的应用,关键是根据等量关系写出函数解析式.23.(1)见解析(2)PC=2【分析】(1)根据圆周角定理以及已知条件可得①BEC=①A+①C=90°,根据平行线的性质得①ABF=①BEC=90°,则AB①BF,即可得BF是①O的切线;(2)由垂径定理得DE=CE=3,根据线段垂直平分线的性质得OD=BD,可证明①OBD是等可得边三角形,可得①BDE=30°,BD=2BE,根据勾股定理求出(1)证明:①①A=①D,①C+①D=90°,①①BEC=①A+①C=90°,①BF∥CD,①①ABF=①BEC=90°,①AB①BF,①BF是①O的切线;(2)解:连接OD,①①BEC=90°,①AB①CD,①点E为OB中点,CD=6,①CE=DE=3,OD=BD,①OB=OD=BD,①①OBD 是等边三角形,①①OBD=60°,①BDE=30°,①BD=2BE ,①A=①BDE=30°,在Rt①BDE 中,BD 2=BE 2+DE 2,①(2BE )2=BE 2+32,解得①点E 为OB 中点,在Rt①ACE 中,AC 2=CE 2+AE 2=32+(2=36,①AC=6=2CE ,①BP=4,AP=8,①PC=8-6=2.24.(1)见解析;(2)见解析;(3【分析】(1)连接OC ,根据圆周角定理可得①ACB=90°,根据等腰三角形等边对等角以及已知条件证明①BCP +①OCB=90°即可;(2)根据题意以及角平分线定义求得①PEC=①PCE 即可得出结论;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,先证明()AMD BND HL ≌,然后证明四边形CMDN 为正方形,结合已知可得出结论.【详解】解:连接OC,①AB 为直径,①①ACB=90°,①①ACO+①OCB=90°,①OA=OC ,①①BAC=①ACO ,①①BCP =①BAC ,①①BCP=①ACO①①BCP +①OCB=90°,即①OCP=90°,①PC 是①O 的切线;(2)①①BCP =①BAC ,① ①ACB 的平分线交①O 于点D ,①①ACD =①BCD ,①①PCE =①PCB+ ①BCD ,①PEC =①BAC+①ACD ,①①PEC=①PCE ,①①PEC 是等腰三角形;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,①CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,①DM DN =,AD BD =,①AD BD =,①90AMD BND ∠=∠=︒,①()AMD BND HL ≌,①90DMC MCN CND ∠=∠=∠=︒,①四边形CMDN 为矩形,①DM DN =,①矩形CMDN 为正方形,①CN =, ①2AC BC CM AM CB CN +=++=, ①AC BC +=,①2AC BC +=, ①CD25.(1)2y x 2x 3=-++;(2)278;(3)存在,n=1或 【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF①x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A(-1,0),B(3,0),C(0,3)①(1)(3)y a x x =+-把C(0,3)代入得,1a =-①2y x 2x 3=-++(2)作DF①x 轴于点F ,交BC 于点E设直线BC 关系式为y=kx +b ,代入(3,0),(0,3)得k=-1,b=3,①y=-x +3①点D 的横坐标为m ,则DF=223m m -++,EF=-m +3①DE=23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ①302-<,①S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N①1290Q MP Q NP BOP ∠=∠=∠=︒①1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,①1PQ M BPO ∠=∠又①1BP PQ =,①1Q PM PBO △≌△①1MQ OP n ==,3MP OB ==,①1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,①2Q (-n ,n -3)代入抛物线,得2323n n n =-+--解得1n =2n =舍去)综上,存在n 的值,n=1或 【点睛】此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.26.(1),B 点坐标为(3,0);(2)①;①.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;①由题意可知OB=OA ,故当①BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)①抛物线2y x bx c =-++对称轴是直线x=1,①﹣2(1)b ⨯-=1,解得b=2, ①抛物线过A (0,3),①c=3,①抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3, ①B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,①P 在抛物线上,①P (2t ,2443t t -++),①四边形OMPN 为矩形,①ON=PM ,①3t=2443t t -++,解得t=1或t=﹣34(舍去), ①当t 的值为1时,四边形OMPN 为矩形;①①A (0,3),B (3,0),①OA=OB=3,且可求得直线AB 解析式为y=﹣x+3,①当t>0时,OQ≠OB,①当①BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,①Q(2t,﹣2t+3),﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得当OQ=BQ﹣3|,解得t=34;综上可知当t34时,①BOQ为等腰三角形.21。
九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。
九年级(上)期末数学试卷一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.6183.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>04.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤58.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5709.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm210.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=.12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款元.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.参考答案与试题解析一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【解答】解:|﹣2|=2.故选:B.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.618【解答】解:∵0.00618=6.18×10﹣3,∴6.18×10﹣3=0.00618,故选:B.3.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.4.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选:C.5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定【解答】解:因为多边形外角和固定为360°,所以外角和的读数是不变的.故选:C.6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.【解答】解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选:C.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.8.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.9.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:A.10.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=y(x﹣2)(x+2).【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款3a+5b 元.【解答】解:应付款3a+5b元.故答案为:3a+5b.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是1000元.【解答】解:设这台空调的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故这台空调的进价是1000元.故答案为:1000.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程=.【解答】解:由题意可得,=,故答案为:=.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是13或.【解答】解:设第三边为x,(1)若12是直角边,则第三边x是斜边,由勾股定理得:52+122=x2,∴x=13;(2)若12是斜边,则第三边x为直角边,由勾股定理得:52+x2=122,∴x=;∴第三边的长为13或.故答案为:13或.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为4cm.【解答】解:∵在△ABC中,两条中线BE、CD相交于点O,∴DE是△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴△ABC的周长:△ADE的周长=,∵△ABC的周长为8cm,∴△ADE的周长为4cm,故答案为:4cm.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为200m.【解答】解:连结OA、OB,如图,∵∠AOB=2∠ACB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=100m,∴个人工湖的直径为200m.故答案为200m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.【解答】解:原式=2﹣+3﹣﹣1﹣(2﹣)=2﹣2+=.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.【解答】解:(1)Rt△ABC的外接圆⊙P如图所示:(2)在Rt△ACB中,∵∠C=90°,AC=6,BC=8,∴AB==10,∴⊙P的面积=25π.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)【解答】解:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+C D=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB==,即=,解得:x=50+50≈136.6,即建筑物AB的高度约为136.6米.23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.【解答】解:(1)列表得:E F G H李华王涛A AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况;(2)由(1)可知有16种情况,其中李华和王涛同时选择的美食都是甜品类的情况有AE,AF,AG三种情况,所以李华和王涛同时选择的美食都是甜品类的概率=.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.【解答】解:(1)∵直线y=﹣2x+1过点B,点B的横坐标为﹣1,∴y=2+1=3,∴B(﹣1,3),∵直线y=kx+4过B点,∴3=﹣k+4,解得:k=1;(2)∵k=1,∴一次函数解析式为:y=x+4,∴A(0,4),∵y=﹣2x+1,∴C(0,1),∴AC=4﹣1=3,∴△ABC的面积为:×1×3=.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF 的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=.∴S四边形MEFP(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.。
九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦x y=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.8.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选A.9.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE:S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE:S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离150 km.【分析】设两地的实际距离为xcm,根据比例尺的定义得到15:x=1:1000 000,然后根据比例的性质计算出x,再把单位由cm化为km即可.【解答】解:设两地的实际距离为xcm,根据题意得15:x=1:1000 000,所以x=15000000cm=150km.故答案为150.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【分析】让球的总数×黄色玻璃球的概率即为所求的黄色玻璃球的球数.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为2.【分析】由正六边形的性质得出∠AOM=60°,OA=4,求出∠OAM=30°,由含30°角的直角三角形的性质得出OM=OA=2即可.【解答】解:∵六边形ABCDEF是正六边形,OM⊥AC,∴∠AOM=60°,∠OMA=90°,OA=4,∴∠OAM=30°,∴OM=OA=2,即这个正三角形的边心距OM为2;故答案为:2.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为30°(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°﹣α.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD >∠PAD>∠MAD,代入可得出α的范围.【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k 的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能构成完全平方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,其中能构成完全平方的有2种情况,∴其中能构成完全平方的概率为:=.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.【分析】(1)先由点C的坐标求出反比例函数的关系式,再由DE=3,求出点D的坐标,把点C,点D的坐标代入一次函数关系式求出k,b即可求一次函数的关系式.(2)由图象可知:一次函数的值小于反比例函数的值.【解答】解:(1)点C(﹣6,﹣1)在反比例函数y=的图象上,∴m=﹣6×(﹣1)=6,∴反比例函数的关系式为y=,∵点D在反比例函数y=上,且DE=3,∴y=3,代入求得:x=2,∴点D的坐标为(2,3).∵C、D两点在直线y=kx+b上,∴,解得:,∴一次函数的关系式为y=x+2.(2)由图象可知:当x<﹣6或0<x<2时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【分析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.【分析】(1)由△ABC是等腰直角三角形和ADEF是正方形得到判断△ABD≌△ACF的条件;(2)由全等得到∠BGC=90°,利用勾股定理计算即可.【解答】解:(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,∴AB=AC,∵ADEF是正方形,∴AD=AF,∠BAC=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF.(2)①由(1)全等得:∠ABD=∠ACE,∴∠GBC+∠GCB=∠GBC+∠ACF+∠ACB=(∠ABG+∠GBC)+∠ACB=45°+45°=90°,∴∠BGC=90°,∴BG⊥CF.②过D作DH⊥AB于H,AH=DH=AD÷=1,∴BH=3,∴BD==,延长AD交BC于P,则BP=CP,(AD平分∠BAC,AB=AC,等腰三角形三线合一)由∠BCG=90°知:DP∥CG,∴=1,∴BG=2BD=2.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.【分析】(1)根据对称轴公式求出x=﹣,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.【解答】解:(1)由,得x=﹣=﹣=3,∴D(3,0);(2)方法一:如图1,设平移后的抛物线的解析式为,则C(0,k)OC=k,令y=0即,得,x2=3﹣,∴A,B,∴,=2k2+8k+36,∵AC2+BC2=AB2即:2k2+8k+36=16k+36,得k1=4,k2=0(舍去),∴抛物线的解析式为,方法二:∵,∴顶点坐标,设抛物线向上平移h个单位,则得到C(0,h),顶点坐标,∴平移后的抛物线:,当y=0时,,得,x2=3+,∴A,B,∵∠ACB=90°,∴△AOC∽△COB,则OC2=OA•OB,即,解得h1=4,h2=0(不合题意舍去),∴平移后的抛物线:;(3)方法一:如图2,由抛物线的解析式可得,A(﹣2,0),B(8,0),C(0,4),M,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,,在Rt△COD中,CD==AD,∴点C在⊙D上,∵,∴DM2=CM2+CD2∴△CDM是直角三角形,∴CD⊥CM,∴直线CM与⊙D相切.方法二:如图3,由抛物线的解析式可得A(﹣2,0),B(8,0),C(0,4),M,作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,,由勾股定理得,∵DM∥OC,∴∠MCH=∠EMD,∴Rt△CMH∽Rt△DME,∴得DE=5,由(2)知AB=10,∴⊙D的半径为5.∴直线CM与⊙D相切.。
九年级数学真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 下列哪个数是实数?()A. √-1B. 3/0C. 2.5D. √-44. 一次函数y=2x+3的图像是一条()。
A. 水平线B. 垂直线C. 斜线D. 抛物线5. 若一个三角形的两边长分别为3和4,那么第三边的长度可能是()。
A. 1B. 6C. 7D. 8二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 0是自然数的一部分。
()3. 一元二次方程ax²+bx+c=0的判别式Δ=b²-4ac必须大于0才有实数解。
()4. 两个等腰三角形的底边相等,则这两个三角形全等。
()5. 函数y=x³在x=0处的导数为0。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为2,公差为3,则第10项为______。
2. 若一个圆的半径为r,则其面积为______。
3. 若一个长方体的长、宽、高分别为a、b、c,则其体积为______。
4. 若一个分数的分子和分母同时乘以同一个数,则这个分数的值______。
5. 若一个等比数列的首项为3,公比为2,则第5项为______。
四、简答题(每题2分,共10分)1. 请简述勾股定理。
2. 请简述一元一次方程的解法。
3. 请简述等差数列的定义。
4. 请简述二次函数的定义。
5. 请简述平面直角坐标系中点的坐标表示方法。
五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,如果长方形的周长是24厘米,求长方形的长和宽。
2. 一个等差数列的前三项分别是2、5、8,求这个数列的第10项。
3. 一个圆的直径是10厘米,求这个圆的面积。
4. 解方程3x+5=14。
九年级上册数学全部试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 2x + 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 21B. 19C. 17D. 155. 下列哪个图形不是中心对称图形?()A. 正方形B. 圆C. 等边三角形D. 矩形二、判断题(每题1分,共5分)6. 平行四边形的对角线互相平分。
()7. 任何两个等边三角形都是相似的。
()8. 一元二次方程的解可以是两个不相等的实数根。
()9. 函数y = x² + 1的图像是一条直线。
()10. 对角线相等的平行四边形一定是矩形。
()三、填空题(每题1分,共5分)11. 若一个等边三角形的边长为6cm,则它的面积是_______ cm²。
12. 若函数y = kx + b的图像经过点(2, 5)和(4, 9),则k的值是 _______。
13. 在直角坐标系中,点A(1, 2)到原点的距离是 _______。
14. 一个等差数列的前5项和为35,公差为3,则首项是 _______。
15. 若一个圆的半径为r,则它的周长是 _______。
四、简答题(每题2分,共10分)16. 简述平行线的性质。
17. 解释一元二次方程的判别式及其意义。
18. 什么是相似三角形?给出一个判定相似三角形的方法。
19. 描述一次函数图像的特点。
20. 什么是圆的标准方程?如何从标准方程中找到圆心和半径?五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,若长方形的周长是30cm,求长方形的长和宽。
九年级数学试卷一、选择题(30分) 1)A 、4±B 、4C 、2±D 、2 2、下列事件中,是确定事件的是( ) .A.打雷后会下雨B. 明天是睛天C. 1小时等于60分钟D.下雨后有彩虹3、如图所示的Rt ⊿ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )4、二次函数y=kx 2) A.K ﹤3 B.K ﹤3且K ≠0 C.K ≤3 D.K ≤3且K ≠05、已知⊙1O ,与⊙2O 的半径分别为2和3,若两圆相交.则两圆的圆心距m 满足( ) A . 5m = B .1m = C . 5m > D . 15m <<6、如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) A .4π cmB .3π cmC .2π cmD .π cm7、若△ABC ∽△DEF ,△DEF 与△ABC 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )A.1:2B.1:4C.2:1D.4:1 8、如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE =2, 则tan ∠DBE 的值是( )A .12 B .2 C .2 D .59、菱形ABCD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程:03)12(22=++-+m x m x 的根,则m 的值为( )A 、-3B 、5C 、5或-3D 、-5或3CC第8题图(第6题)ABCDO10、已知二次函数2(0)y ax bx c a =++≠的图象如右图所示,下列结论: ①0abc > ②b a c <+③20a b += ④()(1a b m am b m +>+≠的实数), 其中正确的结论有( )A 1个B .2个C . 3个D .4个二、填空题(18分) 11、在函数y =x 的取值范围是 . 12、已知三角形两边长是方程2560x x -+=的两个根,则三角形的第三边c 的取值范围是13、从1,2,3,…,19,20这二十个整数中任意取一个数,这个数是3的倍数的概率是 . 14、在半径为1的⊙O 中,弦AB 、AC 的长分别为2和3,则∠BAC 的度数为 。
九年级(上)期末数学试卷一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=813.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:45.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣37.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.89.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm212.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=度.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:cos60°•sin60°=×=,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=81【考点】解一元二次方程-直接开平方法.【分析】首先移项,把﹣81移到等号右边,再两边直接开平方即可.【解答】解:x2﹣81=0,移项得:x2=81,两边直接开平方得:x=±9,到x1=9,x2=﹣9,故选:C.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.3.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】分别根据反比例函数与一次函数的性质进行解答即可.【解答】解:A、∵y=﹣x2,∴对称轴x=0,当x>0时,y随着x的增大而减小,故本选项错误;B、∵反比例函数y=﹣中,k=﹣1<0,∴当x>0时y随x的增大而增大,故本选项正确;C、∵k<0,∴y随x的增大而减小,故本选项错误;D、∵k>0,∴y随着x的增大而增大,故本选项错误.故选B.【点评】本题考查了一次函数、反比例函数以及二次函数的性质,主要掌握二次函数、反比例函数、正比例函数的增减性(单调性),是解题的关键,是一道难度中等的题目.4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:4【考点】相似三角形的应用.【分析】先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.【解答】解:如图,∵OA=20cm,OA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选:B.【点评】本题考查了相似三角形的应用,注意利用了相似三角形对应边成比例的性质,周长的比等于相似比的性质.5.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°【考点】圆周角定理;正多边形和圆.【分析】连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.【解答】解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】由于所给的函数解析式为顶点坐标式,可直接利用“上加下减、左加右减”的平移规律进行解答.【解答】解:将函数y=2x2向左平移2个单位,得:y=2(x+2)2;再向下平移3个单位,得:y=2(x+2)2﹣3;故选C.【点评】此题主要考查的是二次函数图象的平移规律,即:左加右减,上加下减.7.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】求出根的判别式△的值再进行判断即可.【解答】解:一元二次方程x2﹣5x+7=0中,△=(﹣5)2﹣4×1×7=﹣3<0,所以原方程无实数根.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.8【考点】锐角三角函数的定义;勾股定理.【分析】根据锐角三角函数正切等于对边比邻边,可得BC与AC的关系,根据勾股定理,可得AC 的长.【解答】解:由tanA==,得BC=3x,CA=4x,由勾股定理,得BC2+AC2=AB2,即(3x)2+(4x)2=100,解得x=2,AC=4x=4×2=8.故选:D.【点评】本题考查了锐角三角函数,利用了锐角三角函数正切等于对边比邻边,还利用了勾股定理.9.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心【考点】命题与定理.【分析】根据垂径定理及其推论对各选项分别进行判断.【解答】解:A、平分弦(非直径)的直径必垂直于这条弦,所以A选项错误;B、垂直平分弦的直线必平分这条弦所对的弧,所以B选项正确;C、平分弦(非直径)的直径必垂直于这条弦,并且平分这条弦所对的两条弧,所以C选项错误;D、垂直平分弦的直线必过圆心,所以D选项错误.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=•2π•10•24=240π(cm2),所以这张扇形纸板的面积为240πcm2.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9【考点】翻折变换(折叠问题).【分析】利用△ADE沿DE翻折的特性求出AM=A′M,再由DE∥BC,得到=,求得AE,再求出AM,利用△ADE的面积=DE•AM求解.【解答】解:△ADE沿DE翻折后,点A落在点A′处∴AM=A′M,又∵A′为MN的中点,∴AM=A′M=A′N,∵DE∥AC,∴=,∵△ABC是等边三角形,BC=6,∴BC=AC,∴=∴AE=2,∵AN是△ABC的BC边上的高,中线及角平分线,∴∠MAE=30°,∴AM=,ME=1,∴DE=2,∴△ADE的面积=DE•AM=××2=,故选:A.【点评】本题主要考查了三角形的折叠问题上,解题的关键是运用比例求出AE,再求面积.二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4a×3=0,然后求解即可.【解答】解:根据题意得△=(﹣4)2﹣4a×3=0,解得a=.故答案为.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=90度.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数.【解答】解:∵圆内接四边形的对角互补∴∠A:∠B:∠C:∠D=2:3:4:3设∠A=2x,则∠B=3x,∠C=4x,∠D=3x∴2x+3x+4x+3x=360°∴x=30°∴∠D=90°.【点评】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.【考点】相似三角形的性质.【分析】根据相似三角形的性质,相似三角形面积的比等于相似比的平方,可求S△DEF的值.【解答】解:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=6cm.【考点】圆周角定理;垂径定理.【分析】由题意可知OD平分BC,OE为△ABC的中位线,根据直径求出半径,进而求出OE的长度,再根据中位线原理即可解答.【解答】解:∵点D平分,∴OD平分BC,∴OE为△ABC的中位线,又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm则弦AC=6cm.故答案为6cm.【点评】本题主要考查圆周角定理与垂径定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】抛物线与x轴的交点.【专题】数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.【点评】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)利用因式分解法把原方程化为x+4=0或x+3=0,然后解两个一次方程即可;(2)利用配方法得到(x+2)2=3,然后利用直接开平方法解方程.【解答】解:(1)(x+4)(x+3)=0,x+4=0或x+3=0,所以x1=﹣4,x2=﹣3;(2)x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,x+2=±所以x1=﹣2+,x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.【考点】反比例函数与一次函数的交点问题.【专题】探究型.【分析】(1)先把A(1,6)代入反比例函数的解析式求出m的值,进而可得出反比例函数的解析式,再把B(a,2)代入反比例函数的解析式即可求出a的值,把点A(1,6),B(3,2)代入函数y1=kx+b即可求出k、b的值,进而得出一次函数的解析式;(2)根据函数图象可知,当x在A、B点的横坐标之间时,一次函数的图象在反比例函数图象的上方,再由A、B两点的横坐标即可求出x的取值范围.【解答】解:(1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=﹣2x+8,反比例函数的解析式为y2=;(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.【点评】本题考查的是反比例函数与一次函数的交点问题,能利用数形结合求不等式的解集是解答此题的关键.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.【解答】(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.【点评】本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】利用每件利润×销量=3750,进而求出答案即可.【解答】解:设该玩具的销售单价为x元,则依题意有:[300﹣10(x﹣30)](x﹣20)=3750化简得x2﹣80x+1575=0解这个方程得:x1=35,x2=45因为利润不得超过原价的100%,所以x2=45应舍去.答:该玩具应定价为35元.【点评】考查了一元二次方程的应用,解题的关键是了解总利润等于单件利润乘以销量,难度不大.23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.【考点】待定系数法求二次函数解析式;抛物线与x轴的交点.【专题】计算题.【分析】(1)由于已知抛物线的顶点坐标,则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可;(2)利用抛物线的对称性易得D点坐标,然后根据三角形面积公式求解.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得a•(﹣1﹣1)2﹣4=0,解得a=1,所以抛物线的解析式为y=(x﹣1)2﹣4;(2)因为抛物线的对称轴为直线x=1,则点A(﹣1,0)关于直线x=1的对称点D的坐标为(3,0),所以△ODC的面积=×3×4=6.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.【考点】切线的判定与性质;勾股定理.【专题】计算题.【分析】(1)因为BC经过圆的半径的外端,只要证明AB⊥BC即可.连接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可证明BC为⊙O的切线.(2)作DF⊥BC于点F,构造Rt△DFC,利用勾股定理解答即可.【解答】(1)证明:连接OE、OC.∵CB=CE,OB=OE,OC=OC,∴△OBC≌△OEC.∴∠OBC=∠OEC.又∵DE与⊙O相切于点E,∴∠OEC=90°.∴∠OBC=90°.∴BC为⊙O的切线.(2)解:过点D作DF⊥BC于点F,则四边形ABFD是矩形,BF=AD=2,DF=AB=2.∵AD、DC、BC分别切⊙O于点A、E、B,∴DA=DE,CE=CB.设BC为x,则CF=x﹣2,DC=x+2.在Rt△DFC中,(x+2)2﹣(x﹣2)2=(2)2,解得x=.∴BC=.【点评】此题考查了切线的判定和勾股定理的应用,作出辅助线构造直角三角形和全等三角形是解题的关键.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5);②设直线AC的解析式为y=kx+t (k≠0)将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。
人教版九年级全册试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 17B. 27C. 37D. 474. 若一个圆的半径为5cm,则这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π5. 若一个长方体的长、宽、高分别为10cm、6cm和4cm,则这个长方体的对角线长度为多少cm?A. 12cmB. 14cmC. 16cmD. 18cm二、判断题(每题1分,共5分)1. 任何两个等边三角形都是相似的。
()2. 两个负数相乘的结果一定是正数。
()3. 任何数乘以0都等于0。
()4. 一个数的平方根有两个,且互为相反数。
()5. 任何数除以它自己都等于1。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第5项是______。
2. 若一个圆的直径为14cm,则这个圆的周长是______cm。
3. 若一个长方体的长、宽、高分别为8cm、6cm和4cm,则这个长方体的体积是______立方厘米。
4. 若一个等比数列的首项为2,公比为3,则第3项是______。
5. 若一个正方形的边长为10cm,则这个正方形的对角线长度是______cm。
四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。
2. 请简要说明平行线的性质。
3. 请简要说明勾股定理。
4. 请简要说明圆的面积公式。
5. 请简要说明长方体的体积公式。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
九年级上册数学试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 下列哪个式子是多项式?()A. 2x + 3B. 3x^2 5x + 2C. √x + 1D. 1/x + 24. 一个正方形的边长为6cm,那么它的面积是多少cm²?()A. 12cm²B. 24cm²C. 36cm²D. 48cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题1. 两个等腰三角形的底边长相等,那么这两个三角形全等。
()2. 一个数的平方根有两个,它们互为相反数。
()3. 两个负数相乘,结果一定是正数。
()4. 任何数乘以0都等于0。
()5. 两个正方形的面积相等,那么它们的边长也相等。
()三、填空题1. 一个等边三角形的边长为6cm,那么它的周长是____cm。
2. 一个数的平方是64,那么这个数是____。
3. 两个数的和为9,它们的差为3,那么这两个数分别是____和____。
4. 一个长方形的长是8cm,宽是4cm,那么它的面积是____cm²。
5. 下列各数中,____是合数。
四、简答题1. 解释什么是素数。
2. 解释什么是等腰三角形。
3. 解释什么是多项式。
4. 解释什么是无理数。
5. 解释什么是长方形的面积。
五、应用题1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
3. 解方程:2x + 3 = 11。
4. 计算下列各式的值:√9,√16,√25。
5. 判断下列各数中,哪些是素数:23,39,47,57。
六、分析题1. 两个等腰三角形的底边长相等,那么这两个三角形是否全等?为什么?2. 两个正方形的面积相等,那么它们的边长是否相等?为什么?七、实践操作题1. 画出一个边长为6cm的正方形,并计算它的面积。
名校试卷九年级数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c2. 下列哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 若一个三角形的两边长分别为3和4,则第三边的长度可能是?A. 1B. 5C. 7D. 94. 下列哪个数是无理数?A. √9B. √16C. √2D. √15. 下列哪个方程是一元二次方程?A. x + 5 = 0B. x^2 + 5x + 6 = 0C. x^3 + 2x = 0D. 2x + 3y = 5二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 一元二次方程的解可能是两个相同的实数根。
()3. 任何数乘以0都等于0。
()4. 三角形的内角和等于180度。
()5. 函数 y = 2x + 3 的图像是一条直线。
()三、填空题(每题1分,共5分)1. 若 a = 3, b = -2,则 a + b = _______。
2. 三角形内角和为 _______ 度。
3. 函数 y = x^2 的图像是一个 _______。
4. 一元二次方程 ax^2 + bx + c = 0 的解公式是 x = _______。
5. 若一个数的平方是9,则这个数可能是 _______ 或 _______。
四、简答题(每题2分,共10分)1. 解释无理数的概念。
2. 什么是函数的奇偶性?3. 简述勾股定理。
4. 什么是二次函数?5. 解释一元二次方程的判别式。
五、应用题(每题2分,共10分)1. 解方程 2x 5 = 3。
2. 计算三角形的面积,已知底边长为4,高为3。
3. 若一个函数是偶函数,且当 x = 2 时,y = 4,求当 x = -2 时 y 的值。
育贤双语—第一学期末试题九年级数学试卷(满分150分, 120分钟)一. 选择题 (每题3分共36分)1、 下列计算正确的是 ( )A 、ππ-=-14.3)14.3(2B 、427372=⨯C 、5125432516925169=⨯=⋅=D 、73434342222=+=+=+2、如右图,BD 是⊙O 的直径,∠A=300,则∠CBD 的度数为 ( )A 、300B 、450C 、 600D 、803、关于x 的方程02=+-q px x 的两根分别是0和-2,则p 、q 的值分别是 ( )A 、21=p 0=q B 、21-=p 0=qC 、 2=p 0=qD 、2-=p 0=q4、如右图,将等腰直角三角形ABC 绕点A 逆时针旋转150后得到 B '∆A C ,若AC=1,则图中阴影部分的面积是 ( )A 、33 B 、 63 C 、3 D 、33 5、下列二次根式是最简二次根式的是 ( ) A.12B.222x - C.x 4D.4x6、 关于x 的一元二次方程x 2+3x+1=0的根的情况是 ( ) A. 没有实数根 B. 两相等实数根 C. 一个实数根 D. 两不相等实数根7、如图所示,图中既是轴对称图形,•又是中心对称图形的是( )8、已知点P(-5, 3), 则P 点关于原点的对称点坐标为 ( ) A. (-5, 3) B. (5, -3) C. (-5, -3) D. (5, 3)9、如图, 过圆心O 和圆上一点A 连一条曲线, 将曲线OA 绕点O 按逆时针旋转三次, 每次旋转900, 把这个圆分成四部分, 则关于面积叙述中, 正确的是 ( )A. 四部分不一定相等B. 四部分面积一定相等C. 前一部分面积小于后一部分D. 无法确定密封线内不要答题10、下列五个命题:(1)两个端点能够重合的弧是等弧;(2)圆的任意一条弧必定把圆分成劣弧和优弧两部分(3)经过平面上任意三点可作一个圆;(4)任意一个圆有且只有一个内接三角形 (5)三角形的外心到各顶点距离相等.其中真命题有( ). A .1个 B .2个 C .3个 D .4个 11、若关于x 的方程x 2-7x+2m=0的两实数根互为倒数, 则m 的值为 ( ) A. 2 B.21 C. -2 D. -21 12、某种型号的电脑一年内连续两次降价, 每台售价由原来的7800元降到现在的5400元, 设平均每次降价的百分率为x, 则列出的方程正确的是 ( )A. 7800(1+x)2=5400 B . 7800(1-x)2=5400 C. 5400(1+x)2=7800 D. 5400(1-x)2=7800 二. 填空题 (每小题4分, 共24分) 1.n 24是整数, 则正整数n 的最小值是_____________.2、一个长方形长是18cm, 宽是12cm, 则与该长方形面积相等的正方形的边长为___________________.(精确到0.01,2=1.414, 3=1.732, 6=2.449.)3、 已知关于x 的方程x 2-3x+k=0有一个根为1, 则它的另一根为_______________.4、钟表上的时针绕其中心旋转一周是12小时, 则时针经过4个小时所转过的角度为____________, 若时针从12时开始, 绕中心旋转1500, 则它所指向的具体数字是_________.5、Rt △ABC 中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为_____________6、点O 为半径为3cm ,点M 是⊙O 外一点,OM=4cm ,则以M 为圆心且与⊙O•相切的圆的半径是_________________三. 计算下列各题 (每小题4分, 共8分) 1.)681()2124(+--2.27)64148(÷+四. 用适当的方法解下列方程 (每小题4分, 共8分) 1. x 2+5x+7=3x+11 2. 4(x -1)2=9(2x+3)2五. 解下列各题 (每小题5分, 共10分)2. 已知关于x 的方程(2m -1)x 2+2mx+1=0, 根据下列条件分别求m 的值.(1)方程只有一个实数根; (2)方程有两个相等的实数根; (3)方程有两个互为相反数的实数根.1. 已知: 如图, 在△ABC 中, AB=AC, 若将△ABC 绕点C 顺时针旋转1800得到△FEC. 试猜想AE 与BF 有何关系? 并说明理由.2. 如图, 正方形ABCD 和正方形OEFG 的边长均为4, O 是正方形ABCD 的对称中心. 求图中阴影部分的面积.六. 解下列各题 (每小题6分, 共18分)1. 为解方程(x 2-1)2-5(x 2-1)+4=0, 我们可以将x 2-1视为一个整体, 然后设y=x 2-1, 则(x 2-1)2=y 2, 原方程转化为y 2-5y+4=0. 解得y 1=1, y 2=4. 当y=1时, x 2-1=1, 所以x=2±;当y=4时, x 2-1=4, 所以x=5±.∴原方程的解为: x 1=2, x 2=2-, x 3=5, x 4=5-.请用类似的方法试解方程(x 2+x)2+(x 2+x)=6.19、如图,点A、B、D、E在圆上,弦AE的延长线与弦BD的延长线相交于点C。
给出下列三个条件:①AB是圆的直径;②D是BC的中点;③AB=AC。
请在上述条件中选取两个作为已知条件,第三个作为结论,写出一个你认为正确的命题,并加以证明。
条件:。
结论:。
证明:4.如图所示,对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.(8分)5.如图,从点P向⊙O引两条切线PA,PB,切点为A,B,AC为弦,BC为⊙O•的直径,若∠P=60°,PB=2cm,求AC的长.(8分)BCAPO20.如图,某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面。
若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径。
22.机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现车技术革新的基础上,润滑用油量每减少l千克,用油量的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克。
问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?8图,PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.(1)求证:OP∥CB;(6分)(2)若PA=12,DB:DC=2:1,求⊙O的半径.(6分)育贤双语2007—2008学年度上期期末试题九年级数学试卷参考答案题 1234567 8 9 10 11 12 13 14 15 答C D D B B A BBDABACAB二. 填空题 (每小题2分, 共10分)1. 62. 略3.10cm 4. 2 5. 1200 5密封线三. 计算题 (每小题4分, 共16分)1. 解:分分分4 (42366)4222623..................).........642()2262(2........) (616)2()4262()681()2124(2-=---=+--=+--⨯=+--2. 解: 分分分4.....................................................13223......................................15252322..........................15252322)52)(32(--=--+=--+⨯=-+3. 解:分分分4 (3)1053102253 (3)20322532025322 (3)2025319303262551330=⨯=⨯=⨯=⨯⨯=⨯⨯4. 解: 分分分4 (12)2343 (331463)3342 (3)31)64134(93)641163(27)64148(+=⨯+=⨯+=⨯÷+⨯=÷+ 四. 解下列方程 (每小题4分, 共16分)1. 解: 原方程变为: x 2+2x -4=0 …….……….1分 解这个方程, 得51220212)4(14222±-=±-=⨯-⨯⨯-±-=xx 1=-1+5, x 2=-1-5 ……….…….4分2. 解: 原方程变为: 4(x -1)2-9(2x+3)2=0 ……………..1分 有 [2(x -1)+3(2x+3)][2(x -1)-3(2x+3)]=0 (2x -2+6x+9)(2x -2-6x -9)=0(8x+7)(-4x -11)=0 ……………..3分 于是, 得:8x+7=0或-4x -11=0871-=x 或4112-=x ……………..4分3. 解: 因式分解, 得(x -2)(x+1)=0 ……………..2分 于是得x -2=0, 或x+1=0 ……………..3分 x 1=2或x 2=-1 ……………..4分4. 解: 移项, 得: x 2-x=43……………..1分 x 2-x+414341+=1)21(2=-x ……………..2分121=-x 或121-=-x ……………..3分 231=x 或212-=x ……………..4分 五. 解下列各题 (每小题5分, 共10分)1. 解: AE=BF ……………..2分 根据作图知 AC=CF, BC=CE∠ACE=∠BCF所以 △ACE ≌△FBC ……………..4分 所以 AE=BF ……………..6分2. 解: 连接OC 和OB, 由旋转的性质可知:△OMC ≌△ONB ……………..2分 所以阴影部分的面积=△OBC 的面积 又由旋转的性质可知 ∠COB=900所以△OBC 的面积为正方形ABCD 面积的41 S 正方形ABCD =4×4=16 ……………..4分 所以阴影部分的面积为41×16=4 ……………..5分 六. 解下列各题 (每小题6分, 共18分)1. 解: 设x 2+x=y, 则(x 2+x)2=y 2 ……………..1分 原方程转化为: y 2+y=6 解 y 2+y -6=0251224112)6(4112±-=+±-=-⨯-±-=yy 1=-3或y 2=2 ……………..2分当y 1=-3时x 2+x=-3,x 2+x+3=0因为b 2-4ac=12-4×1×3=-11<0方程没有实数根. ……………..4分 当y 2=2时, x 2+x=2 x 2+x -2=023128112)2(14112±-=+±-=-⨯⨯-±-=xx 2=-2或x 2=1 ……………..6分2. 解: (1)当方程只有一个实数根, 则有2m -1=0 ……………..2分 所以 m=21 (2)当方程有两个相等的实数根, 有2m -1≠0且 b 2-4ac=(2m)2-4(2m -1)×1=4m 2-8m+4=0 m 2-2m+1=0 (m -1)2=0所以m=1 ……………..4分 (3)设方程的两根分别为x 0或-x 0 因为x 0+(-x 0)=122--m m有122-m m=0所以m=0 根据上以得当m=21时, 方程有一个实数. 当m=1时, 方程有两个相等实数根.当m=0时, 方程有两个互为相反数的实数根. ……………..6分3. 解: 设矩形的一边为x, 则另一边为(20-2x) ……………..1分 根据题意, 有x(20-2x)=50 ……………..3分 2x 2-20x+50=0 解之得 x=5则另一边为20-2x=20-2×5=20-10=10 ……………..5分 答: 矩形的长为10m, 宽为5m. ……………..3分【注: 以上答案仅供参考, 如有误, 请自纠. 】。