假设新品系的总体平均数μ
- 格式:ppt
- 大小:1.24 MB
- 文档页数:126
第一套一、填空1. 统计数据的直接来源主要有两个渠道:一是;二是。
2.统计的含义包括三个方面,它们是。
3.按照计量层次分类,统计数据可以分为:。
4.按照时间状况分类,统计数据可以分为:。
5.按照收集方法分类,统计数据可以分为:。
6.8、9、12、7、11、13、9、11、8、10以上10个数据的平均数是,中位数是,方差是。
7.在大样本的检验方法中,当总体方差2σ未知时,可以用样本方差2s 来近似代替总体方差,此时总体均值检验的统计量为:。
8.判定系数2R =(请用SSR SSE SST 、、表示)。
9.一般将时间序列的构成要素分成四种,即。
10.已知11p q 为报告期的销售额,10/p p 是对个体的价格指数,则价格指数的加权平均调和形式的计算公式为:。
二、单项选择1.下列数据属于品质数据的是()A.顺序数据B.截面数据C.观测数据D.实验数据 2.对一批小麦种子进行发芽率试验,这时总体是() A 该批小麦种子 B 该批小麦的发芽率 C 该批小麦中发芽的种子 D 该批小麦的发芽率3.已知均值为μ,方差为2σ的总体中,抽取容量为n 的随机样本,当n 充分大时,样本的均值和方差近似等于() A.2n nμσ B.2nμσ C. 2μσ D. 2nσμ4.下列散点图中表示非线性相关的图为( )A BC D5.在右侧检验中,利用P 值进行检验时,拒绝原假设的条件是( ) A. P α>值 B. P β>值 C. P α<值 D. P β<值三、判断题1.分层抽样除了可以对总体进行估计外,还可以对各层的子总体进行估计。
2.平均指标反映了现象总体的规模和一般水平,但掩盖了总体各单位的差异情况,因此通过平均指标不能全面认识总体的特征。
()3.总体分布为非正态分布而样本均值可能为正态分布。
( )4.抽样误差由于事先可以进行控制或计算的,所以这类误差通常是可以消除的。
( )5.在单独求一组数据计算标准差时,公式下方虚线处应为1n -四、简答题1. 河南大学数学院为了增加学生们的学习积极性,推行了一套新的制度,通过一学期的试行,由最终的成绩决定是否继续执行。
第四章习题抽样调查一、填空题1.抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2.采用不重复抽样方法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。
3.只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4.参数估计有两种形式:一是点估计,二是区间估计。
5.判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6.我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7.常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
8.对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩小一半,抽样单位数必须为原来的4倍。
若Δ扩大一倍,则抽样单位数为原来的1/4。
9.如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10.在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题1.抽样误差是抽样调查中无法避免的误差。
(√)2.抽样误差的产生是由于破坏了随机原则所造成的。
(×)3.重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√)4.在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)5.抽样调查所遵循的基本原则是可靠性原则。
(×)6.样本指标是一个客观存在的常数。
(×)7.全面调查只有登记性误差而没有代表性误差,抽样调查只有代表性误差而没有登记性误差。
(×)8.抽样平均误差就是抽样平均数的标准差。
(×)三、单项选择题1.用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(C)A.2倍B.3倍C.4倍D.5倍2.事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(D)A.分层抽样B.简单随机抽样C.整群抽样D.等距抽样3.计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A.最小一个B.最大一个C.中间一个D.平均值4.抽样误差是指(D)A.计算过程中产生的误差B.调查中产生的登记性误差C.调查中产生的系统性误差D.随机性的代表性误差5.抽样成数是一个(A)A.结构相对数B.比例相对数C.比较相对数D.强度相对数6.成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大7.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A.全面调查B.非全面调查C.一次性调查D.经常性调查8.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A.甲产品大B.乙产品大C.相等D.无法判断10.抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(B)A.甲企业较大B.乙企业较大C.不能作出结论D.相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A.是不可避免要产生的B.是可以通过改进调查方法来避免的C.是可以计算出来的D.只能在调查结果之后才能计算E.其大小是可以控制的2.重复抽样的特点是(AC)A.各次抽选相互影响B.各次抽选互不影响C.每次抽选时,总体单位数始终不变D每次抽选时,总体单位数逐渐减少E.各单位被抽中的机会在各次抽选中相等3.抽样调查所需的样本容量取决于(ABE)A.总体中各单位标志间的变异程度B.允许误差C.样本个数D.置信度E.抽样方法4.分层抽样误差的大小取决于(BCD)A.各组样本容量占总体比重的分配状况B.各组间的标志变异程度C.样本容量的大小D.各组内标志值的变异程度E.总体标志值的变异程度5.在抽样调查中(ACD)A.全及指标是唯一确定的B.样本指标是唯一确定的C.全及总体是唯一确定的D.样本指标是随机变量E.全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
商务数据分析模拟考试题及答案一、单选题(共40题,每题1分,共40分)1、—般通过政府部门、机构协会、媒体这些渠道进行采集的是()。
A、行业数据B、运营数据C、市场数据D、人群数据正确答案:A2、关于数据创新,下列说法正确的是()A、多个数据集的总和价值等于单个数据集价值相加B、由于数据的再利用,数据应该永久保存下去C、相同数据多次用于相同或类似用途,其有效性会降低D、数据只有开放,价值才能得到真正释放。
正确答案:D3、当均值大于众数时称为()。
A、负偏态B、正态分布C、正偏态D、左偏分布正确答案:C4、HDFS10默认BlockSize大小是多少。
A、32MBB、64MBC、128MBD、256MB正确答案:B5、通常产品销售增长速度最快的时期是产品生命周期中的()。
A、衰退期B、投入期C、饱和期D、成长期正确答案:D6、采样分析的精确性随着采样随机性的增加而(),但与样本数量的增加关系不大。
A、提高B、不变C、降低D、无关正确答案:A7、()指标在服装零售终端被尤为看重。
A、会员客单价B、会员新增数C、会员贡献率D、会员连带率正确答案:D8、客服的KPI考核中的客单价是指()A、成交金额/成交用户数B、成交总金额/成交用户数C、销售额/下单付款人数D、成交人数/访问量正确答案:C9、在Excel中,如果要在同一行或同一列的连续单元格使用相同的计算公式,可以先在第一个单元格中输入公式,然后用鼠标拖动单元格的O 来实现公式复制。
A、列标B、填充柄C、框D、行标正确答案:B10、下列指标中()与个别极端值没有关系。
A、简单算术平均数B、加权算术平均数C、中位数D、几何平均数正确答案:C11、下列关于信息的说法错误的是A、信息是数据的含义B、同—信息可有多种数据表示形式C、数据库中保存的就是信息D、信息是抽象的正确答案:C12、库存天数异常产生的原因不包括()。
A、商品检卖B、讲退货单获录入系统时错误C、销售中交贷正商D、商品丢失正确答案:C13、涉及库存预警原因不包括()业A、时间B、指标C、对象D、地点正确答案:D14、商品的关联关系是具有()。
专题07 随机变量及其分布【专项训练】一、单选题1.若随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=,则p =( ) A .15B .25C .35D .45【答案】A 【详解】解:因为随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=, 所以28(1)5np np p =⎧⎪⎨-=⎪⎩,解得1015n p =⎧⎪⎨=⎪⎩,故选:A2.学校从高一、高二、高三中各选派10名同学参加“建党100周年党史宣讲”系列报告会,其中三个年级参会同学中女生人数分别为5、6、7,学习后学校随机选取一名同学汇报学习心得,结果选出一名女同学,则该名女同学来自高三年级的概率为( ) A .718B .730C .915D .13【答案】A 【详解】设事件A 为“30人中抽出一名女同学”,事件B 为“30人中抽出一名高三同学”, 则56718()3030P A ++==,7()30P AB =, 所以()()7()18P AB P B A P A ==,故选:A.3.已知离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .1 B .1.5 C .2.5D .1.7【详解】()10.420.530.1 1.7E X=⨯+⨯+⨯=.故选:D.4.某次市教学质量检测,甲、乙、丙三科考试成绩服从正态分布,相应的正态曲线如图所示,则下列说法中正确的是()A.三科总体的标准差相同B.甲、乙、丙三科的总体的平均数不相同C.丙科总体的平均数最小D.甲科总体的标准差最小【答案】D【详解】解:由图象知甲、乙、丙三科的平均分一样,但标准差不同,σ甲<σ乙<σ丙.故选:D.5.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56B.910C.215D.115【答案】C 【详解】由题意,知()()(122315 )5P AB P B A P A==⨯=故选:C6.随机变量X所有可能取值是-2,0,3,5,且P(X=-2)=14,P(X=3)=12,P(X=5)=112,则P(X=0)的值为()A.0 B.14C.16D.18【详解】由各个变量概率和为1可得:P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1, 所以111(0)14212P X +=++=,解得1(0)6P X == 故选:C7.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球且不放回,直到取出的球是白球为止,所需要的取球次数为随机变量X ,则X 的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 【答案】B 【详解】由于取到白球时停止,所以最少取球次数为1,即第一次就取到了白球; 最多次数是7次,即把所有的黑球取完之后再取到白球. 所以取球次数可以是1,2,3,…,7. 故选:B8.若离散型随机变量2~4,3X B ⎛⎫ ⎪⎝⎭,则()E X 和()D X 分别为( ) A .83,169 B .83,89C .89,83D .169,83【答案】B 【详解】因为离散型随机变量2~4,3X B ⎛⎫ ⎪⎝⎭, 所以()28433E X =⨯=, ()22841339D X ⎛⎫=⨯⨯-= ⎪⎝⎭.9.设随机变量()24,N ζδ,若()10.4P a ζ>+=,则()7P a ζ>-=( )A .0.4B .0.5C .0.6D .0.7【答案】C随机变量2~(4,8)N ζ,对称轴为:4μ= 因为(1)0.40.5P a ζ>+=<,所以14a +>, 根据对称性可得(1)(7)0.4P a P a ζζ>+=<-=, 则(7)0.6P a ζ>-=. 故选:C.10.设()()221122,,,X N Y N μσμσ~~,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .()()21P Y P Y μμ≥≥≥B .()()21P X P X σσ≤≤≤C .函数()()F t P X t =>在R 上单调递增D .()()111122222222P X P Y μσμσμσμσ-<<+=-<<+ 【答案】D 【详解】由正态分布密度曲线的性质得:X ,Y 的正态分布密度曲线分别关于直线12,x x μμ==对称, 对于A :由图象得12μμ<,所以()()21P Y P Y μμ≥<≥,故A 不正确;对于B :由图象得X 的正态分布密度曲线较Y 的正态分布密度曲线“廋高”,所以12σσ<,所以()()21>P X P X σσ≤≤,故B 不正确;对于C :由图象得:当1>t μ时,函数()()F t P X t =>在()t +∞,上单调递减,故C 不正确; 对于D :根据3σ原则:()111168.3%P X μσμσ-<<+=,()11112295.4%P X μσμσ-<<+=,()11113399.7%P X μσμσ-<<+=,无论σ 取何值时,有()()111122222222P X P Y μσμσμσμσ-<<+=-<<+,故D 正确,故选:D.二、多选题11.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布()2,30N μ和()2280,40N ,则下列选项正确的是( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在(30,280)μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在()280,320的概率约为0.3413 【答案】ABD 【详解】对于A ,因为红玫瑰日销售量范围在(30,280)μ-的概率是0.6826, 故30280μ+≈即250μ≈,故A 正确.对于B ,因为3040<,故红玫瑰日销售量比白玫瑰日销售量更集中,故B 对,C 错. 白玫瑰日销售量范围在()280,320的概率约为0.68260.34132=,故D 正确. 故选:ABD.12.已知三个正态分布密度函数()()()222,1,2,3i i x i f x x R i μσ--=∈=的图象如图所示,则下列结论正确的是( )A .123σσσ==B .123σσσ=<C .123μμμ=>D .123μμμ<=【答案】BD 【详解】正态密度曲线关于直线x μ=对称,且μ越大图象越靠近右边,σ越小图象越瘦长. 因此,123μμμ<=,123σσσ=<.13.甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的是( )A .目标恰好被命中一次的概率为1123+ B .目标恰好被命中两次的概率为1123⨯C .目标被命中的概率为12112323⨯+⨯D .目标被命中的概率为12123-⨯【答案】BD 【详解】甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次, 在A 中,目标恰好被命中一次的概率为1112123232⨯+⨯=,故A 错误; 在B 中,由相互独立事件概率乘法公式得:目标恰好被命中两次的概率为111236⨯=,故B 正确; 在CD 中,目标被命中的概率为112111233⎛⎫⎛⎫--⨯-= ⎪ ⎪⎝⎭⎝⎭,故C 错误,D 正确. 故选:BD .14.袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X ,则( ) A .2~4,3XB ⎛⎫ ⎪⎝⎭B .8(2)81P X ==C .X 的期望8()3E X =D .X 的方差8()9D X =【答案】ACD 【详解】从袋子中有放回地随机取球4次,则每次取球互不影响, 并且每次取到的黑球概率相等,又取到黑球记1分, 取4次球的总分数,即为取到黑球的个数,所以随机变量X 服从二项分布2~4,3X B ⎛⎫ ⎪⎝⎭,故A 正确;2X =,记其概率为22242124(2)3381P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,故B 错误;因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的期望28()433E X =⨯=,故C 正确; 因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的方差218()4339D X =⨯⨯=,故D 正确. 故选:ACD . 15.已知()2~,X N μσ,22()2()x f x μσ--=,x ∈R ,则( )A .曲线()y f x =与x 轴围成的几何图形的面积小于1B .函数()f x 图象关于直线=x μ对称C .()2()()P X P X P X μσμμσμσ>-=<<++≥+D .函数()()F x P X x =>在R 上单调递增 【答案】BC 【详解】选项A. 曲线()y f x =与x 轴围成的几何图形的面积等于1, 所以A 不正确.选项B. 222()x f x σμ-+=,222()x f x σμ--=所以()()f x f x μμ+=-,所以函数()f x 图象关于直线x μ=对称,所以选项B 正确.选项C. 因为()()P X P X μμσμμσ>>-=<>+所以()()()P X P X P X μσμσμσμσ>-=-<<++≥+2()()P X P X μμσμσ=<<++≥+ 所以选项C 正确.选项D. 由正态分布曲线可知,当x 越大时,其概率越小.即函数()()F x P X x =>随x 的增大而减小,是减函数,所以选项D 不正确. 故选:BC三、解答题16.设离散型随机变量X 的分布列为求:(1)21X +的分布列; (2)求(14)P X <≤的值. 【详解】由分布列的性质知:0.20.10.10.31m ++++=,解得0.3m = (1)由题意可知(211)(0)0.2P X P X +====,(213)(1)0.1P X P X +====,(215)(2)0.1P X P X +==== (217)(3)0.3P X P X +====,(219)(4)0.3P X P X +====所以21X +的分布列为:(2)(14)(2)(3)(4)0.10.30.30.7P X P X P X P X <≤==+=+==++=17.为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为16,第二种检测不合格的概率为110,两种检测是否合格相互独立.(1)求每台新型防雾霾产品不能销售的概率;(2)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利80-元).现有该新型防雾霾产品3台,随机变量X 表示这3台产品的获利,求X 的分布列及数学期望. 【详解】(1)设事件A 表示“每台新型防雾霾产品不能销售” 事件A 表示“每台新型防雾霾产品能销售” 所以()113116104P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭ 所以()()114P A P A =-= (2)根据(1)可知,“每台新型防雾霾产品能销售”的概率为34 “每台新型防雾霾产品不能销售”的概率为14X 所有的可能取值为:240-,120-,0,120则()30311240464P X C ⎛⎫=-== ⎪⎝⎭ ()2131391204464P X C ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭()1223132704464P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()333327120464P X C ⎛⎫=== ⎪⎝⎭所以X 的分布列为所以()()1927240120120646464EX =-⨯+-⨯+⨯ 则30EX =18.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的精神,某高中学校鼓励学生自发组织各项体育比赛活动,甲、乙两名同学利用课余时间进行乒乓球比赛,规定:每一局比赛中获胜方记1分,失败方记0分,没有平局,首先获得5分者获胜,比赛结束.假设每局比赛甲获胜的概率都是35. (1)求比赛结束时恰好打了6局的概率;(2)若甲以3:1的比分领先时,记X 表示到结束比赛时还需要比赛的局数,求X 的分布列及期望. 【详解】解:(1)比赛结束时恰好打了6局,甲获胜的概率为44153234865553125P C ⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭,恰好打了6局,乙获胜的概率为14125322965553125P C ⎛⎫⎛⎫=⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 所以比赛结束时恰好打了6局的概率为1248696582312531253125P P P =+=+=. (2)X 的可能取值为2,3,4,5,()2392525P X ⎛⎫===⎪⎝⎭, ()12233363555125P X C ==⨯⨯⨯=,()2413323212445555625P X C ⎛⎫⎛⎫==⨯⨯⨯+=⎪ ⎪⎝⎭⎝⎭, ()331344323232965555555625P X C C ⎛⎫⎛⎫==⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 所以X 的分布列如下:故()936124961966234525125625625625E X =⨯+⨯+⨯+⨯=.。
统计学原理第一章二、多项选择题1、对某市工业企业进行调查,那么( )。
A、该市工业企业总数是总体B、该市工业企业是总体C、该市工业企业总产值是指标D、该市工业企业总产值是数量标志E、每个工业企业总产值是数量标志2、某企业是总体单位,那么以下属于数量标志的有( )。
A、所有制B、职工人数C、职工月平均工资D、年工资总额E、产品合格率3、以下指标哪些是质量指标〔〕。
A、新产品数量B、高级职称人数C、考试及格率D、工人劳动生产率E、平均亩产量4、以下属于连续变量的有〔〕。
A、厂房面积B、企业个数C、原材料消耗量D、人口数E、利润率5、以下属于有限总体的是〔〕。
A、全国人口B、某县企业C、某市学校D、太空星球E、连续流水作业生产的产品6、统计工作的各项任务归纳起来就是〔〕。
A、统计活动B、统计效劳C、统计学D、统计监督E、统计资料三、判断题7、变异仅指数量标志的不同具体表现。
〔〕四、问答题1、统计学有哪些特点?2、指标和标志的联系和区别是什么?〔〕3、简述变量的分类第二章二、多项选择题1、统计调查的方式有( )。
A、统计报表B、普查C、重点调查D、典型调查E、抽样调查2、典型调查〔〕。
A、是一次性调查B、是专门组织的调查C、是一种深入细致代表性大的调查D、调查单位是有意识地选取的E、是全面调查3、某县对生产钢铁的企业进行一次重点调查,此调查属于〔〕。
A、全面调查B、专门调查C、统计报表D、非全面调查E、一次性调查4、专门调查包括〔〕。
A 、统计报表B 、普查C 、抽样调查D 、重点调查E 、典型调查5、某连续变量分为五组:第一组为40-50,第二组为50-60,第三组为60-70,第四组为70-80,第五组为80以上。
依习惯上规定〔 〕。
A 、50在第一组B 、60在第二组C 、40在第一组D 、70在第四组E 、80在第四组6、以下属于全面调查的是〔 〕。
A 、普查B 、重点调查C 、典型调查D 、抽样调查E 、全面统计报表三、判断题1、重点调查的重点单位是根据当前的工作重点来确定的。
生产数据分析方法
生产数据分析方法包括以下几种:
1. 描述性统计分析:对生产数据进行总体特征的描述,包括平均数、中位数、标准差等统计指标,以及频率分布、直方图等图表展示。
2. 趋势分析:通过时间序列分析方法,对生产数据的变化趋势进行分析,例如对产量、销售额等指标进行趋势预测,以便进行生产计划和资源调配等决策。
3. 相关性分析:通过相关系数分析等方法,研究生产数据之间的相关关系,例如产品销售量与广告投入的关系、销售额与市场份额的关系等,以便更好地制定市场策略。
4. 假设检验:通过假设检验方法,验证生产数据之间的差异是否具有统计学意义,例如对新产品的生产效果与原产品的生产效果进行比较,判断差异是否显著。
5. 缺陷分析:通过对生产中的缺陷数据进行分析,找出缺陷产生的原因和规律,以便进行生产工艺改进和质量管理优化。
6. 预测分析:采用预测模型,对未来生产数据进行预测,例如对销售量、需求量等进行预测,以便合理安排生产和供应,避免过剩或缺货。
7. 模型优化:通过建立生产数据的数学模型,进行模型求解和优化,以最大化生产效益和资源利用率。
以上是常见的生产数据分析方法,具体应用根据实际情况而定。
第四章习题抽样调查一、填空题1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2. 采用不重复抽样方法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。
3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4. 参数估计有两种形式:一是点估计,二是区间估计。
5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
8. 对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩小一半,抽样单位数必须为原来的4倍。
若Δ扩大一倍,则抽样单位数为原来的1/4。
9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题1. 抽样误差是抽样调查中无法避免的误差。
(√)2. 抽样误差的产生是由于破坏了随机原则所造成的。
(×)3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√)4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)5. 抽样调查所遵循的基本原则是可靠性原则。
(×)6. 样本指标是一个客观存在的常数。
(×)7. 全面调查只有登记性误差而没有代表性误差,抽样调查只有代表性误差而没有登记性误差。
(×)8. 抽样平均误差就是抽样平均数的标准差。
(×)三、单项选择题1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(C)A. 2倍B. 3倍C. 4倍D. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(D)A. 分层抽样B. 简单随机抽样C. 整群抽样D. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A. 最小一个B. 最大一个C. 中间一个D. 平均值4. 抽样误差是指(D)A. 计算过程中产生的误差B. 调查中产生的登记性误差C. 调查中产生的系统性误差D. 随机性的代表性误差5. 抽样成数是一个(A)A. 结构相对数B. 比例相对数C. 比较相对数D. 强度相对数6. 成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A. 全面调查B. 非全面调查C. 一次性调查D. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A. 甲产品大B. 乙产品大C. 相等D. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(B)A. 甲企业较大B. 乙企业较大C. 不能作出结论D. 相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A. 是不可避免要产生的B. 是可以通过改进调查方法来避免的C. 是可以计算出来的D. 只能在调查结果之后才能计算E. 其大小是可以控制的2. 重复抽样的特点是(AC)A. 各次抽选相互影响B. 各次抽选互不影响C. 每次抽选时,总体单位数始终不变D 每次抽选时,总体单位数逐渐减少E. 各单位被抽中的机会在各次抽选中相等3. 抽样调查所需的样本容量取决于(ABE)A. 总体中各单位标志间的变异程度B. 允许误差C. 样本个数D. 置信度E. 抽样方法4. 分层抽样误差的大小取决于(BCD)A. 各组样本容量占总体比重的分配状况B. 各组间的标志变异程度C. 样本容量的大小D. 各组内标志值的变异程度E. 总体标志值的变异程度5. 在抽样调查中(ACD)A. 全及指标是唯一确定的B. 样本指标是唯一确定的C. 全及总体是唯一确定的D. 样本指标是随机变量E. 全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
2022-2023学年第一学期期末试卷1、某工厂生产的零件尺寸存在一定的误差,误差服从正态分布。
若要控制零件尺寸在某个范围内的概率,需要用到以下哪个统计量?A.标准分数B.概率密度函数C.分布函数D.以上都是2、已知随机变量X服从自由度为10的t分布,计算P(X>1.812)的值是?A.0.05B.0.025C.0.01D.0.13、在进行假设检验时,如果增大样本量,会对检验结果产生以下哪种影响?A.更容易拒绝原假设B.更难拒绝原假设C.对检验结果没有影响D.以上都不对4、在进行相关分析时,相关系数的取值范围是多少?()A.[-1,1]B.[0,1]C.(-∞,+∞)D.以上都不对5、对于一个分类变量,要检验其不同类别之间的比例是否符合某种预期,应采用哪种检验方法?A.t检验B.方差分析C.卡方检验D.F检验6、已知一组数据的偏态系数为-0.8,峰态系数为2.5,说明这组数据的分布形态是?A.左偏且尖峰B.右偏且尖峰C.左偏且平峰D.右偏且平峰7、为了研究广告投入与销售额之间的关系,收集了多个企业的相关数据。
如果销售额的增长速度大于广告投入的增长速度,那么两者之间的弹性系数是怎样的?A.大于1B.小于1C.等于1D.无法确定8、在对两个总体均值进行比较时,已知两个总体方差相等。
从两个总体中分别抽取样本量为10和15的样本,计算得到两个样本的均值分别为20和25,样本方差分别为4和5。
则两个总体均值之差的95%置信区间为()A.(-7.26,1.26)B.(-6.32,2.32)C.(-5.18,3.18)D.(-4.56,4.56)9、在比较两种测量方法的准确性时,收集了同一组样本分别用两种方法测量的数据。
应采用哪种统计方法进行分析?()A.配对样本t检验B.独立样本t检验C.方差分析D.以上都不对10、某研究人员想要分析一组数据的分布形态,除了观察直方图外,还可以计算以下哪个统计量来判断?A.峰度B.偏度C.均值D.中位数11、某工厂为了提高产品质量,对生产过程中的多个环节进行了改进。
第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。
答: 设p 维欧几里得空间中得两点X =与Y =。
则欧几里得距离为。
欧几里得距离得局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲得影响。
设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。
4、2 试述判别分析得实质。
答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。
设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。
判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4、3 简述距离判别法得基本思想与方法。
答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。
其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。
①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。