两总体参数的假设检验
- 格式:ppt
- 大小:4.79 MB
- 文档页数:20
第58讲:两个正态总体参数的假设检验(比较两个正态总体均值的检验)例1:通常认为男女的脉搏率是没有显著差异的. 现在随机地抽取年龄都是25岁的16位男子和13位女子, 测得他们的脉搏率如下:男: 61, 73, 58, 64, 70, 64, 72, 60, 65, 80, 55,72, 56, 56, 74, 65,女: 83, 58, 70, 56, 76, 64, 80, 68, 78, 108,76, 70, 97.问题:假设男女脉搏率都是服从正态分布, 这些数据能否认为男女脉搏率的均值相同?()()12221212122221,,,,,,,,,,,n n X X X N Y Y Y N X Y S S μσμσ∙∙∙ 12假设:是来自的样本是来自的样本,两样本相互独立.并记,分别为两样本的均值和方差.()012112.:,:,H H μμμαμ=≠检验假设显著水平22121.σσ当和已知时2212012,.~(0X Y X Y C H X Y N n n σσ∙--≥∙-+ 检验统计量拒绝域形式 当成立时,,).221212σσ-=+X YZ n n 记: 2α≥--Z z z 则检验拒绝域为:检验{}00002212122(1(),.σσ-=≥=-Φ-=+H P P Z z z x yz n n 其中:222122.σσσ当==但未知时2σ首先利用合样本给出参数的无偏估计量()()22112221211 .2wn S n SS n n -+-=+-1211-=+w X Y T S n n 可取检验统计量为:()21212211wX Y T t n n S n n α-=≥+-+检验拒绝域为:{}{}00120012||||2(2)||11--=≥=+-≥-=+H w P P T t P t n n t x yt P s n n 其中为::值——两样本精确t检验22123.σσ≠当且未知时221212.-=+X Y T S S n n 取检验统计量为:22221212.S S σσ以样本方差分,别代替,{}{}000||||2||,--=≥=≥H P P T t P Z P t 值为:(1)当两个样本量都很大时,利用中心极限定理{}/2||α≥T z 检验的拒绝域为:0221212~(01).-=+x y Z N t s sn n 其中: ,,12min(1,1),=--k n n (2)当两个样本为小样本时都很大时,统计量近似服从t 分布,自由度为22211222222112212(//)(/)(/)11+=+--S n S n k S n S n n n 或更精确的近似自由度{}/2||()α≥T t k 检验的拒绝域为: {}{}000||||2()||.--=≥=≥H P P T t P t k t P 值为: t ——两样本近似检验22112212221201,~(,),~(,),16,13,65.31,75.69,56.36,211.40,.X Y X N Y N n n x y s s H H μσμσμμμμ=======≠1212检验假设在例1中设分别表示男女的脉搏率,由已知数据计得:,::算221256.36,211.40,s s t ==注意到相差很大,采用不等方差的检验法,结论:拒绝原假设,认为男女脉搏率的均值不相同。
两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。
本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。
二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。
在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。
通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。
零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。
例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。
三、样本收集在提出假设后,需要收集样本数据以进行检验。
样本收集应遵循随机抽样的原则,以确保样本的代表性。
在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。
四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。
样本统计量是根据样本数据计算出的量,用于推断总体参数。
临界值是用于判断样本统计量是否达到显著差异的标准。
在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。
五、推断结论根据样本检验的结果,可以做出推断结论。
如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。
推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。
六、结果解释推断结论做出后,需要对结果进行解释。
解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。
结果解释要求清晰明了地传达结果的含义和应用范围。
七、误差分析误差分析是假设检验中不可或缺的一环。
误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。
误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。
§7.3 双正态总体参数的假设检验设样本1,,1n X X 取自正态总体211(,)N μσ,样本2,,1n Y Y 取自总体222(,)N μσ,两样本相互独立,它们的样本均值分别为∑==1111n i iX n X ,∑==2121n j jYn Y ,样本方差分别为∑=--=112121)(11n i i X X n S ,∑=--=212222)(11n j j Y Y n S 。
一、 关于两个正态总体方差比的假设检验以双侧检验:2221122210::σσσσ≠↔=H H 为例 选用检验统计量2221S S F =,它在原假设0H 成立的条件下服从F 分布)1,1(21--n n F ;记2221s s f O =表示检验统计量F 的样本观测值,则检验的P 值为⎪⎩⎪⎨⎧<=≥≥=≥=1),/1/1(21),(222212221O O O O f f F P f f F P P 如果如果σσσσ这种检验方法通常称为“F 检验”。
例7.3.1 甲乙两台车床分别加工某种轴,轴的直径分别服从正态分布),(211σμN ,),(2σμN ,从各自加工的轴中分别抽取若干根,测得其直径如下表所示:试问在显著性水平05.0=α下,两台车床加工的精度是否有显著差异?解:(1)依题意,考虑假设检验问题2221122210::σσσσ≠↔=H H (2)用F 检验,检验统计量为)6,7(~02221F S S F H =或)7,6(~/102122F S S F H =;(3)由样本观测值可得2164.021=s ,2729.022=s ,检验统计量的值为793.0/2221==s s f O 。
故检验的P 值为76.038.02)793.0/1/1(22221=⨯==≥=σσF P P 。
(4) 因为05.0>P ,所以不拒绝原假设0H ,即没有充分理由认为两种机床所加工轴的精度有显著差异。
正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。
有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。
(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。
5.判断(同前) 注:这个检验法称为u检验。
(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。
(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。
在基础上依据抽样分布特点可构造统计量作为检验之⽤。
具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。
注:关于正态标准差的假设与上述三对假设等价,不另作讨论。
(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。
续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。
某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。
③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。
⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。
[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。
已知废⽔中该有毒化学物质的含量X服从正态分布。
该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。
概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。
两个总体参数的假设检验主要内容问题作业预习下一节二、两个总体均值比较的t 检验设总体 ,总体 ,且 X与Y 相互独立,与是分别来自总体X与Y 的相互独立的样本,其样本均值与样本方差分别为:检验步骤: 1 建立假设: 2 构造并计算检验统计量两总体方差已知两总体方差未知,但样本量大总体方差未知,但相等总体方差未知,但不相等 3 根据显著性水平?,查相应的临界值表,确定拒绝域与接受域; 4 做出统计判断。
抽样分布临界值临界值 a/2 a/2 拒绝域拒绝域接受域 1 - ? 样本统计量例6-9 设甲、乙两台机器生产同类型药品,其生产的药品重量 g 分别服从方差的正态分布。
从甲机器生产的药品中随机地取出35件,其平均重量,又独立地从乙机器生产的药品中随机地取出45件,其平均重量,问这两台机器生产的药品就重量而言有无显著差异?()分析: 1 建立假设: 2 构造并计算检验统计量解: 3 ?=0.01,查临界值表,得: 4 做出统计判断:所以拒绝H0,接受H1. 例6-8.为考察甲、乙两批药品中某种成分的含量 % , 现分别从这两批药品中抽取9个样品进行测定,测得其样本均值和样本方差分别为、,假设它们都服从正态分布,试检验甲、乙两批药品中该种成分含量是否有显著差异?分析:解: 1 方差齐性检验:构造并计算检验统计量建立假设: 统计判断 ? 0.05,得:所以接受H0,拒绝H1. 医学统计学* * * * 医药数理统计方法高等数学复习1: 1、建立检验假设; 4.做出统计推断; 3.根据显著性水平?,确定拒绝域; 2.确定检验统计量及其分布,并根据样本值计算检验统计量的值;假设检验的一般步骤 1.正态总体均值的假设检验 u 统计量 t 统计量近似服从 u 统计量复习2: t 统计量 2.配对比较总体均值的 t 检验 3.正态总体方差的检验统计量四、正态总体方差的检验设总体,为抽自总体X的样本,总体均值和方差未知,则检验统计量检验步骤为: 1 建立假设: 2 在H0成立的条件下,构造检验统计量 3 对于给定的显著水平?,查分布临界值表,得双侧临界值和; 4 统计判断:若或,拒绝H0,接受H1;双侧若,接受H0,拒绝H1;例6-7.根据长期正常生产的资料可知,某药厂生产的利巴韦林药片重量服从正态分布,其方差为0.25,现从某日生产的药品中随机抽出20片,测得样本方差为0.43,试问该日生产的利巴韦林药片的重量波动与平时有无差异?()解: 1 建立假设: 2 在H0成立的条件下,构造计算统计量 3 显著水平,查表,得: 4统计判断:所以接受H0,拒绝H1。