第七章 两个总体的假设检验
- 格式:ppt
- 大小:1.79 MB
- 文档页数:89
《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。
本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。
二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。
在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。
通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。
零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。
例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。
三、样本收集在提出假设后,需要收集样本数据以进行检验。
样本收集应遵循随机抽样的原则,以确保样本的代表性。
在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。
四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。
样本统计量是根据样本数据计算出的量,用于推断总体参数。
临界值是用于判断样本统计量是否达到显著差异的标准。
在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。
五、推断结论根据样本检验的结果,可以做出推断结论。
如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。
推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。
六、结果解释推断结论做出后,需要对结果进行解释。
解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。
结果解释要求清晰明了地传达结果的含义和应用范围。
七、误差分析误差分析是假设检验中不可或缺的一环。
误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。
误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。
第七章假设检验第一节假设检验的基本知识一、假设陈述1、原假设/虚无假设:用H表示,常常是根据已有资料得出的,稳定、保守的经验性看法,没有充分根据是不会被推翻的。
2、备选假设/研究假设:与原假设对立的假设,用H1表示,经过抽样调查后,获得证据希望予以支持的假设。
二、假设检验的基本原理——小概率原理小概率原理:一次观察中小概率事件被认为不可能发生;如果一次观察出现了小概率事件,合理的想法应该是否定原有事件具有小概率的说法。
小概率原理在假设检验中的运用:抽取一个样本并计算出检验统计量,如果在原假设成立的条件下这个统计量几乎不可能发生,则拒绝原假设而接受备选假设。
反之,如果计算出的统计量发生的可能性不太小,则接受原假设。
即在原假设下,检验统计量是小概率事件则拒绝原假设。
例1:某市场有100位摊贩,根据以往统计,其中非本地居民占10%,现随机抽取10人调查,发现5个都不是本地人,则原有统计结果是否成立?解:H:100人中10个是非本地人。
计算在原假设成立的情况下,抽取5人都是非本地人的概率:P= C105 C905/C10010<10-4可见,出现5名非本地人的结果概率极其小,但一次实验就出现了,所以怀疑原假设的真实性,拒绝原假设。
三、拒绝域与显著性水平1、显著性水平α,在原假设成立条件下,统计检验中规定的小概率的数量界限,常用的有α=0.10,0.05,0.01。
2、接受域和拒绝域根据原假设画出统计量的分布,以Z分布为例。
如果把拒绝原假设的小概率α事件定在分布的右侧尾部,则右侧面积代表的概率即显著性水平,Zα是临界值。
如果检验统计量值Z>Zα,则应拒绝原假设;如Z<Zα,则接受原假设。
以Zα为临界值,左边为接受域,右边为拒绝域。
也可把α定在左边或两边。
α1、双边检验如果拒绝域放在抽样分布的两侧,每侧拒绝域的概率分别为α/2,假设抽样本分布以0为对称,则P(|Z|>Z α/2)= α;双边检验的假设如下:H 0: μ=μ0H 1: μ≠-Z α/2 Z α/2如果检验统计量|Z|>Z α/2,则拒绝原假设,否则接受。
概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。
两个总体参数的假设检验主要内容问题作业预习下一节二、两个总体均值比较的t 检验设总体 ,总体 ,且 X与Y 相互独立,与是分别来自总体X与Y 的相互独立的样本,其样本均值与样本方差分别为:检验步骤: 1 建立假设: 2 构造并计算检验统计量两总体方差已知两总体方差未知,但样本量大总体方差未知,但相等总体方差未知,但不相等 3 根据显著性水平?,查相应的临界值表,确定拒绝域与接受域; 4 做出统计判断。
抽样分布临界值临界值 a/2 a/2 拒绝域拒绝域接受域 1 - ? 样本统计量例6-9 设甲、乙两台机器生产同类型药品,其生产的药品重量 g 分别服从方差的正态分布。
从甲机器生产的药品中随机地取出35件,其平均重量,又独立地从乙机器生产的药品中随机地取出45件,其平均重量,问这两台机器生产的药品就重量而言有无显著差异?()分析: 1 建立假设: 2 构造并计算检验统计量解: 3 ?=0.01,查临界值表,得: 4 做出统计判断:所以拒绝H0,接受H1. 例6-8.为考察甲、乙两批药品中某种成分的含量 % , 现分别从这两批药品中抽取9个样品进行测定,测得其样本均值和样本方差分别为、,假设它们都服从正态分布,试检验甲、乙两批药品中该种成分含量是否有显著差异?分析:解: 1 方差齐性检验:构造并计算检验统计量建立假设: 统计判断 ? 0.05,得:所以接受H0,拒绝H1. 医学统计学* * * * 医药数理统计方法高等数学复习1: 1、建立检验假设; 4.做出统计推断; 3.根据显著性水平?,确定拒绝域; 2.确定检验统计量及其分布,并根据样本值计算检验统计量的值;假设检验的一般步骤 1.正态总体均值的假设检验 u 统计量 t 统计量近似服从 u 统计量复习2: t 统计量 2.配对比较总体均值的 t 检验 3.正态总体方差的检验统计量四、正态总体方差的检验设总体,为抽自总体X的样本,总体均值和方差未知,则检验统计量检验步骤为: 1 建立假设: 2 在H0成立的条件下,构造检验统计量 3 对于给定的显著水平?,查分布临界值表,得双侧临界值和; 4 统计判断:若或,拒绝H0,接受H1;双侧若,接受H0,拒绝H1;例6-7.根据长期正常生产的资料可知,某药厂生产的利巴韦林药片重量服从正态分布,其方差为0.25,现从某日生产的药品中随机抽出20片,测得样本方差为0.43,试问该日生产的利巴韦林药片的重量波动与平时有无差异?()解: 1 建立假设: 2 在H0成立的条件下,构造计算统计量 3 显著水平,查表,得: 4统计判断:所以接受H0,拒绝H1。