化工热力学第二章习题解答
- 格式:pdf
- 大小:557.40 KB
- 文档页数:17
第二章 均相反应动力学习题1. 【动力学方程形式】有一气相反应,经实验测定在400℃下的速率方程式为:23.66A A dP P dt= 若转化为2(/.)A kC A r mol hl =形式,求相应的速率常数值及其单位。
2. [恒温恒容变压定级数]在恒容等温下,用等摩尔H 2和NO 进行实验,测得如下数据: 总压(MPa )0.0272 0.0326 0.038 0.0435 0.0543 半衰期(s ) 256 186 135 104 67 求此反应级数3.[二级反应恒容定时间]4.醋酸和乙醇的反应为二级反应,在间歇反应反应器中,5min 转化率可达50%,问转化率为75%时需增加多少时间?4、【二级恒容非等摩尔加料】溴代异丁烷与乙醇钠在乙醇溶液中发生如下反应: i-C 4H 9Br+C 2H 5Na →Na Br+i-C 4H 9 OC 2H 5(A)(B) (C) (D)溴代异丁烷的初始浓度为C A0=0.050mol/l 乙醇钠的初始浓度为C B0=0.0762mol/l,在368.15K 测得不同时间的乙醇钠的浓度为:t(min) 0 5 10 20 30 50 C B (mol/l) 0.0762 0.0703 0.0655 0.0580 0.0532 0.0451已知反应为二级,试求:(1)反应速率常数;(2)反应一小时后溶液中溴代异丁烷的浓度;(3)溴代异丁烷消耗一半所用的时间。
5. [恒温恒容变压定级数]二甲醚的气相分解反应CH 3OCH 3 → CH 4 +H 2 +CO 在恒温恒容下进行,在504℃获得如下数据:t (s ) 0 390 777 1195 3155 ∞Pt ×103(Pa ) 41.6 54.4 65.1 74.9 103.9 124.1试确定反应速率常数和反应级数6.[恒温恒压变容定常数]气体反应2A→B,经测定该反应为一级,压力保持不变,组分A为80%,惰性物为20%,三分钟后体积减小了20%,求反应速率常数。
11.试查找并列举超临界流体的特性及部分应用实例.2.试用RK 方程计算异丁烷在300K ,0.3704MPa 时饱和蒸气的摩尔体积。
实验值为V=6.081m 3/kmol 。
3.1摩尔丙烷置于容积为2升的刚性容器中,试用RK 方程分别求100℃和6℃时容器内的压力?已知丙烷在6℃时的饱和蒸汽压为0.57MPa 。
4.液化石油气(LPG)中主要成分不可能是甲烷和正己烷,试根据甲烷和己烷的物理性质予以分析。
作业题(1)_(Mar. 13, 2015)第二章流体的p-V-T 关系48.455.6燃烧值/kJ/g 68.75-161.45T B / ℃29.8045.36p C /atm 234.4-82.62T C / ℃正己烷甲烷物质1.纯物质的三相点随所处压力的不同而改变,对否?为什么?2.vdW、RK方程在临界温度附近也能较准确预测饱和蒸汽压, 对吗?3.在计算pVT关系方面RK方程较SRK方程更合适,是否正确?4.一状态方程能计算汽液相平衡,一定能很好地计算pVT关系?5.在临界温度附近,vdW方程也能较准确地预测烃类流体的饱和蒸汽压,但对体积性质的预测精度仍很差,这一说法对吗?为什么?6.纯物质饱和液体的摩尔体积随温度升高而增大,饱和蒸汽的摩尔体积随温度升高而减小,对否?为什么?7.某温度T下的过热纯蒸汽的压力p小于该温度下的饱和蒸汽压, 对否?8.温度一定, 压力趋于零时, 任何气体的pV乘积也趋于零, 对否?为什么?9.纯物质临界点的数学特征为和。
10.参考教材图2-3中蒸发线上的自由度为1,所以处在蒸发线上的1mol物质,只要温度给定,其压力和体积就确定了。
这一说法对吗?如果不对,将如何改正?2。
.第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400 ℃、 4.053MPa 下甲烷气体的摩尔体积。
( 1 )理想气体方程;( 2 ) RK 方程;( 3)PR 方程;( 4 )维里截断式( 2-7)。
其中 B 用 Pitzer 的普遍化关联法计算。
[解 ] ( 1 )根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314(400273.15) 1.381 103m3mol 1p 4.053106(2)用 RK 方程求摩尔体积将RK 方程稍加变形,可写为V RT a(V b)b(E1)p T 0.5 pV (V b)其中0.42748R2T c2.5ap c0.08664 RT cbp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.42748 8.3142 190.62.5 3.2217m 6 Pa mol -2 K 0.54.60106b0.086648.314190.6 2.9846 10 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式( E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.053106.3.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.38110 32.984610 5 2.124610 51.3896331 10m mol第二次迭代得 V2为V2 1.381103 2.98461053.2217(1.389610 3 2.984610 5)673.15 0.5 4.05310 61.389610 3(1.389610 3 2.984610 5)1.38110 32.984610 5 2.112010 51.389710 3 m3 mol1V1和 V2已经相差很小,可终止迭代。
【精品】化工热力学第二章习题解答化工热力学第二章习题解答1.一个理想气体在恒定温度下,其压强与体积的关系如下所示:P = A / V^2其中P是压强,V是体积,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于恒温过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A / V^2代入上式,得到Cdt = dq - (A / V^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A / V^2)dV。
即Ct = q - A / V + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - A / V + B。
2.一个气体在等体过程中,其压强与温度的关系如下所示:P = A * T^2其中P是压强,T是温度,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于等体过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A * T^2代入上式,得到Cdt = dq - (A * T^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A * T^2)dV。
即Ct = q - (A / 3)T^3 + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - (A / 3)T^3 + B。
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化⼯热⼒学第⼆章习题及答案化⼯热⼒学第⼆章作业解答2.1试⽤下述三种⽅法计算673K ,4.053MPa 下甲烷⽓体的摩尔体积,(1)⽤理想⽓体⽅程;(2)⽤R-K ⽅程;(3)⽤普遍化关系式解(1)⽤理想⽓体⽅程(2-4) V =R T P=68.3146734.05310=1.381×10-3m 3·mol -1(2)⽤R-K ⽅程(2-6)从附录⼆查的甲烷的临界参数和偏⼼因⼦为 T c =190.6K ,Pc =4.600Mpa ,ω=0.008 将T c ,Pc 值代⼊式(2-7a )式(2-7b )22.50.42748ccR T a p ==2 2.560.42748(8.314)(190.6)4.610=3.224Pa ·m 6·K 0.5·mol -20.0867ccRT b p ==60.08678.314190.64.610=2.987×10-5 m 3·mol -1将有关的已知值代⼊式(2-6) 4.053×106= 58.3146732.98710V -?-?-0.53.224(673)( 2.98710)V V -+?迭代解得V =1.390×10-3 m 3·mol -1(注:⽤式2-22和式2-25迭代得Z 然后⽤PV=ZRT 求V 也可) (3)⽤普遍化关系式673 3.53190.6r T T T c=== 664.053100.8814.610r P P Pc===? 因为该状态点落在图2-9曲线上⽅,故采⽤普遍化第⼆维⾥系数法。
由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/T r 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/T r 4.2=0.139-0.172/(3.53)4.2=0.138 代⼊式(2-43)010.02690.0080.1380.0281B P c B B RTcω=+=+?=由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr=+=+?= ? ?V =1.390×10-3 m 3·mol -12.2试分别⽤(1)Van der Waals,(2)R-K ,(3)S-R-K ⽅程计算273.15K 时将CO 2压缩到⽐体积为550.1cm 3·mol -1所需要的压⼒。
思考题3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态?答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。
3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。
3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物?答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。
3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。
热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随着温度的变化”,这种说法是否正确?答:不正确。
剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。
3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零?答:不是。
只有理想气体在定温过程中的热力学内能和焓的变化为零。
3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否交叉使用这些图表求解蒸气的热力过程?答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。
不能够交叉使用这些图表求解蒸气的热力过程。
3-8 氨蒸气在进入绝热透平机前,压力为2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某人提出只要控制出口压力就可以了。
你认为这意见对吗?为什么?请画出T -S 图示意说明。
答:可以。
因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。
3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。
假设1kg 已被冷至-5℃的液体。
现在,把一很小的冰晶(质量可以忽略)投入此过冷液体内作为晶种。
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成固体,必须经过液相。
(错。
如可以直接变成固体。
)2. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
) 3. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle 温度时,Z >1。
) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
) 5. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)6. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
) 7. 气体混合物的virial 系数,如B ,C …,是温度和组成的函数。
(对。
) 二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C 。
参考P -V 图上的亚临界等温线。
) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽2. T 温度下的过热纯蒸汽的压力P (B 。
参考P -V 图上的亚临界等温线。
)A. >()T P sB. <()T P sC. =()T P s3. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到(A 。
要表示出等温线在临界点的拐点特征,要求关于V 的立方型方程)A. 第三virial 系数B. 第二virial 系数C. 无穷项D. 只需要理想气体方程4. 当0→P 时,纯气体的()[]P T V P RT ,-的值为(D 。
因()[]0lim lim ,lim 000=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=-=→→→BT T P T P P P Z P Z RT P T V P RT ,又) A. 0 B. 很高的T 时为0 C. 与第三virial 系数有关D. 在Boyle 温度时为零三、填空题1. 表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvapsV T HdT dP ∆∆=(Claperyon 方程)、()⎰-=svslV V sl sv s V V P dV V T P ),((Maxwell 等面积规则)。
第二章习题解答一、问答题:2-1【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。
(1)流体的PVT 关系可以直接用于设计。
(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。
只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。
2-2【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。
2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。
5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。
6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。
7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。
2-3【参考答案】:气体只有在低于T c 条件下才能被液化。
2-4【参考答案】:不同。
真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。
2-5【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。
其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。
为了提高计算复杂分子压缩因子的准确度。
偏心因子不可以直接测量。
偏心因子ω,ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。
2-6 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。
普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以()()()()点在点在C V PC V PT T 0022==∂∂∂两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法)2-7【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。
第二章流体的压力、体积、浓度关系:状态方程式2-1试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1)理想气体方程;(2)RK 方程;(3)PR 方程;(4)维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解](1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯(2)用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+(E1)其中2 2.50.427480.08664c c ccR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K,c p =4.60MPa ,将它们代入a,b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K4.6010a ⨯⨯==⋅⋅⋅⨯53160.086648.314190.6 2.9846104.6010b m mol--⨯⨯==⨯⋅⨯以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。