八年级数学上册期末水平2014-2015(广州市越秀区)
- 格式:doc
- 大小:455.00 KB
- 文档页数:17
新人教版2014—2015年八年级第一学期期末名校质量检测数学试题满分120分,时间120分钟. 2015、2、10一、选择题(每小题3分,共30分)1.下列标志中,可以看作是轴对称图形的是( )A B C D2.下列因式分解中,结果正确的是( )A. 24(2)(2)x x x -=+-B. 21(2)(1)(3)x x x -+=++C. )4(2822232n m n n n m -=-D. 22)41(41-=+-x x x 3.根据下列已知条件, 不能唯一确定......△ABC 的大小和形状的是( ) . A. AB =3, BC =4, AC =5 B. AB =4, BC =3, ∠A =30ºC. ∠A =60º, ∠B =45º, AB =4D. ∠C =90º, AB =6, AC = 5 4.一次函数 y = kx + b 的图象不经过第二象限, 则k , b 的取值范围是( )A. k < 0, b ≥0B. k > 0, b ≤0C. k < 0, b < 0D. k > 0, b > 0 5.已知点A (2,3-)关于x 轴对称的点的坐标为点B (2m ,m n +),则m n -的值为( )A . 5-B . 1-C . 1D . 5 6.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是( ) A .75°或30° B .75° C .15° D .75°或15° 7.已知一次函数y =kx +b 的图象(如右图),当x <0时,y范围是( )A .y >0B .y <0C .-2<y <0D .y <-28.若分式方程2321--=+-x xa x 有增根,则a 的值是( ) A . 3 B . 0 C . 6 D . 59. 如右图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系大致是下列图象中的( )10.已知直线(1)122ny xn n-+=+++(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2014=()A.1007503B.5032014C.10074032D.10072016二、填空题(每空3分,共30分)11.使式子xx+-21有意义的x的取值范围是 .12.分解因式:=-1642x__________________.13.比较大小:-10314.如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知1∠的度数为º.15.等腰三角形的周长为14,其一边长为4,那么,它的底边为 .16.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为_____cm.17.已知如图点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边所在直线的距离相等④点D在∠B的平分线上其中正确的说法的序号是_____________________.18.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________________.19.如图,在平面直角坐标系xOy中,已知A、B两点分别在x轴、y轴上. 以AB为一边,作等腰三角形△ABC,若点C在y轴上,则符合题意的C点有个.20.已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.三、解答题(21--26每小题4分,,27-32每小题6分共60分)21.计算:34ab·2169ba22.计算:29328+-DCA B第14题AB D CE第16题第17题23. 计算: 233)1()31(301-+-+÷-π24. 因式分解:)(4)(6q p q q p p +-+ 25.因式分解:322-+x x26.解关于x 的方程:4352+=-x x27.如图,在△ABC 中,∠ACB =90º, D 是AC 上的一点,且AD=BC ,DE ⊥AC 于D , ∠EAB =90º. 求证:AB=AE .28.先化简,再求值:11()b a b b a a b ++++,其中a =,b =EDCB A若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?30.两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)31.如图,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,l为过点P且平行于直线x=的直线,设移动时间为t秒.y-(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.32.已知△ABC 中,AB = AC ,∠BAC =α(0︒<α<60︒),△DBC 为等边三角形. (1)如图1,∠ABD = (用含α的式子表示);(2)如图2,若∠BCE = 150︒,∠ABE = 60︒,判断△ABE 的形状, 并说明理由;(3)在(2)的条件下,直线AD 与CE 的夹角是 ;(4)在(2)的条件下,若BC = 4cm ,∠CED = 45︒, 则α= ;AD = cm.ABCD图1ABCD图2ABC DE备用图。
2014-2015学年广东省广州市越秀区八上期末数学一、选择题(共10小题;共50分)1. 用科学记数法表示A. B. C. D.2. 如果把分式的和都扩大倍,那么分式的值A. 扩大倍B. 缩小为原来的C. 不变D. 扩大倍3. 要使是完全平方式,那么的值是A. B. C. D.4. 计算正确的结果是A. B. C. D.5. 下面是一些著名汽车品牌的标志,其中不是轴对称图形的是A. B.C. D.6. 三角形的一个外角是锐角,则这个三角形的是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定7. 以下长度的线段为边,可以作一个三角形的是A. ,,B. ,,C. ,,D. ,,8. 如图,,,要使,则需增加的条件是A. B. C. D.9. 如图,若,且,,则A. B. C. D.10. 如图,若是等边三角形,,是的平分线,延长到,使,则A. B. C. D.二、填空题(共6小题;共30分)11. 计算: ______.12. 如图,直线垂直平分线段,且垂足为,则图中一定相等的线段有______ 对.13. 如果点的坐标是,点的坐标是,那么点和点关于______ 轴对称.14. 一个多边形的每一个外角为,那么这个多边形的边数是______.15. 如果,,那么 ______.16. 如图,在中,,,,平分交于,于,则的周长等于______.三、解答题(共7小题;共91分)17. 计算:(1);(2).18. 分解因式:(1);(2).19. 计算:(1);(2).20. 如图,已知,,求证:.21. 如图,在中,点在上,,,.(1)作的垂直平分线,分别交,于,(不写作法,保留作图痕迹);(2)连接,求与的大小.22. 列方程解应用题:汛期将至,解放军某连官兵为驻地民众着想,计划加固驻地附近千米的河堤.根据气象部门预测,今年的汛期有可能提前,因此,官兵们发扬我军不怕苦、不怕累的优良传统,早出晚归,使实际施工速度提高到原计划的倍,结果比计划提前天完成.求该连队实际每天加固河堤多少千米?23. 如图,已知为等边三角形,点由点出发,在延长线上运动,连接,以为边作等边三角形,连接.(1)请写出,,之间的数量关系,并证明;(2)若,点的运动速度为每秒,运动时间为秒,则为何值时,?答案第一部分1. B2. C3. A4. A5. D6. C7. D8. B9. D 10. C第二部分11.12.13.14.15.16.第三部分17. (1)原式(2)原式原式18. (1)原式(2)原式19. (1)原式(2)20. 在和中,..21. (1)如图即为所求.(2),.,..由(1)知,垂直平分,...22. 设原计划每天加固河堤千米.根据题意,得解得经检验,是原分式方程的根,且符合题意.答:该连队实际每天加固河堤千米.23. (1).和为等边三角形,,,,,,,.(2)为等边三角形,,是的边的垂直平分线,,.。
广东省广州市2014-2015学年八年级上学期期末数学模拟试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)下列四个图形中不是轴对称图形的是()A.B.C.D.2.(2分)在平面直角坐标系中,点A(1,2)关于x轴对称点的坐标是()A.(2,1)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.(2分)9的平方根是()A.3B.﹣3 C.±3 D.814.(2分)在实数:,0,,π,中,无理数有()A.1个B.2个C.3个D.4个5.(2分)下列运算正确的是()A.(a+b)2=a2+b2B.a3a2=a5C.a6÷a3=a2D.2a+3b=5ab6.(2分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<07.(2分)一次函数y=2x﹣1的图象大致是()A.B.C.D.8.(2分)下列图形中的曲线不表示y是x的函数的是()A.B.C.D.9.(2分)下列说法中,错误的是()A.全等三角形的面积相等B.全等三角形的周长相等C.面积相等的三角形全等D.面积不等的三角形不全等10.(2分)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.B C=EF,AC=DF C.∠A=∠D,∠B=∠E D.∠A:∠D=BC:EF二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)计算:=.12.(3分)函数中自变量x的取值范围是.13.(3分)在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是.14.(3分)计算:(9a2b﹣6ab2)÷(3ab)=.15.(3分)计算:(a3)2•a5=.16.(3分)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=度.三、解答题(本大题共8题,共62分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)在直角坐标系中:(1)描出下列各点,并将这些点用线段依次连结起来:(2,4),(﹣3,8),(﹣8,4),(﹣3,1),(2,4);(2)作出(1)中的图形关于y轴的对称图形.18.(6分)计算:(结果保留根号形式)(1);(2)19.(8分)分解因式:(1)ax2﹣2axy+ay2;(2)x4﹣120.(8分)先化简,再求值:(1)当a=﹣1,b=1时,求(a+b)(a﹣b)+b(b﹣2)的值.(2)已知x2﹣4=0,求代数式x(x+1)2﹣x(x2+x)﹣x﹣7的值.21.(8分)如图,在△ABC中,AB=AC,CD平分∠ACB交加于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,求∠B的度数.22.(8分)如图,已知直线y=kx﹣3经过点M,求此直线与x轴,y轴的交点坐标.23.(8分)已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.24.(8分)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.广东省广州市2014-2015学年八年级上学期期末数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)下列四个图形中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,正确;B、是轴对称图形,错误;C、是轴对称图形,错误;D、是轴对称图形,错误.故选A.点评:轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.(2分)在平面直角坐标系中,点A(1,2)关于x轴对称点的坐标是()A.(2,1)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)考点:关于x轴、y轴对称的点的坐标.分析:利用平面直角坐标系点对称的性质求解.解答:解:关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数可知,A(1,2)关于x轴对称点的坐标是(1,﹣2).故选C.点评:此题比较简单,考查直角坐标系点的对称性质.3.(2分)9的平方根是()A.3B.﹣3 C.±3 D.81考点:平方根.分析:如果一个非负数x的平方等于a,那么x是a是算术平方根,根据此定义解题即可解决问题.解答:解:∵(±3)2=9,∴9的平方根是±3.故选:C.点评:本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(2分)在实数:,0,,π,中,无理数有()A.1个B.2个C.3个D.4个[来源:学科网ZXXK]考点:无理数.专题:常规题型.分析:根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判断选择项.解答:解:在实数:,0,,π,中,无理数有,π,共2个.故选:B.点评:此题考查了:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数.5.(2分)下列运算正确的是()A.(a+b)2=a2+b2B.a3a2=a5C.a6÷a3=a2D.2a+3b=5ab考点:同底数幂的除法;同底数幂的乘法;完全平方公式.分析:根据完全平方公式,同底数幂的乘法,同底数幂的除法,对各选项分析判断后利用排除法求解.解答:解:A、应为(a+b)2=a2+b2+2ab,故本选项错误;B、a3a2=a5,正确;C、应为a6÷a3=a3,故本选项错误;D、2a与3b不是同类项,不能合并,故本选项错误.故选:B.点评:本题考查了同底数幂的乘法与除法,完全平方公式,需熟练掌握且区分清楚,才不容易出错.6.(2分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<0[来源:学科网ZXXK]考点:一次函数与一元一次不等式.专题:压轴题;数形结合.分析:由图象可知kx+b=0的解为x=﹣2,所以kx+b>0的解集也可观察出来.解答:解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(﹣2,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>﹣2.[来源:学。
新人教版2014—2015年八年级上学期期末考试数学试题考试范围:八年级上册;考试时间:120分钟;满 分:100分 2015、1、24一、选择题(每题3分,共24分)1.在x 1、31、212+x 、πy +5、m a 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知等腰三角形的一个角为75°,则其顶角为( )A .30°B .75°C .105°D .30°或75° 3.若a m =2,a n =3,,则a m+n 等于( ) A.5 B.6 C.8 D.9 4.下列运算正确的是( )A .232a a 3a +=B .()2a a a -÷= C .()326a a a -⋅=- D .()3262a 6a =5 ).(A )0 (B )1 (C )-1 (D )x6.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0 D .1 7.把方程103.02.017.07.0=--xx 中的分母化为整数,正确的是( ) A 、132177=--x x B 、13217710=--xx C 、1032017710=--x x D 、132017710=--xx 8.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).二、填空题(每题3分,共24分)9.等腰三角形的两边长分别为4和8,则第三边的长度是 .10.2211aa a a -∙+= ; 11. 计算(π﹣3)0=_________12.已知一个长方形的面积是x x22-,长为x ,那么它的宽为 .13.如下图,在△ABC 中,DE∥AB,CD :DA=2:3,DE=4,则AB 的长为 •14.已知4x 2+mx +9是完全平方式,则m =_________. 15. 因式分解:x a a x 2222---=.16.如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度.A . C .D .B .FD B A三、解答题(共题,计52分)17.计 算:(本题8分,每小题4分)(1)203(4)(π3)2|5|-+----; (2)2011×2013-2012218.解方程:(本题8分,每小题4分)(1)132+=x x ; (2)114112=---+x x x19.(7分)先化简 (1+ 11x -)÷221xx x -+,然后在0,1,-1中挑选一个合适的数代入求值.20. (7分)画出△ABC 关于原点对称的图形△DEF,并写出D 、E 、F 的坐标。
2014—2015八年级上学期数学期末检测本考试试卷共三道大题,满分150分。
考试时间120分钟一、选择题(30103=⨯) 1、4平方根是 ( )A 、2B 、±2C 、2D 、±22、计算25-38-的结果是 ( )A 、3B 、7C 、-3D 、73、分解因式x 3-x 的结果是( )A 、x (x 2-1) B 、x (x -1)2C 、x (x +1)2D 、x (x +1)(x -1) 4、在实数4,0,722,3125.0,0.1010010001…,3,2π中无理数有( ) A 、0个 B 、1个 C 、2个 D 、3个5、如果()()n x m x -+中不含x 的项,则m 、n 满足 ( )0.,.,0.,.=-===n D n m C m B n m A 6、如图所示:求黑色部分(长方形)的面积为( )A 、24B 、30C 、48D 、187、设三角形的三边分别是下列各组数,则不是直角三角形的一组是( ) A 、3,4,5; B 、6,8,10; C 、5,12,13; D 、5,6,8; 8、一个等腰三角形的一个角是300,它的一腰上的高与底边的夹角是( )A 、150B 、600C 、 150或600D 、 不确定.9、如图,已知AD =BC ,AC =BD ,AC 与BD 交于点E ,则图中全等三角形共有( ) A 1对 B 2对 C 、 3对 D 、 4对10、如图,在⊿ABC 中,AB=AC ,且BE=CD ,BD=CF ,则∠EDF 的值是( )A.180°-2∠BB. 180°-∠BC.∠BD.90°-∠B第6题 第9题 第10题二、填空题(30103=⨯)11、一次体育测试中,10名女生完成仰卧起坐的个数如下:48,52,47,46,50,50,51,55,45,49,则这次体育测试中仰卧起坐个数大于50个的频数为,频率为 。
2014-2015学年广东省广州市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个图案中,是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14B.23C.19D.19或23 3.(3分)下列从左到右的变形中是因式分解的有()①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;②x3+x=x(x2+1);③(x﹣y)2=x2﹣2xy+y2;④x2﹣9y2=(x+3y)(x﹣3y).A.1个B.2个C.3个D.4个4.(3分)三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A.三条中线的交点B.三边垂直平分线的交点C.三条高的交点D.三条角平分线的交点5.(3分)已知(a+b)2=m,(a﹣b)2=n,则ab等于()A.B.C.D.6.(3分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE 7.(3分)下列各式中,正确的是()A.B.C.D.8.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC 的长为()A.7cm B.10cm C.12cm D.22cm9.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.10.(3分)如果,那么的值为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是.12.(3分)因式分解:3a2﹣27b2=.13.(3分)当x=时,分式的值为零.14.(3分)等腰三角形的一个角是70°,则它的另外两个角的度数是.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD是斜边AB上的高,AB=8,则BD=.16.(3分)已知,求的值为.三、解答题(共9小题,满分102分)17.(10分)(1)因式分解:a3﹣6a2﹣a(2)解方程:.18.(10分)先化简代数式,然后选取一个使原式有意义的x 值代入求值.19.(10分)如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).20.(10分)已知:如图,∠1=∠2,∠3=∠4,求证:△ABE≌△ADE.21.(10分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,求私家车的速度是多少.22.(10分)如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,求∠DBF的度数.23.(14分)先阅读,然后回答问题.若,求的值.解:因为,所以a=﹣2b(第一步)所以===(第二步)(1)回答问题:①第一步运用了的基本性质;②第二步的解题过程运用了的方法,由得,是对分式进行了.(2)模仿运用,已知,求的值.24.(14分)如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.(1)求证:BE=DC;(2)求证:△AMN是等边三角形;(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.25.(14分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.2014-2015学年广东省广州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个图案中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.2.(3分)等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14B.23C.19D.19或23【解答】解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选:D.3.(3分)下列从左到右的变形中是因式分解的有()①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;②x3+x=x(x2+1);③(x﹣y)2=x2﹣2xy+y2;④x2﹣9y2=(x+3y)(x﹣3y).A.1个B.2个C.3个D.4个【解答】解:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;②把一个多项式转化成几个整式积的形式,故②是因式分解;③整式的乘法,故③不是因式分解;④把一个多项式转化成几个整式积的形式,故④是因式分解;故选:B.4.(3分)三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A.三条中线的交点B.三边垂直平分线的交点C.三条高的交点D.三条角平分线的交点【解答】解:三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的三边垂直平分线的交点,故选:B.5.(3分)已知(a+b)2=m,(a﹣b)2=n,则ab等于()A.B.C.D.【解答】解:已知两式相减得:(a+b)2﹣(a﹣b)2=m﹣n,即(a+b+a﹣b)(a+b﹣a+b)=4ab=m﹣n,则ab=(m﹣n),故选:C.6.(3分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A 选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.7.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A 分母中的a没除以b,故A错误;B 异分母分式不能直接相加,故B错误;C 分式的分子分母没同乘或除以同一个不为零整式,故C错误;D 分式的分子分母都乘以(a﹣2),故D正确;故选:D.8.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC 的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.9.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.10.(3分)如果,那么的值为()A.B.C.D.【解答】解:=,2x+2y=3x,x=2y,==,故选:A.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是AB=DC.【解答】解:∵AC=BD,BC=BC,∴可添加AB=DC利用SSS判定△ABC≌△DCB.故填:AB=DC.12.(3分)因式分解:3a2﹣27b2=3(a+3b)(a﹣3b).【解答】解:3a2﹣27b2,=3(a2﹣9b2),=3(a+3b)(a﹣3b).13.(3分)当x=2时,分式的值为零.【解答】解:由题意得:(x+2)(x﹣2)=0,且x2﹣x﹣6≠0,解得:x=2,故答案为:2.14.(3分)等腰三角形的一个角是70°,则它的另外两个角的度数是55°、55°或70°、40°.【解答】解:(1)当顶角为70°时,则它的另外两个角的度数是55°,55°;(2)当底角70°时,则它的另外两个角的度数是70°,40°;所以另外两个角是55°,55°或70°,40°.故答案为:55°,55°或70°,40°.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD是斜边AB上的高,AB=8,则BD=2.【解答】解:Rt△ABC中,∵∠ACB=90°,∠A=30°,AB=8,∴BC=AB=4,在Rt△BCD中,∵∠B=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠B=30°,∴BD=BC=2.故答案为:2.16.(3分)已知,求的值为2.【解答】解:由﹣=﹣=3,得到x﹣y=﹣3xy,则原式===2.故答案为:2三、解答题(共9小题,满分102分)17.(10分)(1)因式分解:a3﹣6a2﹣a(2)解方程:.【解答】解:(1)原式=a(a2﹣6a﹣1);(2)去分母得:x﹣3+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解.18.(10分)先化简代数式,然后选取一个使原式有意义的x 值代入求值.【解答】解:原式=﹣==,当x=0时,原式=﹣4.19.(10分)如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).【解答】解:如图所示.20.(10分)已知:如图,∠1=∠2,∠3=∠4,求证:△ABE≌△ADE.【解答】证明:在△DEC和△BEC中∵,∴△DEC≌△BEC(ASA).∴DE=BE.∵∠3=∠4,∴∠DEA=∠BEA.∵DE=BE,AE=AE,在△ABE和△ADE中∵,∴△ABE≌△ADE(SAS).21.(10分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,求私家车的速度是多少.【解答】解:设公交车的速度是x千米/分钟,则私家车的速度是2.5x千米/分钟,由题意得,﹣=15,解得:x=0.32,经检验,x=0.32是原分式方程的解,且符合题意,则2.5x=2.5×0.32=0.8.答:私家车的速度是0.8千米/分钟.22.(10分)如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,求∠DBF的度数.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DBF=∠DAE=90°﹣∠AED=90°﹣62°=28°.23.(14分)先阅读,然后回答问题.若,求的值.解:因为,所以a=﹣2b(第一步)所以===(第二步)(1)回答问题:①第一步运用了等式的基本性质;②第二步的解题过程运用了代入的方法,由得,是对分式进行了约分.(2)模仿运用,已知,求的值.【解答】解:(1)①第一步运用了等式的基本性质;②第二步的解题过程运用了代入的方法,由得,是对分式进行了约分.故答案为:等式,代入,约分;(2)∵==≠0,∴令===k,则x=3k,y=4k,z=6k,∴原式===.24.(14分)如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.(1)求证:BE=DC;(2)求证:△AMN是等边三角形;(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.【解答】证明:(1)∵△ABD,△AEC都是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS),∴BE=DC;(2)由(1)证得:△ABE≌△ADC,∴∠ABE=∠ADC.在△ABM和△ADN中,,∴△ABM≌△ADN(ASA),∴AM=AN.∵∠DAE=60°,∴△AMN是等边三角形;(3)∵△ABD,△AEC都是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS),∴BE=DC,∠ABE=∠ADC,∵∠BAC=90°∴∠MAN>90°,∵∠MAN≠60°,∴△AMN不是等边三角形,∴(1)的结论成立,(2)的结论不成立.25.(14分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.【解答】解:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAF=60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF,在△ABD和△ACF中AB=AC,∠BAD=∠CAF,AD=AF,∴△ABD≌△ACF,∴∠ADB=∠AFC,②结论:∠AFC=∠ACB+∠DAC成立.(2)结论∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB﹣∠DAC.证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF.在△ABD和△ACF中AB=AC,∠BAD=∠CAF,AD=AF,∴△ABD≌△ACF.∴∠ADB=∠AFC.又∵∠ACB=∠ADC+∠DAC,∴∠AFC=∠ACB﹣∠DAC.(3)补全图形如下图:∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB﹣∠DAC (或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).。
2. 广东省广州市越秀区八年级(上)期末数学试卷、选择题(本大题共10小题,每小题3分,共30 分)(3分)下列微信按钮图标中,A .B.C.是轴对称图形的是(D.(3分)已知三角形的两边长分别为6, 11,那么第三边的长可以是(源学科网ZXXK]A . 3 B. 4 C. 5 D. 63. A.4. A .5. A . C.6. A. 7 . (3分)下列计算正确的是(X?X3=X4 B. X4+X4=X8 C. (X2)(3分)分式-1一可变形为()- B. ] C. - I D . 1If 1-a a+1 a+1(3分)下列从左到右的运算是因式分解的是(2X2-2X-仁2X(X- 1)- 1 B . 4a2+4a+ 仁(2a+1)(a - b)=a2- b2 D . x2+y2= (x+y)2-2xy2+K若分式 |有意义,则X的取值范围是(x -4B . X M± 2C . X M- 2D . X>- 2计算a-2b2? (a2b-2)-2正确的结果是()3=X5D. X_1=- XA.8. (a+b)(3分)(3分)6^6 fC. a bD.a b(3分)如图,已知/ ABD=Z BAC添加下列条件还不能判定△ AB3A BAD的依据是()A . AC=BDB . / DAB=Z CBA C. / C=Z DD . BC=AD9. (3分)若一个凸多边形的每一个外角都等于36°则这个多边形的内角和是()A. 1080°B. 1260°C. 1440°D. 1620°10. (3分)如图,已知AB=AC BE± AC于点E, CF丄AB于点F, BE与CF交于A.A ABE^A ACFB.A BDF^A CDEC.点D在/ BAC的平分线上D.点D是CF的中点二、填空题(本大题共6小题,每小题3分,共18分)11. (3分)科学家发现一种病毒直径为0.00023微米,则这种病毒的直径用科学记数法可以表示为_______ 微米.12. (3分)方程____ 的解为x= .13. (3分)如图,在△ ABC中,AB=AC AD是BC边上的高,BD=4cm,贝U BC= cm.14. _____________________________________________ (3分)运用完全平方公式计算:(-3x+2)2= ___________________________ .15. (3分)如图,在厶ABC中,BD丄AD,/ A=15°, AC=BC=6则BD的长是 _16. (3分)如图,△ ABC中,/ BAC=60, / BAC的平分线AD与边BC的垂直平分线MD相交于D,DEI AB交AB的延长线于E, DF丄AC于F,现有下列结论:① DE丄DF;②DE+DF=AD;③DM 平分/ EDF;④AB+AC=2AE其中正确的有______ .(填写序号)三、解答题(本大题共9小题,共102分)17. (8分)如图,△ ABC三个顶点的坐标分别为A (-4,- 2), B ( - 1 , - 1), C (- 1,- 4).(1)画出△ ABC关于y轴对称的图形△ A1B1C1;19. (8分)分解因式:(1)4m3n - mn3(2)(x- 1) (x- 3) +1.3a pa a20. (8分)先化简(卞-主)十—一一,然后从-3, 0, 1, 3四个数中选择一个适当的数作为a的值代入求值.21. (8分)如图,在△ ABC中,BD平分/ ABC, CE平分/ ACQ BD与CE相交于点O,Z BOC=119.(1)求/ OBC-Z OCB的度数;(2)求/ A的度数.B-------------------C22. (8分)如图,点G. H分别是正六边形ABCDEF勺边BC. CD上的点,且BG=CH AG交BH于点P.(1)求证:△ AB3A BCH(2)求/ APH的度数.B G C23. (8分)如图,在△ ABC中,AB=AC Z A=36°, DE是AB的垂直平分线. (1)求证:△ BCD是等腰三角形;(2)若厶ABD的周长是a,BC=b,求厶BCD的周长.(用含a,b的代数式表示)24. (8分)某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%, 甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?25. (10分)在厶ABC中,Z BAC=90,射线AM // BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若/ C=30,且AB=DB求/ APD的度数;(2)如图②,若/ C=45,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,/ AQP a, / APD1B,当点D在射线AM上运动时,a与B之间有怎样的数量关系?请写出你的结论,并加以证明.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1. (3分)下列微信按钮图标中,是轴对称图形的是()【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.2. (3分)已知三角形的两边长分别为6,11,那么第三边的长可以是()A. 3B. 4C. 5D. 6【解答】解:设第三边长为x,由题意得:11 - 6v x v 11+6,解得:5v x v 17. 故选:D .3. (3分)下列计算正确的是( )A. x?x 3 =X B . x 4+X 4 =x 8 C. (x 2) 3=x 5 【解答】解:A 、x?x 3=x 4,正确; B 、 X 4+X 4=2X 4,故此选项错误; C ( x 2)3=x 6,故此选项错误; … D 、x 「1=—,故此选项错误; 故选:A .4. (3分)分式-—可变形为() a-11 _ 1 _ 1 = = a~l I F故选:B.5.(3分)下列从左到右的运算是因式分解的是()A 、 2x 2- 2x -仁2x (x - 1)- 1 B. 4a 2+4a+1=( 2a+1) 2 C. (a+b ) (a - b ) =a 2- b 2 D . x 2+y 2= (x+y ) 2- 2xy【解答】解:A 、没把一个多项式转化成几个整式积的形式,故本选项错误;B 、 把一个多项式转化成几个整式积的形式,故本选项正确;C 、 是整式的乘法,故本选项错误;D 、 没把一个多项式转化成几个整式积的形式,故本选项错误; 故选:B.2+x6. (3分)若分式_ 有意义,贝U x 的取值范围是() x -4 A . X M 2 B . X M 土 2 C. X M — 2 D . x >- 2D . x -1=- xA .1 I FB .1a+1D.1a+1【解答】解: 来源学科网■-【解答】解:•••分式 '有意义,x -4X2- 4工0,解得:X M土2,则X的取值范围是:X M± 2.故选:B.7. (3分)计算a「2b2? (a2b「2)「2正确的结果是()6 1A. ' rB. - c. a6b6 D. 一——:b6J a b e【解答】解:a「2b2? (a2b「2)「2b6J'8. (3分)如图,已知/ ABD=Z BAC添加下列条件还不能判定△的依据是()A. AC=BDB.Z DAB=Z CBAC.Z C=Z DD. BC=AD【解答】解:由题意得,/ ABD=Z BACA、在△ABC与△ BAD 中,f AC=BD* ZBAC=ZABD,AB二BA•••△ABC^A BAD (SAS;故A正确;B、在△ ABC与厶BAD中,故选: B.ABC^A BADr ZABD=ZBAC1 AB二BADAB=ZCBA△ABC^A BAD (ASA ,故 B 正确;C 在△ABC与△ BAD 中,NO ZD• ZBAC^ZBAL,AB二BA△ ABC^A BAD (AAS,故C正确;。
2014-2015学年度第一学期期末教学质量检测八年级数学试卷(时间:100分钟,满分100分)一、选择题(本大题共10题,每小题3分,共30分)1.在x 1、21、212+x 、πxy3、y x +3、3x -中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 2.下列“表情”中属于轴对称图形的是 ( )A .B .C .D .3.等腰三角形的顶角为80°,则它的底角的度数是( )A .20°B .50°C .60°D .80°4.如图,△ABC 中,AB=AC ,EB=EC ,则由“SSS”可以判定( ) A.△ABD ≌△ACDB.△ABE ≌△ACEC.△BDE ≌△CDED.以上答案都不对5.下列运算不正确...的是 ( ) A 、 x 2·x 3= x 5B 、 (x 2)3= x 6C 、 x 3+x 3=2x 6D 、 (-2x)3=-8x 36.下列每组数分别是三根小棒的长度,用它们能摆成三角形的是( )A 、3cm ,4cm ,8cmB 、8cm ,7cm ,15cmC 、13cm ,12cm ,20cm C 、5cm ,5cm ,11cm 7.下列各式由左边到右边的变形中,是分解因式的为( ).C BADA .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+- 8.计算3a.2b 的值为( )A.3abB.6aC.6abD.5ab 9.若分式有意义,则x 的取值范围是( )A. x ≠3B. x ≠﹣3C. x >3D. x >﹣310.小张和小李同时从学校出发,步行15千米去县城购买书籍,小张比小李每小时多走1千米,结果比小李早到半小时,两位同学每小时各走多少千米?设小李每小时走x 千米,依题意,得到的方程:(A )1515112x x -=+ (B )1515112x x -=+ (C )1515112x x -=- (D )1515112x x -=- 二、填空题(本大题共8题,每小题3分, 共24分)11.已知点A(m,3)与点B (2,n+1)关于y 轴对称,则m=______,n=________。
111---a a a 11-+a a 1--a a ()⎪⎭⎫ ⎝⎛•-b a ab 243853-x 2013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是( )A 、a+a=a 2B 、(3a) 2=6a 2C 、(a+1) 2=a 2+1D 、a ·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm3、观察下列中国传统工艺品的花纹,其中轴对称图形是( )4、计算 的结果为( ) A 、 B 、 C 、 -1 D 、1-a5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A ′OA )是( )A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A 、(a+b) 2=a 2+2ab+b 2B 、(a-b) 2=a 2-2ab+b 2C 、a 2-b 2=(a+b)(a-b)D 、(a+2b)(a-b)=a 2+ab-2b 28、如图,已知△AB C ≌△CDA ,下列结论:(1)AB=CD,BC=DA ;(2)∠BAC=∠DCA,∠ACB=∠CAD ;(3)A B ∥CD,BC ∥DA 。
其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算: = 10、当x 时,分式 有意义22322=--+x x x 2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:18、(7分)先化简再求值:(a 2b-2ab 2-b 2)÷b-(a+b)(a-b),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。
八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2014-2015学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。