关于圆周率π——从阿基米德到刘徽、祖冲之
- 格式:pdf
- 大小:724.92 KB
- 文档页数:5
祖冲之数学小故事介绍
标题:祖冲之与圆周率的故事——中国数学家的伟大探索
在璀璨的中国古代科学史上,有一位杰出的数学家祖冲之,他的名字与一项举世瞩目的数学成就紧密相连,那就是对圆周率π的精确计算。
祖冲之(公元429年—公元500年),南朝宋、齐时期人,是中国乃至世界数学史上的重要人物。
祖冲之从小就展现出对数学和天文学的浓厚兴趣和超凡天赋。
他不满足于当时流传的圆周率值“周三径一”(即π=3)以及刘徽提出的“徽率”(约等于
π=3.14),通过深入研究和无数次精密的计算,他在《缀术》一书中提出了更为精确的圆周率值。
祖冲之将圆周率π精确到小数点后七位,即π=3.1415926至3.1415927之间,这一结果比欧洲数学家阿尔·卡西在公元15世纪得出的类似结果早了一千多年,充分展示了中国古代数学的高度成就和卓越贡献。
这个故事背后的数学探索精神,是祖冲之留给我们的宝贵财富。
他以无比的毅力和严谨的态度,对数学真理进行了不懈追求,使我们深刻理解到科学研究的艰辛和价值所在。
祖冲之对于圆周率的研究成果,不仅推动了我国古代数学的进步,也极大地丰富了人类数学宝库,使得后世科学家们能够在这一基础上继续攀登数学高峰。
总的来说,祖冲之与圆周率的故事,是中国古代数学辉煌成就的一个缩影,它见证了中华民族在数学领域的深邃智慧和卓越创新力,对我们今天乃至未来都有着深远的启示和教育意义。
圆周率发展史第一阶段:π值早期研究阶段。
代表人物为古希腊的数学家阿基米德、中国大数学家刘徽、祖冲之。
阿基米德是世界上最早进行圆周率计算的。
所以圆周率就用希腊文“圆周”一词的第一个字母“π”表示。
在我国使用的第一个圆周率是3,这个误差极大的值一直沿用到汉朝。
汉朝数学家刘徽将圆周率进一步精确到 3.1416。
南北朝数学家祖冲之算至π的值在3.1415926与3.1415927之间,首创用和作为π的近似值,与π的误差小于0.000001。
第二阶段:采用“割圆术”求π值阶段。
1427年,阿拉伯数学家阿尔·卡西把π值算到小数点后面16位。
1573年,德国的鄂图得到了与祖冲之计算相似的值,时间相距一千多年,所以世界上把圆周率称为“祖率”。
1596年,德国数学家卢道夫尽其一生心血将π值求至35位小数。
1630年,德国数学家伯根创造了利用割圆术求π值的最高记录——39位小数。
第三阶段:采用解析法求π值阶段。
1699年,英国数学家夏普求至71位小数。
1706年,英国数学家梅钦求至100位小数。
1844年,德国数学家达泽求至200位小数。
1947年,美国数学家佛格森求至710位小数。
1949年,美国数学家伦奇与史密斯合作求至1120位,创造利用“解析法”求π值的最高记录。
第四阶段:采用计算机求π值阶段。
1949年,美国麦雷米德是世界上第一个采用电子管计算机求圆周率的人,他将π的值求至2037位小数。
1961年,美国数学家伦奇利用电子计算机将其求至100265位小数,这时计算机只须8小时43分就把π的值算到小数10万位了。
1973年,法国数学家纪劳德计算到100万位小数,若把这长得惊人内的数印出来将是一本300余页的书。
1987年,日本数学家金田安政(也译金田康正)求至134,217,728位小数。
1990年已突破10亿位小数大关。
若把其印成书将达三、四百万页。
读到此处,你一定会问:为什么这些数学家要无休止地计算π的值呢?在古代,π值的获得是衡量数学水平的重要标准之一,其数值、性质、公式是数学史上最悠久、最奇特、最富有思想、也是最能体现数学进步的主题之一。
圆周率历史故事:
祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。
一次,父亲从书架上给他拿了一本《周髀算经》,这是一本西汉或更早的著名的数学书。
书中讲到圆的周长为直径的3倍。
于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。
他又去量盆子,结果还是一样。
他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。
这在计算圆的周长和面积时,误差很大。
祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,运用开密法,经过反复演算,求出圆周率为:3.1415927>π>3.1415926。
这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。
直到1000多年后,这个纪录才被欧洲人打破。
圆周率的计算,是祖冲之在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。
中外数学家故事小故事及读后感(摘)(精选五篇)第一篇:中外数学家故事小故事及读后感(摘)一、祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,关于圆周率究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,得出了π分数形式的近似值,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想阿基米德按刘徽的“割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊由此可见阿基米德在治学上的顽强毅力和聪敏才智是令人钦佩的!二、高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3+.....+97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道阿基米德是如何算的吗?高斯告诉大家阿基米德是如何算出的:把 1加至 100 与 100 加至 1 排成两排相加,也就是说1+2+3+4+.....+96+97+98+99+100 100+99+98+97+96+.....+4+3+2+1=101+101+101+.....+101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了阿基米德以后的数学基础,更让阿基米德成为——数学天才!三、1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题‚哥德巴赫猜想‛中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1 + 1)只是一步之遥的辉煌。
祖冲之算圆周率的方法:揭示古代数学之精髓自古以来,圆周率π一直是数学领域的一个关键概念。
作为圆的周长与直径之比,它在几何学、物理学、工程学等诸多领域都有着广泛的应用。
而在中国古代,有一位杰出的数学家——祖冲之,他在圆周率的计算方面取得了令人瞩目的成就。
本文将探讨祖冲之算圆周率的方法,揭示古代数学的精髓。
一、祖冲之与圆周率祖冲之(公元429年-500年)是南北朝时期的著名数学家和天文学家。
他在数学领域取得了举世瞩目的成就,特别是在圆周率的计算方面。
祖冲之首次将圆周率精确到小数点后七位,这一成就比欧洲早了近一千年。
二、祖冲之算圆周率的方法祖冲之在算圆周率方面采用了多种方法,其中最著名的是“割圆术”。
割圆术是一种通过不断分割圆的内接多边形和外切多边形来逼近圆周率的方法。
祖冲之通过不断地增加多边形的边数,使得内外多边形的面积越来越接近圆的面积,从而得到越来越精确的圆周率值。
具体步骤如下:1.从一个正六边形开始,其边长等于圆的半径。
这个正六边形的面积可以很容易地计算出来。
2.将正六边形的每条边都分成两段,然后用这些线段作为新的边构造一个正十二边形。
这个正十二边形的面积也可以计算出来。
3.重复这个过程,每次都将上一步得到的多边形的每条边都分成两段,并用这些线段构造一个新的多边形。
随着多边形边数的增加,其面积将越来越接近圆的面积。
4.通过比较内外多边形的面积,可以估算出圆周率的值。
随着多边形边数的增加,这个估算值将越来越精确。
三、祖冲之方法的意义祖冲之算圆周率的方法不仅在数学上具有重要意义,而且在科学史上也具有重要地位。
首先,他的方法展示了古代数学家在探索未知领域的勇气和智慧。
其次,祖冲之的成果推动了数学和其他学科的发展,为后来的科学研究提供了有力支持。
最后,祖冲之的方法为后人提供了宝贵的经验和启示,激发了更多数学家对圆周率等数学问题的深入研究。
四、结论祖冲之算圆周率的方法体现了古代数学的精髓和智慧。
通过割圆术等技巧,他成功地将圆周率精确到小数点后七位,这一成就不仅在数学领域具有里程碑意义,而且为后世的科学研究提供了重要支撑。
圆周率π的发展史圆周率π的发展史几千年以来,无数著名的数学家对圆周率π的研究倾注了毕生的心血,正如一位英国数学家所说:“这个奇妙的3.14159溜进了每一扇门,冲进了每一扇窗,钻进了每一个烟囱。
”对π的整个研究,可以分为四个阶段:第一阶段:π值早期研究阶段。
代表人物为古希腊的数学家阿基米德、中国大数学家刘徽、祖冲之。
阿基米德是世界上最早进行圆周率计算的。
所以圆周率就用希腊文“圆周”一词的第一个字母“π”表示。
在我国使用的第一个圆周率是3,这个误差极大的值一直沿用到汉朝。
汉朝数学家刘徽将圆周率进一步精确到3.1416。
南北朝数学家祖冲之算至π的值在3.1415926与3.1415927之间,首创用和作为π的近似值,与π的误差小于0.000001。
第二阶段:采用“割圆术”求π值阶段。
1427年,阿拉伯数学家阿尔·卡西把π值算到小数点后面16位。
1573年,德国的鄂图得到了与祖冲之计算相似的值,时间相距一千多年,所以世界上把圆周率称为“祖率”。
1596年,德国数学家卢道夫尽其一生心血将π值求至35位小数。
1630年,德国数学家伯根创造了利用割圆术求π值的最高记录——39位小数。
第三阶段:采用解析法求π值阶段。
1699年,英国数学家夏普求至71位小数。
1706年,英国数学家梅钦求至100位小数。
1844年,德国数学家达泽求至200位小数。
1947年,美国数学家佛格森求至710位小数。
1949年,美国数学家伦奇与史密斯合作求至1120位,创造利用“解析法”求π值的最高记录。
第四阶段:采用计算机求π值阶段。
1949年,美国麦雷米德是世界上第一个采用电子管计算机求圆周率的人,他将π的值求至2037位小数。
1961年,美国数学家伦奇利用电子计算机将其求至100265位小数,这时计算机只须8小时43分就把π的值算到小数10万位了。
1973年,法国数学家纪劳德计算到100万位小数,若把这长得惊人内的数印出来将是一本300余页的书。
圆周率(π)是一个数学常数,表示圆的周长与直径的比例。
从古至今,圆周率一直吸引着无数数学家的关注,他们努力计算它的数值并探索其性质。
以下是一些与圆周率相关的历史故事:1. 古埃及:早在公元前2000年左右,古埃及人就开始使用圆周率的概念。
他们通过测量圆的周长和直径,得出了一个近似的圆周率值。
古埃及数学家阿莫斯(Ahmes)在他的《莱茵德纸草书》中,记录了圆周率的近似值为3.16。
2. 古希腊:古希腊数学家阿基米德(Archimedes)对圆周率的研究做出了重要贡献。
他使用多边形逼近圆的方法,得出了一个介于3.1408和3.1429之间的圆周率近似值。
阿基米德是第一个使用无穷小分割法来研究圆周率的数学家。
3. 印度:公元5世纪,印度数学家阿耶波多(Aryabhata)在《阿耶波多历书》中,给出了圆周率的近似值为3.1416。
他还提出了一个计算圆周率的公式,是第一个将圆周率计算到小数点后几位的人。
4. 伊斯兰世界:在公元8世纪,阿拉伯数学家阿尔·花拉子米(Al-Khwarizmi)通过改进阿基米德的方法,计算出了圆周率的近似值为3.141592653。
他将这个值精确到小数点后9位,这是当时世界上最精确的圆周率计算结果。
5. 欧洲:15世纪,欧洲文艺复兴时期,数学家列奥纳多·达·芬奇(Leonardo da Vinci)和尼科洛·科波尼库斯(Nikolaus Kopernikus)等人对圆周率进行了深入研究。
16世纪,英国数学家约翰·迪伊(John Dee)将圆周率计算到小数点后23位。
6. 电脑时代:20世纪,随着计算机技术的发展,圆周率的计算取得了突破性进展。
1980年,日本数学家金田康正(Kanada Kazushige)使用计算机计算出了圆周率的数值,精确到小数点后100万位。
此后,随着计算机技术的不断发展,圆周率的计算精度不断刷新纪录。
总之,从古至今,圆周率一直吸引着无数数学家的关注。
吹个肥皂泡,泡泡是圆的。
一滴雨珠滴落在地面上,水痕是圆的。
眼珠是圆的,月亮是圆的,天穹仿佛也是圆的。
为了把这个简单的圆搞定,从古至今不知有多少人穷尽了智慧。
但他们的努力并没有白费,今天的小学生都能对它的终极奥秘了如指掌:它就是圆的周长和直径之比——π。
很少有一个数字,它的伟大和精妙,它的神秘和捉摸不清,能够从史前开始,就贯穿了人类数学史,为了算π,古往今来的数学家和工程师们可谓穷尽所学。
那么,我们究竟为什么要费劲儿搞出这么长一串看起来毫无规律的数字呢?没有“边”可算?用“割圆术”试试看3.1415926,数学只要不是体育老师教的,这个π近似值应该都能脱口而出。
这什么水平?放在古代,你已经完爆了绝大部分的数学家了。
远古时期,交通基本靠走,通信基本靠吼,测量靠啥?靠的是实物,精度也就可想而知了。
造个圆的车轱辘都难于上青天。
把π的比率搞到小数点后两位这一点点进步,更是花费了人类不少时间。
公元前1500年,巴比伦人的泥板上,π是25/8,也就是3.125;在古埃及,π是(16/9)2,也就是3.16,大约是用面积反推;古印度的一些典籍里面,π和根号10一样,等于3.162;《九章算术》干脆就直接“周三径一”,π=3.33。
后来,“数学家”这种生物出现了。
世界在他们的眼里,不再是一个个的车轱辘,而是简洁的线条和抽象的规则。
圆溜溜的边没法下手,那我们就拿长得像圆的开刀:六边形比方的“更圆”,八边形比六边形更圆,二百五十六边形从远处看基本就是圆了……这就是所谓“割圆术”的基本思想。
六边形,十二边形......边数再多一点呢?生活在三国时代、为汉代数学典籍《九章算术》做注的刘徽,似乎是参透了“圆出于方”这种玄学之辞。
他研究出来的割圆术,给后世算圆周率的指了一个明路。
“割之弥细,所失弥少,割之又割以至于无可割,则与圆合体而无所失也”。
而且,他采用了双向迫近的方法,相当于给了上限和下限,让结果更加精确。
刘徽自己割出了3072边型,算出了π=3.1416。
圆周率π的发展史圆周率π的发展史几千年以来,无数著名的数学家对圆周率π的研究倾注了毕生的心血,正如一位英国数学家所说:“这个奇妙的3.14159溜进了每一扇门,冲进了每一扇窗,钻进了每一个烟囱。
”对π的整个研究,可以分为四个阶段:第一阶段:π值早期研究阶段。
代表人物为古希腊的数学家阿基米德、中国大数学家刘徽、祖冲之。
阿基米德是世界上最早进行圆周率计算的。
所以圆周率就用希腊文“圆周”一词的第一个字母“π”表示。
在我国使用的第一个圆周率是3,这个误差极大的值一直沿用到汉朝。
汉朝数学家刘徽将圆周率进一步精确到3.1416。
南北朝数学家祖冲之算至π的值在3.1415926与3.1415927之间,首创用和作为π的近似值,与π的误差小于0.000001。
第二阶段:采用“割圆术”求π值阶段。
1427年,阿拉伯数学家阿尔·卡西把π值算到小数点后面16位。
1573年,德国的鄂图得到了与祖冲之计算相似的值,时间相距一千多年,所以世界上把圆周率称为“祖率”。
1596年,德国数学家卢道夫尽其一生心血将π值求至35位小数。
1630年,德国数学家伯根创造了利用割圆术求π值的最高记录——39位小数。
第三阶段:采用解析法求π值阶段。
1699年,英国数学家夏普求至71位小数。
1706年,英国数学家梅钦求至100位小数。
1844年,德国数学家达泽求至200位小数。
1947年,美国数学家佛格森求至710位小数。
1949年,美国数学家伦奇与史密斯合作求至1120位,创造利用“解析法”求π值的最高记录。
第四阶段:采用计算机求π值阶段。
1949年,美国麦雷米德是世界上第一个采用电子管计算机求圆周率的人,他将π的值求至2037位小数。
1961年,美国数学家伦奇利用电子计算机将其求至100265位小数,这时计算机只须8小时43分就把π的值算到小数10万位了。
1973年,法国数学家纪劳德计算到100万位小数,若把这长得惊人内的数印出来将是一本300余页的书。
圆周率的数学发展史圆周率(π)的数学发展史可以分为四个阶段:早期研究阶段、采用割圆术求值阶段、采用解析法求值阶段和采用计算机求值阶段。
1. 早期研究阶段在这个阶段,许多著名的数学家和哲学家对圆周率进行了研究。
古希腊数学家阿基米德(公元前287年-公元前212年)是世界上最早进行圆周率计算的人。
他利用“面积法”将圆周率计算到约为3.1416。
中国古代数学家刘徽(约公元250年)将圆周率精确到3.1416,并在他的著作《九章算术》中提出了割圆术。
祖冲之(公元425年-公元500年)是南北朝时期的著名数学家,他将圆周率计算到小数点后7位,即3.1415926与3.1415927之间,误差小于0.000001。
2. 采用割圆术求值阶段这个阶段以数学家阿尔·卡西(公元1427年)为代表。
他利用割圆术将圆周率计算到17位小数,这是当时世界上最精确的圆周率数值。
此后,许多数学家继续使用割圆术,将圆周率的精度不断提高。
3. 采用解析法求值阶段在这个阶段,数学家们开始使用解析法来计算圆周率。
解析法利用数学公式和无穷级数来逼近圆周率的值。
这个阶段的代表人物有英国数学家威廉·琼斯(1675年-1749年)和法国数学家马赫林·卡米亚(1752年-1822年)。
他们利用级数展开式将圆周率计算到更多的小数位。
4. 采用计算机求值阶段20世纪以来,随着计算机技术的快速发展,数学家们开始使用计算机来计算圆周率。
这个阶段的代表人物有数学家大卫·汉斯波尔(1942年-1990年)和英国数学家艾利斯·理查德·格里菲斯(1945年至今)。
他们领导了圆周率计算的研究,将圆周率计算到数万亿位。
总之,圆周率的数学发展史经历了几千年的演变,无数数学家的努力和研究推动了圆周率计算的精度不断提高。
从古至今,圆周率在数学、物理学等领域发挥着重要作用,是科学发展的关键值。