3
31.3 7% 2
▪ 例:假定投资于某股票,初始价格1 0 0美元,持 有期1年,现金红利为4美元,预期股票价格由如 下三种可能,求其期望收益和方差。
r ( 1 ) ( 1 4 0 1 0 0 4 )/1 0 0 4 4 %
24
25
3.4.3 超额收益与风险溢价
风险资产投资收益=无风险收益+风险溢价
的一半,也就是 ▪ 几何平均值=算术平均值-1/2σ2
3.5.4 方差与标准差
▪ 方差 =期望值偏离的平方(expected value of squared deviations)
▪ 历史数据的方差估计:
2
1 n
n s 1
2
r(s) r
▪ 无偏化处理:
1
n
[r(s)r]2
n1s1
31
3.5.3 报酬-风险比率(夏普比率) The Reward-to-Volatility (Sharpe) Ratio
3.7 偏离正态
▪ 偏度,亦称三阶矩(third-order moments)
skewEr(s)3E(r)3
峰度:度量正态分布两侧尾部的厚度程度。
kurtoEsr(si)s4E(r)43
▪ 正态分布的这个比率为3,正态分布的峰度为0, 任何峰度大于0的分布,相对于正态分布存在厚 尾。
37
图 3.3A 正态与偏度分布 (mean = 6% SD = 17%)
38
图3.3B 正态与厚尾分布 (mean = .1, SD =.2)
39
▪ 在险价值(value at risk, VaR) ▪ 在一定概率下发生极端负收益所造成的损失
。 ▪ VaR即分布的分位数(q),是指一个处在低于