几种重要随机变量的数学期望及方差
- 格式:ppt
- 大小:262.00 KB
- 文档页数:5
第四章 数字特征前面我们介绍了随机变量及其分布,对于一个随机变量,只要知道了它的分布(分布函数或分布律、分布密度),它取值的概率规律就全部掌握了。
但在实际问题中,一个随机变量的分布往往不易得到,且常常只需知道随机变量的某几个特征就够了。
例如检查棉花的质量时,我们关心的是棉花纤维的平均长度和纤维长度与平均长度的偏差大小,这些数字反映了随机变量的一些特性,我们称能够反映随机变量特征的数字为随机变量的数字特征。
本章将介绍几个最常用的数字特征:数学期望、方差、协方差和相关系数。
第一节 数学期望一、离散型随机变量的数学期望数学期望反映的是随机变量取值的集中位置的特征,能够满足这一要求的自然是随机变量的平均取值,那么这个平均取值如何得到呢?怎样定义,我们先看一个例题例1:全班40名同学,其年龄与人数统计如下:该班同学的平均年龄为:4092115201519118⨯+⨯+⨯+⨯=a8.194092140152040151940118=⨯+⨯+⨯+⨯=若令X 表示从该班同学中任选一同学的年龄,则X 的分布律为于是,X 取值的平均值,即该班同学年龄的平均值为4092140152040151940118)(⨯+⨯+⨯+⨯==a X E8.19==∑ii i p x定义1:设X 为离散型随机变量,其分布律为i i p x X P ==}{, ,2,1=i如果级数 绝对收敛,则此级数为X 的数学期望(或均值),记为 E(X),即 ∑=ii i p x X E )(意义:E(X)表示X 取值的(加权)平均值。
如果级数 不绝对收敛,则称数学期望不存在。
例2:甲、乙射手进行射击比赛,设甲中的环数为X1,乙中的环数为X2,已知 X1和X2的分布律分别为:问谁的平均击中环数高?解:甲的平均击中环数为 E(X1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均击中环数为 E(X2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X1)> E(X2),即甲的平均击中环数高于乙的平均击中环数。
常见分布函数的期望和方差
六种常见分布的期望和方差:
1、0-1分布
已知随机变量X,其中P{X=1} = p,P{X=0} = 1-p,其中0 < p < 1,则成X 服从参数为p的0-1分布。
其中期望为E(X)= p,方差D(X)= p(1-p)。
2、二项分布
n次独立的伯努利实验(伯努利实验是指每次实验有两种结果,每种结果概率恒定,比如抛硬币)。
其中期望E(X)= np,方差D(X)= np(1-p)。
3、泊松分布
其概率函数为P{X=k}=λ^k/(k!e^λ) k=0,1,2…...k代表的是变量的值。
其中期望和方差均为λ。
4、均匀分布
若连续型随机变量X具有概率密度,则称X在(a,b)上服从均匀分布。
其中期望E(X)= (a+b)/ 2 ,方差D(X)= (b-a)^2 / 12。
5、正态分布
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。
当μ= 0,σ= 1时的正态分布是标准正态分布。
其中期望是u,方差是σ的平方。
6、指数分布
若随机变量x服从参数为λ的指数分布,则记为X~E(λ)。
其中期望是E(X)=1/λ,方差是D(X)=1/λ。
第9讲 随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。
2.熟练能计算随机变量的数学期望与方差。
教学重点:1.随机变量的数学期望2.随机变量函数的数学期望3.数学期望的性质4.方差的定义5.方差的性质教学难点:数学期望与方差的统计意义。
教学学时:2学时。
教学过程:第三章 随机变量的数字特征§3.1 数学期望在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。
然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。
因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。
1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。
车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。
这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯ 这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。
对于一个随机变量X ,若它全部可能取的值是Λ,,21x x , 相应的概率为 Λ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。
但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k k p x由此引入离散随机变量数学期望的定义。
定义1 设X 是离散随机变量,它的概率函数是Λ ,2 ,1,)()(====k P x X P x p K K k如果 ∑∞=1||k k k p x 收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。