八年级数学下册 计算题专项训练 课时作业本 苏科版
- 格式:doc
- 大小:120.50 KB
- 文档页数:4
课时作业(二十六)[10.3 分式的加减]一、选择题 1.2020·天津 计算aa +1+1a +1的结果为( ) A .1 B .a C .a +1 D.1a +12.·淄博 化简a 2a -1-1-2a 1-a的结果为( ) A.a +1a -1B .a -1C .aD .1 3.已知x ≠0,则1x +12x -13x 等于( )A.56x B.76x C.116x D.136x4.下列运算中正确的是( ) A.a a -b -b b -a =1 B.m a -n b =m -na -bC.a 2a -b -b 2a -b=a +b D.b a -b +1a =1a5.计算2x x 2+2x -x -6x 2-4的结果为( ) 链接听课例2归纳总结 A.1x 2-4 B.1x 2+2xC.1x -2 D.x -6x -26.若xy =x -y ≠0,则分式1y -1x等于( )A.1xyB .y -xC .1D .-17.若方程Ax -3+B x +4=2x +1(x -3)(x +4),则A ,B 的值分别为( ) A .2,1 B .1,2 C .1,1 D .-1,-1 二、填空题8.2020·衢州 计算:2x x +1+1-x x +1=________. 9.2020·衡阳 化简:x 2+2x +1x +1-x 2+xx=________.10.当x =12时,式子x 2-1x 2-x-1=__________.11.已知m +n =2,mn =-5,则m n +n m的值为________. 三、解答题 12.计算:(1)a -3b a -b +a +ba -b;链接听课例1归纳总结 (2)1a +b +1a -b -2b a 2-b 2; (3)4a +2-a -2.链接听课例2归纳总结探究题 ·泰兴期末 探索:(1)如果3x +4x +1=3+mx +1,则m =________;(2)如果5x -3x +2=5+mx +2,则m =________;总结:如果ax +b x +c =a +mx +c(其中a ,b ,c 为常数),则m =________. 应用:利用上述结论解决:若代数式4x -3x -1的值为整数,求满足条件的整数x 的值.详解详析 课时作业(二十六) [10.3 分式的加减]【课时作业】 [课堂达标]1.[解析] A 根据同分母分式的加法法则“分母不变,分子相加”可得,原式=a +1a +1=1.故选A .2.[解析] B 原式=a 2a -1+1-2a a -1=(a -1)2a -1=a -1.故选B .3.[答案] B4.[解析] C A .a a -b -b b -a =a +b a -b ,故该选项错误;B .m a -n b =mb -naab ,故该选项错误;C .a 2a -b -b 2a -b =a +b ,故该选项正确;D .b a -b +1a =-1a,故该选项错误.故选C . 5.[答案] C6.[解析] C 原式=x -y xy =1.故选C .7.[解析] C 通分,得Ax +4A +Bx -3B (x -3)(x +4)=2x +1(x -3)(x +4),得(A +B)x +(4A -3B)=2x +1. 由相等项的系数相等,得⎩⎪⎨⎪⎧A +B =2,4A -3B =1,解得⎩⎪⎨⎪⎧A =1,B =1.故选C . 8.[答案] 1[解析] 2x x +1+1-x x +1=2x +1-x x +1=x +1x +1=1.9.[答案] 0[解析] x 2+2x +1x +1-x 2+x x =(x +1)2x +1-x (x +1)x =x +1-x -1=0.10.[答案] 2[解析] 先化简,再求值.x 2-1x 2-x -1=(x +1)(x -1)x (x -1)-1=x +1x -1=x +1-x x =1x .将x =12代入,得原式=112=2.11.[答案] -145[解析] m n +n m =m 2+n 2mn =(m +n )2-2mn mn =22-2×(-5)-5=-145.12.解:(1)原式=a -3b +a +b a -b =2a -2b a -b =2(a -b )a -b=2.(2)原式=a -b (a +b )(a -b )+a +b (a +b )(a -b )-2b(a +b )(a -b )=a -b +a +b -2b(a +b )(a -b )=2(a -b )(a +b )(a -b )=2a +b. (3)4a +2-a -2=4a +2-(a +2)=4a +2-a +21=4-(a +2)2a +2=4-a 2-4a -4a +2=-a 2+4a a +2. [素养提升]解:探索:(1)将已知等式整理,得3x +4x +1=3+m x +1=3x +3+mx +1,即3x +4=3x +3+m ,解得m =1.(2)将已知等式整理,得5x -3x +2=5+m x +2=5x +10+mx +2,即5x -3=5x +10+m , 解得m =-13. 总结:m =b -ac.应用:4x -3x -1=4(x -1)+1x -1=4+1x -1,∵x 为整数且代数式4x -3x -1的值为整数,∴x -1=±1, ∴x =2或0.。
2022年苏科版八年级数学下册课时同步练习(全册)第七单元第1课时普查与抽样调查一、选择题1.下列调查中,最适合采用普查方式的是( )A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查2.下列调查中,适合用普查方式的是( )A.了解一批炮弹的杀伤半径B.了解湘潭市每天的流动人口数C.了解一本100页书稿的错别字个数D.了解石家庄市居民的日平均用水量3.以下问题,不适合用普查的是( )A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解某班学生的课外活动时间D.了解一批灯泡的使用寿命4.下列调查适合用抽样调查的是( )A.审查书稿有哪些科学性错误B.了解一个打字训练班学员的训练成绩是否都达到了预定训练目标C.要考察一个班级的学生对建立班级生物角的看法D.要考察人们对保护海洋的意识5.下列情况,适合用抽样调查的是( )A.了解某校飞行学员视力的达标率B.了解某校考生的中考录取率C.了解某班40名同学的身高情况D.了解一批种子的成活率6.对于范围较大的调查对象可以采用抽样调查的方法,下列适合用抽样调查的是( ) A.调查本班学生的近视率B.调查某校学生的男女比例C.了解全国七年级学生的平均身高D.人口普查7.下列调查中,适合用抽样调查方式的是( )A.了解全班学生某次考试的情况B.调查某一品牌5万袋包装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班学生100 m短跑的成绩8.要了解自来水厂的水中所含矿物质情况,所采用调查方法是( )A.普查B.抽样调查C.普查或抽样调查D.以上答案都不对9.下列采用的调查方式中,不合适的是( )A.为了了解全国中学生的身高状况,采用抽样调查的方式B.对载人航天器“神舟”六号零部件的检查,采用普查的方式C.医生要了解某病人体内含有病毒的情况,需抽血进行化验,采用普查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式二、填空题10.为了检测某型号导线的抗拉强度,现随机抽取几段进行检测,在这次检测中,采用的调查方式是________.11.为了了解一批白炽灯的使用寿命,只能采用抽样调查方式进行,这是由于______________________.12.为了获得较为准确的调查结果,抽样调查时要注意所选取的样本要具有__________________.13.在下列问题中为了得到数据是采用普查还是抽样调查?(1)为了买校服,了解每个学生衣服的尺寸;(2)某养鱼专业户欲了解鱼塘中鱼的平均质量;(3)商检人员在某超市检查出售的饮料的合格率;(4)某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查.第七单元第2课时统计图、统计表的选用一、选择题1.扇形统计图中,所有扇形表示的百分比之和为 ( )A.大于1B.小于1C.等于1D.不确定2.如图是某班学生最喜欢的球类活动情况的统计图,则下列说法不正确的是( )A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为53.某校学生来自甲、乙、丙三个社区,其人数比例为3∶4∶5,如图所示的扇形统计图表示上述分布情况,那么表示乙社区的扇形的圆心角度数为 ( )A.100°B.110°C.120°D.135°4.某校图书管理员整理阅览室的书籍时,将其中甲、乙、丙三类书籍的数量信息制成如图所示的不完整的统计图,已知甲类书有45本,则丙类书有______本.5.某校学生参加体育兴趣小组情况的统计图如图所示.若参加人数最少的小组有25人,则参加人数最多的小组有 ( )A.25人B.35人C.40人D.100人6.7.从如图所示的两个统计图中,可看出女生人数较多的是()A.七年级(1)班B.七年级(2)班C.两班一样多D.不能确定二、解答题1.近年来,随着创建“生态文明城市”活动的开展,某市的社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来该市各景点旅游的人数做了一次抽样调查,并将调查结果绘制成如图所示的不完整的统计表和统计图.(1)此次共调查_____人,并补全条形统计图;(2)根据上表提供的数据制作扇形统计图.2.七年级(1)班的两名学生对本班的一次数学成绩(分数取整数,满分为100分)进行了初步统计,看到80分以上(含80分)的有17人,但没有满分,也没有低于30分的学生.为更清楚地了解本班的数学成绩,他们分别用频数直方图和扇形统计图进行了统计分析,如图1和图2所示.请根据图中提供的信息解答下列问题.(1)该班共有多少学生参加了这次数学考试?(2)补全频数直方图中空缺的两处,并将扇形统计图中一处未填的百分比填上.(3)数学成绩在85~90分的学生有多少人?第七单元第3课时频数和频率一、选择题1.在画频数直方图时,一组数据的最小值为149,最大值为172.若确定组距为3,则分成的组数是 ( )A.8B.7C.6D.52.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是 ( )A.2~4 hB.4~6 hC.6~8 hD.8~10 h3.某班有64名学生,在一次外语测试中,分数只取整数,统计其成绩,并绘制出如图所示的频数直方图,从左到右小长方形的高度之比是1∶3∶6∶4∶2,则分数在70.5到80.5之间的学生有_____名.4.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25二、填空题6.已知某组数据的频数为25,样本容量为100,则这组数据的频率是.7.某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为.8.一组数据共分5组,第一、二、三组共有250个频数,第三、四、五组共有230个频数,若第三组的频率为0.25,则这组数据的总频数为个.9.一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有人.10.将一批数据分成5组,列出频率分布表,其中第一组与第五组的频率之和是0.27,第二与第四组的频率之和是0.54,那么第三组的频率是.11.一个样本最大值为143,最小值为50,取组距为10,则可以分成组.三、解答题12.中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(第17题图)(1)此次抽样调查中,共调查了名中学生家长;(2)先求出C类型的人数,然后将图1中的折线图补充完整;(3)根据抽样调查结果,请你估计该市区6000名中学生家长中有多少名家长持反对态度?13.某校学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.第七单元第4课时频数分布表与频数分布直方图一.选择题1.一个容量为40的样本最大值为35,最小值为12,取组距为4,则可以分为()A.4组B.5组C.6组D.7组2.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.33.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是()A.0.2 B.0.17 C.0.33 D.0.145.某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有()A.6人B.8个C.14个D.23个6.在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为()A.60,1 B.60,60 C.1,60 D.1,17.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6二.填空题8.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是.9.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.10.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有个.三.解答题11.如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(1)第五小组频率是多少?(2)参加本次测试的学生总数是多少?(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?12.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 a1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.第八单元第1课时确定事件与随机事件一、选择题1. 下列说法正确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2. 一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球3.下列说法正确的是( )A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4. 在不透明的袋中装有除颜色外,其余均相同的红球和黑球各一个,从中摸出一个球恰为红球的概率与一枚均匀硬币抛起后落地时正面朝上的概率的大小关系是( )A.摸出红球的概率大于硬币正面朝上的概率B.摸出红球的概率小于硬币正面朝上的概率C.相等D.不能确定5.下列说法正确的是( )A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面.6. 下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在 6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在 6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A.1个 B.2个 C.3个 D.4个7. 掷一枚均匀的骰子,2点向上的概率是_______,7点向上的概率是_______.8. 下面4个说法中,正确的个数为_______.(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大.(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红没有把握,所以小张说:“从袋中取出一只红球的概率是50%”.(3)小李说“这次考试我得90分以上的概率是200%”.(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小.9. 如图是小明和小颖共同设计的自由转动的十等分转盘,上面写有10个有理数.(1)求转得正数的概率.(2)求转得偶数的概率.(3)求转得绝对值小于6的数的概率.10. 一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现在再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.第八单元第2课时可能性大小一、单选题1.气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是( )A. 本市明天将有30%的地区水B. 本市明天将有30%的时间降水C. 本市明天有可能降水D. 本市明天肯定不降水2.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A. 点数为3的倍数B. 点数为奇数C. 点数不小于4D. 点数不大于43.一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是( )A. 摸出的是红球B. 摸出的是黑球C. 摸出的是绿球D. 摸出的是白球4.一个不透明的盒子中装有2个红球、3个白球和2个黄球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大()A. 红色B. 白色C. 黄色D. 红色和黄色5.袋子中有黑球3个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A. 2个B. 不足3个C. 3个D. 4个或4个以上6.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ).A. 得到的数字和必然是4B. 得到的数字和可能是3C. 得到的数字和不可能是2D. 得到的数字和有可能是17.下列说法中,完全正确的是()A. 打开电视机,正在转播足球比赛B. 抛掷一枚均匀的硬币,正面一定朝上C. 三条任意长的线段都可以组成一个三角形D. 从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大8.投掷一枚普通的正方体骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2,这些事件发生的可能性由大到小排列正确的是( ).A. ①②③④B. ④③②①C. ③④②①D.②③①④9.下列有四种说法:①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件。
八年级下册数学课时作业本苏科版示例文章篇一:《探索八年级下册苏科版数学课时作业本》嘿,小伙伴们!今天咱们来聊聊八年级下册苏科版的数学课时作业本。
这可就像我们在数学海洋里航行的一艘小船,带着我们驶向知识的彼岸呢。
我一翻开这本作业本,就像打开了一个充满挑战和惊喜的宝藏盒子。
里面的题目各种各样,有的就像小怪兽,看起来有点吓人,但只要我们找到方法,就能轻松打败它。
比如说那些关于分式的题目,刚开始我瞅着那些分式,就像看着一堆乱麻,完全不知道从哪儿下手。
可是,当我认真听老师在课堂上讲了分式的基本性质和运算规则后,再回来做这些题目,就感觉像是给乱麻找到了线头,一下子就顺溜了。
有一次,我和同桌一起做这本作业本上的一道几何证明题。
那题目是让我们证明两个三角形全等。
我在这边抓耳挠腮,又是画辅助线,又是翻书找定理的。
同桌呢,他就比较冷静,他说:“你看啊,这两个三角形,这条边和那条边相等,这个角和那个角也相等,这就像是两块一模一样的拼图碎片啊,肯定能证明全等的。
”我一听,哎,还真是这么个理儿。
我们就你一言我一语地讨论起来,就像两个小侦探在破解一个神秘案件一样。
最后,我们成功地把那道题解出来了,那种感觉就像打了一场胜仗,超级开心。
再说说里面关于二次根式的题目。
二次根式就像是数学世界里的一种特殊符号魔法。
有时候,题目里的二次根式长得很复杂,就像一个长满刺的刺猬,让我们不敢靠近。
但是,当我们把那些根式化简的规则记熟了,就像找到了给刺猬拔刺的方法,它就变得温顺起来了。
比如说,有一道题是让我们计算一个复杂的二次根式表达式的值。
我一开始看到那个式子,心里就想:“这可咋算啊?”可是我想起老师说的先把能化简的部分化简,我就慢慢一步一步地做。
化简完之后,发现其实很简单,就像把一个包装得很复杂的小礼物打开,里面是一个很可爱的小玩意儿。
这本作业本里还有很多关于数据统计的题目呢。
这就像是我们在当一个小小的数据管理员。
我们要收集数据、整理数据,然后分析数据。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练9.4矩形菱形正方形一、选择题1.菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角2.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=()A.90°B.45°C.30°D.22.5°3.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()A. B. C. D.4.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对5.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM 的长为()A.2B.3C.2D.16.下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形7.小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④8.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形9.如图,把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.62B.6C.32D.3+3210.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.3B.23C.26D.6二、填空题11.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于.12.把正方形ABCD沿对边中点所在直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM=.13.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D 作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.14.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.15.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.16.如图,四边形ABCD是边长为3的正方形,∠BDC的平分线DE交BC于点E,点M、点N分别是CD和DE上的动点,连接AM,则当MN+CN的值最小时,AM =.三、解答题17.如图,在正方形ABCD中,BC=2,E是对角线BD上的一点,且BE=AB.求△EBC的面积.18.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.19.如图,在正方形ABCD中,F为DC的中点,E为BC上一点,BC=4CE.求证:AF⊥FE.20.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.21.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=150.(1)求证:DF+BE=EF;(2)求∠EFC的度数;(3)求△AEF的面积.答案1.C2.D3.D.4.C5.B6.D.7.D8.B.9.A10.B11.65°.12.3.13.7.14.2﹣1.15.2﹣1.16.326.17.解:作EF⊥BC于F,如图所示:则∠EFB=90°,∵四边形ABCD是正方形,∴AB=BC=2,∠DAB=∠ABC=90°,∴∠ABD=∠DBC=12∠ABC=45°,∴△BEF是等腰直角三角形,∴EF=BF,∵BE=AB,∴BE=BC=2,∴EF=BF=22BE=2,∴△EBC的面积=12BC•EF=12×2×2=2.18.证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.19.证明:连接AE,设正方形的边长为4a.在Rt△ADF中,AD=4a,DF=2a,据勾股定理得,AF2=AD2+DF2,解得AF2=20a2.在Rt△ABE中,AB=4a,BE=3a,据勾股定理得,AE2=AB2+BE2,解得AE2=25a2.在Rt△ECF中,FC=2a,CE=a,据勾股定理得,EF2=CF2+CE2,解得EF2=5a2.∴AE2=AF2+EF2,∴AF⊥FE.20.证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.21.解:(1)延长EB至G,使BG=DF,连接AG,∵正方形ABCD,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=75°,∵∠DFA=90°﹣∠DAF=75°,∴∠EFC=180°﹣∠DFA﹣∠AFE=180°﹣75°﹣75°=30°,∴∠EFC=30°(3)∵AB=BC=3,∠BAE=30°,∴BE=1,CE=3﹣1,∵∠EFC=30°,∴CF=3﹣3,∴S△CEF=12CE•CF=23﹣3,由(1)知,△ABG≌△ADF,△FAE≌△GAE,∴S△AEF =S正方形ABCD﹣S△ADF﹣S△AEB﹣S△CEF=S正方形ABCD﹣S△AEF﹣S△CEF,S△AEF =12(S正方形ABCD﹣S△AEF﹣S△CEF)=3﹣ 3.。
八年级下册数学课时作业本答案05网苏教版1、若3x+4y-5=0,则8?·16?的值是( ) [单选题] *A. 64B. 8C. 16D. 32(正确答案)2、47.已知(x﹣2021)2+(x﹣2023)2=50,则(x﹣2022)2的值为()[单选题]* A.24(正确答案)B.23C.22D.无法确定3、x? ?1·()=x? ?1,括号内应填的代数式是( ) [单选题] *A. x? ?1B. x? ?1C. x2(正确答案)D. x4、下列是具有相反意义的量是()[单选题] *A.身高增加1cm和体重减少1kgB.顺时针旋转90°和逆时针旋转45°(正确答案)C.向右走2米和向西走5米D.购买5本图书和借出4本图书5、43、长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为[单选题] *A.1B.2C.3(正确答案)D.46、25.{菱形}∩{矩形}应()[单选题] *A.{正方形}(正确答案)B.{矩形}C.{平行四边形}D.{菱形}7、null8、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)9、第三象限(正确答案)第四象限10、已知sina<0且cota>0,则是()[单选题] *、第一象限角B、第一象限角C、第三象限角(正确答案)D、第四象限角11、17.已知的x∈R那么x2(x平方)>1是x>1的()[单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充分必要条件D.既不充分也不必要条件12、若2?=a2=4 ?,则a?等于( ) [单选题] *A. 43B. 82C. 83(正确答案)D. 4?13、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)14、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)15、7人小组选出2名同学作正副组长,共有选法()种。
八年级下册数学课时作业本答案2021苏科版05 1、在0°~360°范围中,与-120°终边相同的角是()[单选题] *240°(正确答案)600°-120°230°2、23.最接近﹣π的整数是()[单选题] *A.3B.4C.﹣3(正确答案)D.﹣43、两数之和为负数,则这两个数可能是? [单选题] *A.都是负数B.0和负数(正确答案)C.一个正数与一个负数D.一正一负或同为负数或0和负数4、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 125、28.下列计算结果正确的是()[单选题] * A.(a3)4=a12(正确答案)B.a3?a3=a9C.(﹣2a)2=﹣4a2D.(ab)2=ab26、函数式?的化简结果是()[单选题] *A.sinα-cosαB.±(sinα-cosα)(正确答案)C.sinα·cosαD.cosα-sinα7、下列说法错误的是[单选题] *A.+(-3)的相反数是3B.-(+3)的相反数是3C.-(-8)的相反数是-8(正确答案)C.-(+八分之一)的相反数是88、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案) C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.9、6.方程x2=3x的根是()[单选题] *A、x = 3B、x = 0C、x1 =-3, x2 =0D、x1 =3, x2 = 0(正确答案)10、-330°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限11、-120°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限12、4.﹣3的相反数是()[单选题] *A.BC -3D 3(正确答案)13、20.下列说法正确的是()[单选题] * A.符号相反的两个数互为相反数B.一个数的相反数一定是正数C.一个数的相反数一定比这个数本身小D.一个数的相反数的相反数等于原数(正确答案) 14、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 615、2.线段是由线段平移得到的,点的对应点为,则点的对应点的坐标为()[单选题] *A.(2,9)B(5,3)C(1,2)(正确答案)D(-9,-4)16、7. 3位同学准备去学校饭堂吃午饭,学校饭堂有2个,则不同的去法共有( )种.[单选题] *A. 2+3=5种B.2×3=6种C.3×3=9种D.2×2×2=8种(正确答案)17、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.35518、41、将一个三角形纸片剪开分成两个三角形,这两个三角形不可能是()[单选题]* A.都是锐角三角形(正确答案)B.都是直角三角形C.都是钝角三角形D.是一个直角三角形和一个钝角三角形19、18.下列说法正确的是()[单选题] *A.“向东10米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6℃,记为-6℃,那么+8℃的意义就是下降8℃D.若将高1米设为标准0,高20米记作+20米,那么-05米所表示的高是95米(正确答案)20、? 是第()象限的角[单选题] *A. 一(正确答案)B. 二C. 三D. 四21、从3点到6点,时针旋转了多少度?[单选题] *60°-90°(正确答案)-60°90°22、5.已知集合A={x|x=3k+1,k∈Z},则下列表示不正确的是( ) [单选题] * A.-2∈AB.2 022?AC.3k2+1?A(正确答案)D.-35∈A23、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、424、4. 下列命题中,是假命题的是()[单选题] *A、两点之间,线段最短B、同旁内角互补(正确答案)C、直角的补角仍然是直角D、垂线段最短25、12.下列方程中,是一元二次方程的为()[单选题] *A. x2+3xy=4B. x+y=5C. x2=6(正确答案)D. 2x+3=026、下列各式与x3? ?2相等的是( ) [单选题] *A. (x3) ? ?2B. (x ? ?2)3C. x2·(x3) ?(正确答案)D. x3·x ?+x227、x+2=3的解为()[单选题] *A. x=1(正确答案)B. x=2C. x=3D. x=428、42.已知m、n均为正整数,且2m+3n=5,则4m?8n=()[单选题] *A.16B.25C.32(正确答案)D.6429、10.下列各数:5,﹣,03003,,0,﹣,12,1010010001…(每两个1之间的0依次增加1个),其中分数的个数是()[单选题] *A.3B.4(正确答案)C.5D.630、7.把点平移到点,平移方式正确的为()[单选题] *A.先向左平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度(正确答案)。
§10.5分式方程(1)一、选择题:1.下列式子是分式方程的是( )()A 14-x ()B 3321-=+x x ()C x x x 31211=+-- ()D ()132-=-x x π2.把分式方程x x 142=+转化为一元一次方程时,方程两边需同乘以( ) ()A x ()B x 2 ()C 4+x ()D ()4+x x3.将分式方程112=+-x x x 化成整式方程,正确的是( ) ()A ()1122=-+x x ()B ()1122=++x x()C ()()1122+=-+x x x x ()D ()()1122+=+-x x x x4.分式方程xx x -=--23252的解是( ) ()A 2-=x ()B 2=x ()C 1=x ()D 1-=x5.对于分式方程3233x x x =+--有以下几种说法:①最简公分母为()23x -;②转化为整式方程23x =+,解得5x =;③原方程的解为3x =;④原方程无解,其中正确的说法的个数为( )()A 4个 ()B 3个 ()C 2个 ()D 1个二、填空题:6.已知1=x 是分式方程x k x 311=+的根,则实数________=k 。
7.方程4112=-+xx 的解为 。
8.若分式方程xx x a --=+-3473有增根,则增根是 。
9.关于x 的方程xm x x -=--223无解,则_________=m 。
10.已知关于x 的方程323-=--x m x x 有一个正数解,则m 的取值范围是 。
三、解方程:⑴2536111x x x -=+-- ⑵2631132-=--x x一、选择题:1.()C ;2.()D ;3.()C ;4.()C ;5.()D ;二、填空题:6.61=k ;7.21=x ;8.3=x ;9.1=m ;10.6<m 且3≠m 三、解答题: ⑴无解;⑵21=x。
专题10.5 分式的混合运算专项训练【苏科版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对分式的混合运算各种方法的理解!1.(2023上·山东菏泽·八年级统考期中)计算: (1)3x −61−x −x+5x 2−x(2)x−yx+3y ÷x 2−y 2x 2+6xy+9y 2−2yx+y2.(2023上·天津东丽·八年级统考期末)计算 (1)4a3b ⋅b2a 4÷(1a )2(2)aa−1÷a 2−aa 2−1−1a−13.(2023上·山东菏泽·八年级统考期末)计算 (1)12m 2−9−2m−3(2)(2a −12aa+2)÷a−4a 2+4a+44.(2023下·江苏常州·八年级校考期中)计算: (1)2x+y −1x−y . (2)(1−1m+1)÷m 2m+1. 5.(2023下·江苏常州·八年级统考期中)计算: (1)4ac 3b⋅(−6b 22ac 2)(2)a+2a−3÷a 2−42a−6 (3)x 23x−9−3x−3(4)(4a+2+a −2)÷aa+26.(2023下·河南南阳·八年级统考期中)计算: (1)2x−6x 2−6x+9÷3−xx 2−9(2)(8a+3+a−3)÷a2+2a+1a+37.(2023下·江苏淮安·八年级校考期中)计算:(1)a2a−1−a−1(2)(a+2−42−a )÷(aa−2)8.(2023上·山东泰安·八年级统考期中)计算(1)xx−1−x2+2xx2−2x+1÷x+2x;(2)(a+2a−2−aa+2)÷3a+2a2+2a.9.(2023上·山东烟台·八年级统考期中)计算:(1)b2ca ×acb÷(−ca)2(2)a2−4a ÷(a+1−5a−4a)10.(2023上·山东东营·八年级校考期中)计算下列各式.(1)(−a2bc )3⋅(−c2a)2÷(bca)4;(2)a2a−1−a−1.11.(2023上·河南许昌·八年级统考期末)计算:(3xx−1−xx+1)⋅x2−1x+112.(2023上·重庆沙坪坝·八年级重庆一中校考阶段练习)计算:(1)(x−y)2−x(x−3y)(2)m2−25m+3÷(1−8m+3)13.(2023上·山东菏泽·八年级统考期中)计算(1)4x22x−3+93−2x(2)3b24a2⋅(a−6b)(3)xx−1−x+3x2−1⋅x2+2x+1x+3(4)(1x−4+1x+4)÷2x2−1614.(2023下·重庆南岸·八年级统考期末)计算:(1)a−ba+b ÷a2−aba3−ab2;24.(2023下·江苏淮安·八年级统考期末)先化简,再求值:当a =2时,求代数式(a −aa+1)÷a 2−2a a 2−4×1a+2的值.25.(2023上·四川绵阳·八年级校联考阶段练习)先化简,再求值:(2x+2x 2−1+1)÷x+1x 2−2x+1,其中x =426.(2023上·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考期末)(1)计算:[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3; (2)先化简,再求值:(a 2a−1−a −1)÷a−a 2a 2−2a+1,其中a =2.27.(2023上·吉林白山·八年级统考期末)先化简,再求值:1﹣x−2y x+y ÷x 2−4xy+4y 2x 2−y 2,其中x =﹣2,y =12.28.(2023上·广东惠州·八年级统考期末)已知A =xy−y 2y 2−x 2÷(1x−y−1x+y).(1)化简A ;(2)当x 2+y 2=13,xy =−6时,求A 的值;(3)若|x −y |+√y +2=0,A 的值是否存在,若存在,求出A 的值,若不存在,说明理由. 29.(2023上·山东泰安·八年级统考期中)(1)计算:3x(x−3)2−x3−x (2)计算:(x+1x 2−1+xx−1)÷x+1x 2−2x+1 (3)先化简,再求值: 已知ab =3,求a 2+4ab+4b 2a−b ÷(3b 2a−b−a −b)的值.30.(2023上·山东潍坊·八年级统考期中)计算: (1)a a+1+a−1a 2−1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1;(3)先化简再求值:(1−3x+2)÷x−1x 2+x−2,其中x 是﹣2,1,2中的一个数值. 31.(2023上·吉林白城·八年级统考期末)先化简,再求值:x 2−1x 2−2x+1÷x+1x−1·1−x1+x ,其中x =12.32.(2023上·山东烟台·八年级统考期中)先化简(a 2−4a+4a 2−4﹣aa+2)÷a−1a+2,再从a ≤2的非负整数解中选一个适合的整数代入求值.33.(2023下·江苏盐城·八年级东台市三仓镇中学校考期中)先化简,再求值: x 2−1(x−1)2÷x 2+x x−1+2x ,其中x为你喜欢的一个使原式有意义的整数.34.(2023上·四川泸州·八年级统考期中)先化简,再求值:(3a+1−a+1)÷a2−4a+4a+1,其中a=4.60.(2023上·北京昌平·八年级校考期中)先化简,再求值:xx2−1⋅(x−1x−2),其中x(x+1)=2(x+1).36.(2023下·湖南郴州·八年级校考期中)先化简,再求值:(x2x−1+91−x)÷x+3x−1,x在1,2,-3中选取适当的值代入求值.37.(2023上·浙江杭州·八年级统考期中)先化简,再求值:(4x+6x2−1−2x−1)÷x+2x2−2x+1,其中是不等式组{x+4>01−2x>3的整数解.38.(2023上·重庆·八年级西南大学附中校考期中)先化简,再求值:(2a−2−6a2−2a)÷a2−6a+9a−2,其中a满足2a2−6a+3=0.39.(2023上·山东聊城·八年级校考期末)(1)计算:(x2−4x+4x2−4−xx+2)÷x−1x+2(2)先化简a 2−2aa2−1÷(2a−1a−1−a−1),然后从−2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.40.(2023上·山东滨州·八年级统考期末)(1)计算:3(x−1)(x+2)−xx−1+1;(2)先化简,再求值:a−1a2−4a+4÷(1+1a−2),请从1,2,3中选一个合适的数作为a的值,代入求值.专题10.5 分式的混合运算专项训练【苏科版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对分式的混合运算各种方法的理解!1.(2023上·山东菏泽·八年级统考期中)计算:(1)3x −61−x−x+5x2−x(2)x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y【答案】(1)8x(2)1【分析】(1)先对各个分式分子分母因式分解,再通分,利用分式加减运算法则运算后约分即可得到答案;(2)先对各个分式分子分母因式分解,根据分式混合运算顺序,先计算乘除,再利用分式加减运算法则运算后约分即可得到答案.【详解】(1)解:3x −61−x−x+5x2−x=3(x−1)x(x−1)+6xx(x−1)−x+5x(x−1)=8x−8x(x−1)=8(x−1)x(x−1)=8x;(2)解:x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y=x−yx+3y ⋅(x+3y)2(x+y)(x−y)−2yx+y=x+3yx+y −2yx+y=x+yx+y=1.【点睛】本题考查分式混合运算,涉及通分、约分、因式分解等知识.掌握分式混合运算法则及运算顺序,熟记因式分解的方法,准确找到最简公分母通分是解决分式混合运算的关键. 2.(2023上·天津东丽·八年级统考期末)计算 (1)4a3b ⋅b2a 4÷(1a )2(2)a a−1÷a 2−a a 2−1−1a−1【答案】(1)23a;(2)aa−1【分析】(1)先将除法写成乘法,再计算乘法,分子、分母约分化为最简分式; (2)先将除法写成乘法,计算乘法得到最简分式,再与后一项相减即可得到答案. 【详解】(1)原式=4a3b ⋅b2a 4⋅a 2=23a ; (2)原式=a a−1⋅(a+1)(a−1)a(a−1)−1a−1=a+1a−1−1a−1=aa−1.【点睛】此题考查分式的混合运算,先将除法化为乘法,再约分结果,再计算加减法. 3.(2023上·山东菏泽·八年级统考期末)计算 (1)12m 2−9−2m−3(2)(2a −12aa+2)÷a−4a 2+4a+4 【答案】(1)−2m+3 (2)2a 2+4a【分析】(1)通分计算即可; (2)先通分算减法,再算除法. 【详解】(1)解:原式=12−2(m+3)(m+3)(m−3)=−2(m −3)(m +3)(m −3)=−2m+3; (2)解:原式=[2a(a+2)a+2−12aa+2]⋅(a+2)2a−4=2a 2+4a −12a a +2⋅(a +2)2a −4=2a 2−8a a +2⋅(a +2)2a −4=2a(a −4)a +2⋅(a +2)2a −4=2a(a +2)=2a 2+4a ,【点睛】此题考查分式的混合运算,通分、因式分解和约分是解答的关键. 4.(2023下·江苏常州·八年级校考期中)计算: (1)2x+y −1x−y . (2)(1−1m+1)÷m 2m+1. 【答案】(1)x−3y x 2−y 2(2)1m【分析】(1)根据异分母分式减法运算法则,先通分,再根据同分母分数减法运算求解即可得到答案; (2)根据分式混合运算法则及运算顺序,先算括号里的异分母分式减法运算,再利用乘除互化将除法转化为乘法运算求解即可得到答案. 【详解】(1)解:2x+y −1x−y=2(x −y )(x +y )(x −y )−x +y(x +y )(x −y )=2x −2y −x −y(x +y )(x −y )=x −3y(x +y )(x −y )=x−3y x 2−y 2;(2)解:(1−1m+1)÷m 2m+1=(m +1m +1−1m +1)÷m 2m +1=m +1−1m +1×m +1m 2=m m +1×m +1m 2=1m .【点睛】本题考查分式混合运算,涉及分式加减乘除运算、通分、约分等知识,熟练掌握分式混合运算法则及运算顺序是解决问题的关键.5.(2023下·江苏常州·八年级统考期中)计算:(1)4ac3b ⋅(−6b22ac2)(2)a+2a−3÷a2−42a−6(3)x23x−9−3x−3(4)(4a+2+a−2)÷aa+2【答案】(1)−4bc(2)2a−2(3)x+33(4)a【分析】(1)根据分式的乘法运算法则进行计算即可得到答案;(2)先将分式除法变为乘法,再根据分式的乘法运算法则和平方差公式进行计算即可得到答案;(3)先进行通分,再计算分式减法,最后利用平方差进行约分即可得到答案;(4)先计算括号内,再计算分式的除法即可得到答案.【详解】(1)解:4ac3b ⋅(−6b22ac2)=−4bc;(2)解:a+2a−3÷a2−42a−6=a+2a−3×2(a−3)(a+2)(a−2)=2a−2;(3)解:x 23x−9−3x−3=x23(x−3)−3×33(x−3)=x2−93(x−3)=(x+3)(x−3)3(x−3)=x+33;(4)解:(4a+2+a−2)÷aa+2=(4a+2+(a−2)(a+2)a+2)×a+2a=4+a2−4a+2×a+2a=a.【点睛】本题考查了分式的混合运算,平方差公式,熟练掌握相关运算法则是解题关键.6.(2023下·河南南阳·八年级统考期中)计算:(1)2x−6x 2−6x+9÷3−xx 2−9(2)(8a+3+a −3)÷a 2+2a+1a+3【答案】(1)−2x+6x−3(2)a−1a+1【分析】(1)根据完全平方式、平方差公式化简,再把除法转化成乘法计算即可;(2)括号内先通分,再根据完全平方公式、平方差公式化简,再把除法转化成乘法计算即可. 【详解】(1)解:原式=2(x−3)(x−3)2×(x+3)(x−3)3−x=−2x+6x−3(2)解:原式=(8+a 2−9a+3)×a+3(a+1)2=(a +1)(a −1)×1(a+1)2 =a−1a+1【点睛】本题考查分式计算,掌握完全平方式、平方差公式是关键. 7.(2023下·江苏淮安·八年级校考期中)计算: (1)a 2a−1−a −1(2)(a +2−42−a )÷(aa−2) 【答案】(1)1a−1 (2)a【分析】(1)先对原式通分变为同分母的分式,再相减即可解答本题; (2)先将括号内的进行计算,再将除法转换为乘法后,再约分即可得到答案. 【详解】(1)a 2a−1−a −1 =a 2a−1−(a+1)(a−1)a−1=a 2−(a+1)(a−1)a−1=a 2−(a 2−1)a−1=a 2−a 2+1a−1=1a−1(2)(a +2−42−a )÷(aa−2) =(a +2+4a−2)÷(a a−2) =a 2−4+4a−2÷(aa−2)=a 2a−2×a−2a=a【点睛】本题主要考查了分式的混合运算,解题的关键是明确分式混合运算的计算方法. 8.(2023上·山东泰安·八年级统考期中)计算 (1)x x−1−x 2+2x x 2−2x+1÷x+2x;(2)(a+2a−2−aa+2)÷3a+2a 2+2a . 【答案】(1)−x (x−1)2(2)2aa−2【分析】该题主要考查了分式的混合运算问题; (1)先算除法再算减法即可; (2)先算括号再算除法即可. 【详解】(1)原式=x x−1−(x+2)x(x−1)2⋅xx+2=x x −1−x 2(x −1)2 =x (x −1)−x 2(x −1)2=−x(x−1)2;=−xx 2−2x +1(2)原式=[(a+2)2(a−2)(a+2)−a (a−2)(a−2)(a+2)]÷3a+2a (a+2)=2(3a +2)(a −2)(a +2)⋅a (a +2)3a +2=2aa−2.9.(2023上·山东烟台·八年级统考期中)计算: (1)b 2c a ×ac b÷(−c a )2(2)a 2−4a÷(a +1−5a−4a)【答案】(1)a 2b (2)a+2a−2【分析】(1)根据分式的乘除运算法则进行化简即可求出答案. (2)根据分式的加减运算以及乘除运算法则即可求出答案. 【详解】(1)解:原式=bc 2⋅a 2c 2 =a 2b . (2)解:原式=(a+2)(a−2)a÷a 2−4a+4a=(a +2)(a −2)a⋅a(a −2)2 =a+2a−2.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.10.(2023上·山东东营·八年级校考期中)计算下列各式. (1)(−a 2b c)3⋅(−c 2a)2÷(bca)4;(2)a 2a−1−a −1. 【答案】(1)−a 8bc 3 (2)1a−1【分析】(1)先根据积的乘方等于乘方的积,幂的乘方计算各分式,然后利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;进行分式的乘除运算即可;(2)先加括号,进行通分,根据平方差公式求解多项式乘多项式,然后进行加减运算即可.【详解】(1)解:(−a 2bc )3⋅(−c2a)2÷(bca)4=−a6b3c3⋅c4a2÷b4c4a4=−a4b3c⋅a4b4c4=−a8bc3;(2)解:a 2a−1−a−1=a2a−1−(a+1)=a2−(a+1)(a−1)a−1=a2−a2+1a−1=1a−1.【点睛】本题考查了积的乘方,幂的乘方,分式的乘除混合运算,同底数幂的乘除运算,异分母分式的减法运算,平方差公式等知识.解题的关键在于熟练掌握各知识的运算法则并正确的运算.11.(2023上·河南许昌·八年级统考期末)计算:(3xx−1−xx+1)⋅x2−1x+1【答案】2x 2+4xx+1【分析】利用分式的混合运算顺序:先括号内的分式减法运算,再括号外的分式2乘法运算即可化简原式.【详解】解:(3xx−1−xx+1)⋅x2−1x+1=3x(x+1)−x(x−1)(x−1)(x+1)⋅(x−1)(x+1)x+1=3x2+3x−x2+xx+1=2x2+4xx+1.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.12.(2023上·重庆沙坪坝·八年级重庆一中校考阶段练习)计算:(1)(x−y)2−x(x−3y)(2)m2−25m+3÷(1−8m+3)【答案】(1)xy+y2(2)m+5【分析】(1)先用完全平方公式与单贡式乘以多项式法则展开,再合并同类项即可.(2)先计算括号内的,再计算除法,用除法法则转化成乘法计算即可.【详解】(1)解:原式=x2−2xy+y2−x2+3xy=xy+y2;(2)解:原式=(m+5)(m−5)m+3÷m−5m+3=(m+5)(m−5)m+3⋅m+3m−5=m+5.【点睛】本题考查多项式混合运算,分式混合运算,熟练掌握多项式与分式混合运算法则是解题的关键.13.(2023上·山东菏泽·八年级统考期中)计算(1)4x22x−3+93−2x(2)3b24a2⋅(a−6b)(3)xx−1−x+3x2−1⋅x2+2x+1x+3(4)(1x−4+1x+4)÷2x2−16【答案】(1)2x+3(2)−b8a(3)−1x−1(4)x【分析】(1)利用分式的加法计算即可.(2)利用分式的乘法计算即可.(3)利用分式的混合运算法则计算即可.(4)利用分式的混合运算法则计算即可.【详解】(1)4x 22x−3+93−2x=4x22x−3−92x−3=4x2−92x−3=(2x−3)(2x+3)2x−3=2x+3.(2)3b 24a2⋅(a−6b)=−b8a.(3)xx−1−x+3x2−1⋅x2+2x+1x+3=xx−1−x+3(x−1)(x+1)⋅(x+1)2x+3=xx−1−x+1x−1=x−x−1x−1=−1x−1.(4)(1x−4+1x+4)÷2x2−16=(1x−4+1x+4)×(x+4)(x−4)2=1x−4×(x+4)(x−4)2+1x+4×(x+4)(x−4)2=x+42+x−42=x.【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.14.(2023下·重庆南岸·八年级统考期末)计算:(1)a−ba+b ÷a2−aba3−ab2;(2)(2x−3−1x)⋅x2−3xx2+6x+9【答案】(1)a−b(2)1x+3【分析】(1)直接根据分式的除法法则进行计算即可;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】(1)解:原式=a−b a+b⋅a 3−ab 2a 2−ab=a −b a +b ⋅a (a 2−b 2)a (a −b ) =(a +b )(a −b )a +b=a −b ; (2)解:原式=[2x−(x−3)x (x−3)]⋅x (x−3)(x+3)2 =x +3x (x −3)⋅x (x −3)(x +3)2=1x+3.【点睛】本题考查的是分式的混合运算,熟知分式的混合运算法则是解答此题的关键. 15.(2023下·重庆北碚·八年级统考期末)计算: (1)2a 2b ÷(−a 2b)2⋅a4b 2; (2)(a 2+3a a−3−3)÷a 2+9a 2−9.【答案】(1)2ab (2)a +3【分析】(1)先算乘方,再算乘除,即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,即可解答. 【详解】(1)原式=2a 2b ⋅4b 2a 2⋅a 4b 2=2ab(2)原式=(a 2+3a a−3−3a−9a−3)⋅a 2−9a 2+9 =a 2+9a −3⋅(a +3)(a −3)a 2+9=a +3【点睛】本题考查了分式的混合运算,准确熟练地进行计算是解题的关键. 16.(2023下·广东清远·八年级统考期中)分式计算: (1)3x−3−xx−3 (2)yxy+x +1xy−x(3)x2x+1−x+1(4)(3xx−2−xx+2)÷xx2−4.【答案】(1)−1(2)y2+1xy2−x(3)1x+1(4)2x+8【分析】(1)根据同分母的分式的加减法进行计算即可求解;(2)根据异分母的分式的加法进行计算即可求解;(3)根据分式与整式的运算进行计算即可求解;(4)先计算括号的分式的减法,再将除法转化为乘法进行计算即可求解.【详解】(1)3x−3−xx−3=3−xx−3 =−1;(2)yxy+x +1xy−x=y(y−1)+y+1 x(y+1)(y−1)=y2+1xy2−x;(3)x 2x+1−x+1=x2−(x−1)(x+1)x+1=x2−x2+1x+1=1x+1;(4)(3xx−2−xx+2)÷xx2−4=3x(x+2)−x(x−2)(x−2)(x+2)⋅(x+2)(x−2)x=3(x+2)−(x−2)=3x+6−x+2=2x+8.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.17.(2023上·山东济宁·八年级统考期末)计算:(xx+2−2x+2)÷x2−4x+4x+2.【答案】1x−2【分析】首先运用同分母分式减法法则计算括号内的,再利用分式除法运算法则求解即可.【详解】解:(xx+2−2x+2)÷x2−4x+4x+2=x−2x+2÷x2−4x+4x+2=x−2x+2⋅x+2x2−4x+4=x−2x+2⋅x+2(x−2)2=1x−2.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练运用分式的减法运算法则和乘除运算法则18.(2023上·山东泰安·八年级统考期中)计算:(1)2x2x−y +yy−2x;(2)1−x−yx+2y ÷x2−y2x2+4xy+4y2.【答案】(1)1(2)−yx+y【分析】(1)本题考查了分式的加减,利用同分母分式加减法法则进行计算,即可解答;(2)本题考查了分式的混合运算,先算分式的除法,再算加减,即可解答;【详解】(1)解:原式=2x−y2x−y=2x−y 2x−y=1;(2)解:原式=1−x−yx+2y ×(x+2y)2(x+y)(x−y)=1−x+2y x+y=−yx+y.19.(2023下·江苏常州·八年级常州市第二十四中学校考期中)计算:(1)6x+3+2xx+3;(2)a2−b2a ÷(a+b2−2aba).【答案】(1)2(2)a+ba−b【分析】(1)根据同分母分式加法计算法则求解即可;(2)根据分式的混合计算法则求解即可.【详解】(1)解:6x+3+2xx+3=6+2xx+3=2(x+3)x+3=2;(2)解:a 2−b2a÷(a+b2−2aba)=a2−b2a÷a2+b2−2aba=(a+b)(a−b)a÷(a−b)2a=(a+b)(a−b)a⋅a(a−b)2=a+ba−b.【点睛】本题主要考查了分式的混合计算,同分母分式加法,熟知相关计算法则是解题的关键.20.(2023上·山东菏泽·八年级统考期末)计算:(1)4x2−1−2x2+x;(2)(2x2x−2−x−2)÷2x2+8x2−4.【答案】(1)2x2−x(2)x+22【分析】(1)利用提公因式和平方差公式进行计算即可; (2)利用提公因式和平方差公式进行计算即可. 【详解】(1)4x 2−1−2x 2+x=4(x +1)(x −1)−2x (x +1)=4x −2(x −1)x (x +1)(x −1)=2x +2x (x +1)(x −1)=2x 2−x ;(2)(2x 2x−2−x −2)÷2x 2+8x 2−4=[2x 2x −2−(x +2)(x −2)x −2]÷2x 2+8x 2−4 =(2x 2−x 2+4x −2)⋅(x +2)(x −2)2(x 2+4)=x 2+4x −2⋅(x +2)(x −2)2(x 2+4)=x+22.【点睛】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键. 21.(2023下·江西鹰潭·八年级统考期末)先化简x 2−4x+4x 2−1÷x−2x+1+2x−1,再从−2,−1,1,2中选一个合适的整数作为x 的值代入求值. 【答案】x x−1,x =−2时,原式=23【分析】先把除法转化为乘法,再约分,然后计算加法,由分式有意义的条件确定x 的值,最后代入化简后的式子即可求出答案. 【详解】解:x 2−4x+4x 2−1÷x−2x+1+2x−1=(x −2)2(x +1)(x −1)⋅x +1x −2+2x −1=x −2x −1+2x −1=xx−1,由分式有意义的条件可知:x ≠−1,x ≠1,x ≠2, ∴x =−2, 当x =−2时, 原式=−2−2−1=23.【点睛】本题考查分式的化简求值,熟练掌握运算法则是解题的关键. 22.(2023下·福建宁德·八年级统考期末)先化简,再求值:(1−a a+1)÷a+3a 2+2a+1,其中a =−5. 【答案】a+1a+3,2【分析】先根据分式的减法法则算括号内的减法,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可. 【详解】解:(1−aa+1)÷a+3a 2+2a+1=1a +1⋅(a +1)2a +3=a +1a +3当a =−5时,原式=a+1a+3=−5+1−5+3=2.【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序. 23.(2023下·江西景德镇·八年级统考期末)先化简,再求值:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1其中x =17【答案】1x ,代数式的值为7【分析】根据乘法公式,分式的性质,分式的加减乘除混合运算化简,再代入求出即可. 【详解】解:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1=[(x +1)2(x +1)(x −1)−3x −1]÷x(x −2)x −1=(x +1x −1−3x −1)×x −1x(x −2)=x −2x −1×x −1x(x −2)=1x ,当x =17时,原式=1x =117=7.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则是解题的关键.24.(2023下·江苏淮安·八年级统考期末)先化简,再求值:当a =2时,求代数式(a −aa+1)÷a 2−2a a 2−4×1a+2的值.【答案】aa+1;23【分析】运用乘法公式,分式的性质,分式的混合运算进行化简,再代入求值即可. 【详解】解:(a −aa+1)÷a 2−2a a 2−4×1a+2=(a 2+a a +1−a a +1)÷a(a −2)(a +2)(a −2)×1a +2=a 2a +1×a +2a ×1a +2=aa+1,当a =2时,原式=a a+1=22+1=23.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则,代入求值等知识是解题的关键.25.(2023上·四川绵阳·八年级校联考阶段练习)先化简,再求值:(2x+2x 2−1+1)÷x+1x 2−2x+1,其中x =4【答案】x −1,3【分析】根据分式混合运算法则先化简,再代值求解即可得到答案. 【详解】解:(2x+2x 2−1+1)÷x+1x 2−2x+1=(2x +2x 2−1+x 2−1x 2−1)×x 2−2x +1x +1=x 2+2x+1x 2−1×x 2−2x+1x+1,=(x+1)2(x+1)(x−1)×(x−1)2x+1,=x −1;当x =4时,原式=4−1=3.【点睛】本题考查了分式的混合运算和求值,能正确运用分式的运算法则进行化简是解此题的关键. 26.(2023上·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考期末)(1)计算:[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3;(2)先化简,再求值:(a 2a−1−a −1)÷a−a 2a 2−2a+1,其中a =2.【答案】(1)−32a 12;(2)−1a,−12【分析】(1)根据幂的混合运算法则求解即可;(2)首先根据分式的混合运算法则求解,然后将a =2代入求解即可. 【详解】解:(1)[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3=(3a 6+9a 6)÷(−8a −6)=12a 6÷(−8a −6)=−32a 12;(2)(a 2a−1−a −1)÷a−a 2a 2−2a+1=(a 2a −1−a 2−1a −1)÷−a (a −1)(a −1)2=1a −1⋅a −1−a=−1a ,当a =2时,原式=−12.【点睛】此题考查了幂的混合运算,分式的混合运算,解题的关键是熟练掌握以上运算法则. 27.(2023上·吉林白山·八年级统考期末)先化简,再求值:1﹣x−2y x+y ÷x 2−4xy+4y 2x 2−y 2,其中x =﹣2,y =12.【答案】﹣y x−2y,16.【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,之后将x 、y 代入计算即可求得答案. 【详解】解:原式=1﹣x−2y x+y⋅(x+y )(x−y )(x−2y )2=1−x−y x−2y=﹣y x−2y,当x =﹣2,y =12时,原式=16.【点睛】本题考查了分式的化简求值,熟练的掌握分式的运算法则是解本题的关键,在解题的时候,要注意式子的整理和约分.28.(2023上·广东惠州·八年级统考期末)已知A =xy−y 2y 2−x 2÷(1x−y −1x+y ). (1)化简A ;(2)当x 2+y 2=13,xy =−6时,求A 的值;(3)若|x −y |+√y +2=0,A 的值是否存在,若存在,求出A 的值,若不存在,说明理由.【答案】(1)−x−y2;(2)A=−52或52;(3)不存在,理由见详解.【分析】(1)先把括号里面的通分,再计算整式除法即可;(2)利用完全平方公式,求出x-y的值,代入化简后的A中,求值即可;(3)利用非负数的和为0,确定x、y的关系,把x、y代入A的分母,判断A的值是否存在.【详解】解:(1)A=xy−y 2y2−x2÷(1x−y−1x+y)=y(x−y) (y−x)(y+x)×(x+y)(x−y)x+y−x+y=−y(x−y)(x−y)(x+y)×(x+y)(x−y)2y=−x−y2;(2)∵x2+y2=13,xy=-5∵(x-y)2=x2-2xy+y2=13+12=25∵x-y=±5,当x-y=5时,A=−52;当x-y=-5时,A=52.(3)∵|x−y|+√y+2=0,∵x-y=0,y+2=0当x-y=0时,A的分母为0,分式没有意义.∵当|x−y|+√y+2=0时,A的值不存在.【点睛】本题考查了分式的加减乘除运算、完全平方公式、非负数的和及分式有无意义的条件.题目综合性较强.初中阶段学过的非负数有:a的偶次幂,a(a≥0)的偶次方根,a|的绝对值.29.(2023上·山东泰安·八年级统考期中)(1)计算:3x(x−3)2−x3−x(2)计算:(x+1x2−1+xx−1)÷x+1x2−2x+1(3)先化简,再求值:已知ab =3,求a2+4ab+4b2a−b÷(3b2a−b−a−b)的值.【答案】(1)x 2(x−3)2;(2)x﹣1;(3)a+2b2b−a,﹣5.【分析】(1)直接通分运算进而利用分式的混合运算法则计算得出答案; (2)直接将括号里面通分进而利用分式的混合运算法则计算得出答案; (3)直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 【详解】解:(1)原式=3x+x(x−3)(x−3)2=x 2(x−3)2;(2)原式=x+1+x(x+1)(x−1)(x+1)⋅(x−1)2x+1=(x+1)2(x−1)(x+1)⋅(x−1)2x+1=x −1;(3)原式=(a+2b)2a−b÷3b 2−a(a−b)−b(a−b)a−b=(a+2b)2a−b⋅a−b(2b+a)(2b−a)=a+2b2b−a∵ab =3,∵a =3b ,所以原式=3b+2b 2b−3b=−5.【点睛】本题考查的知识点是分式的化简求值,掌握分式化简的一般步骤以及分式的混合运算法则是解此题的关键,注意化简过程中各项的符号变化. 30.(2023上·山东潍坊·八年级统考期中)计算: (1)aa+1+a−1a 2−1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1; (3)先化简再求值:(1−3x+2)÷x−1x 2+x−2,其中x 是﹣2,1,2中的一个数值.【答案】(1)1;(2)2a+1;(3)x ﹣1,x =2时,原式=1.【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x =2代入计算即可求解. 【详解】(1)a a+1+a−1a 2−1,=a a+1+1a+1,=a+1a+1, =1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1, =2aa+1−2(a−2)(a+1)(a−1)⋅(a−1)2a−2,=2a a+1−2(a−1)a+1,=2a−2(a−1)a+1,=2a+1;(3)(1−3x+2)÷x−1x 2+x−2, =x+2−3x+2⋅(x−1)(x+2)x−1,=x ﹣1,∵x +2≠0,x ﹣1≠0, ∵x ≠﹣2,x ≠1,当x =2时,原式=2﹣1=1.【点睛】此题考查分式的混合运算及化简求值,正确将分式的分子与分母因式分解是解题的关键. 31.(2023上·吉林白城·八年级统考期末)先化简,再求值:x 2−1x 2−2x+1÷x+1x−1·1−x 1+x,其中x =12.【答案】1−x 1+x,13.【分析】先将分式的分子和分母分解因式,将分式约分化简得到最简结果,再将未知数的值代入计算即可. 【详解】x 2−1x 2−2x+1÷x+1x−1·1−x 1+x,=(x +1)(x −1)(x −1)2⋅x −1x +1⋅1−x1+x=1−x 1+x,当x =12时,原式=1−121+12=13.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,再将未知数的值代入求值即可.32.(2023上·山东烟台·八年级统考期中)先化简(a 2−4a+4a 2−4﹣aa+2)÷a−1a+2,再从a ≤2的非负整数解中选一个适合的整数代入求值. 【答案】−2a−1,2【分析】先将分式的分子和分母分解因式,再根据分式的化简求值的过程计算即可求解. 【详解】解:原式=[(a−2)2(a−2)(a+2)−aa+2]⋅a+2a−1,=(a−2a+2−aa+2)⋅a+2a−1,=−2a+2⋅a+2 a−1,=−2a−1.∵a≤2的非负整数解有0,1,2,又∵a≠1,2,∵当a=0时,原式=2.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,求值时选的数需满足分母不为0的数才可代入求值.33.(2023下·江苏盐城·八年级东台市三仓镇中学校考期中)先化简,再求值:x2−1(x−1)2÷x2+xx−1+2x,其中x为你喜欢的一个使原式有意义的整数.【答案】3x,1【详解】分析:根据据分式的混合运算的法则和步骤,先算乘除,再算加减,然后约分化简,最后代入求值即可,注意选择使分母不为零的数代入.详解:x 2−1(x−1)2÷x2+xx−1+2x=(x+1)(x−1)(x−1)2÷x(x+1)x−1+2x=(x+1)(x−1)(x−1)2·x−1x(x+1)+2x=1 x +2x=3x当x=3时,原式=1.点睛:本考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.34.(2023上·四川泸州·八年级统考期中)先化简,再求值:(3a+1−a+1)÷a2−4a+4a+1,其中a=4.【答案】−a+2a−2,-3.【详解】试题分析:先根据分式的混合运算的法则,先算括号里面的(通分后计算),再把除法化为乘法约分化简,最后代入求值即可.试题解析:(3a+1−a+1)÷a2−4a+4a+1=3−a2+1a+1×a+1(a−2)2,=−(a+2)(a−2)a+1×a+1(a−2)2=−a+2a−2,当a=4时,原式=-3.60.(2023上·北京昌平·八年级校考期中)先化简,再求值:xx2−1⋅(x−1x−2),其中x(x+1)=2(x+1).【答案】−1x−1,-1【详解】试题分析:先根据分式的混合运算的法则,先把分式的化简,然后再根据方程求出符合条件的x代入求值,注意分式有意义的条件,即分母不能为零.试题解析:原式==.由解得或.因为x不能等于-1,所以当=2时,原式=.36.(2023下·湖南郴州·八年级校考期中)先化简,再求值:(x2x−1+91−x)÷x+3x−1,x在1,2,-3中选取适当的值代入求值.【答案】x-3,当x=2时,原式=-1【详解】解:(x 2x−1+91−x)÷x+3x−1=(x+3)(x−3)x−1⋅x−1x+3=x−3要是原式有意义,则x≠1,−3,则x=2原式=-137.(2023上·浙江杭州·八年级统考期中)先化简,再求值:(4x+6x2−1−2x−1)÷x+2x2−2x+1,其中x是不等式组{x+4>01−2x>3的整数解.【答案】2x−2x+1,4.【分析】原式中先计算分子,约分得到最简结果,求出不等式组的解集,找出解集中的整数解确定出x的值,代入计算即可求出值.【详解】原式= 4x+6−2(x+1)(x+1)(x−1)×(x−1)2x+2= 2(x+2)(x+1)(x−1)×(x−1)2x+2= 2(x−1)x+1=2x−2x+1解不等式组{x+4>01−2x>3得:-4<x<-1所以不等式组的整数解为-3,-2,即x=-3,-2.∵x≠-2∵x=-3,∵原式= 2(−3−1)−3+1=4.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.(2023上·重庆·八年级西南大学附中校考期中)先化简,再求值:(2a−2−6a2−2a)÷a2−6a+9a−2,其中a满足(2)原式=a(a−2)(a+1)(a−1)÷[2a−1a−1−(a+1)(a−1)a−1]=a(a−2)(a+1)(a−1)÷(2a−1a−1−a2−1a−1)=a(a−2)(a+1)(a−1)÷2a−1−a2+1a−1=a(a−2)(a+1)(a−1)÷2a−a2a−1=a(a−2)(a+1)(a−1)⋅a−12a−a2=a(a−2)(a+1)(a−1)⋅a−1a(2−a)=−1a+1,∵a+1≠0,a−1≠0,a≠0,2−a≠0,∴a≠−1,a≠1,a≠0,a≠2,∵a是−2≤a≤2的范围内的一个整数,∴a =−2, 则原式=−1−2+1=1.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键. 40.(2023上·山东滨州·八年级统考期末)(1)计算:3(x−1)(x+2)−xx−1+1;(2)先化简,再求值:a−1a 2−4a+4÷(1+1a−2),请从1,2,3中选一个合适的数作为a 的值,代入求值. 【答案】(1)−1x+2;(2)1a−2,1.【分析】(1)根据分式的四则运算求解即可;(2)根据分式的四则运算进行化简,然后代数求解即可. 【详解】解:(1)3(x−1)(x+2)−xx−1+1=3(x −1)(x +2)−x (x +2)(x −1)(x +2)+(x −1)(x +2)(x −1)(x +2)=3−x 2−2x +x 2+x −2(x −1)(x +2)=1−x(x −1)(x +2)=−1x +2(2)a−1a 2−4a+4÷(1+1a−2)=a −1(a −2)2÷(a −1a −2)=a −1(a −2)2×(a −2a −1)=1a−2,由题意可得:a −2≠0,a −1≠0 ∵a ≠1,a ≠2 将a =3代入得,原式=13−2=1.【点睛】此题考查了分式的四则运算,化简求值,解题的关键是熟练掌握分式的四则运算以及分式的有关知识.。
1
计算专项训练
一、不等式(组)计算
1、 8223xx 2、xx4923
3、)1(5)32(2xx 4、31222xx
5、223125xx 6、1215312xx
7、.3342,121xxxx 8、322,352xxxx
9、532(1)314(2)2xxx 10、 14321x
2
11、不等式组1,159mxxx的解集是x>2,则m的取值范围是 。
12、已知方程组②①myxmyx12,312的解满足x+y<0,求m的取值范围.
13、关于x的不等式组123,0xax的整数解共有5个,求a的取值范围.
二、分式的加减乘除计算
1、32ba- 32aa 2、xxy+yyx 3、32ab+214a
4、21a+21(1)a 5、2129m+23m+23m
6、222xxx-2144xxx 7、21xx-x-1
8、先化简,再求值:3aa-263aaa+3a,其中a=32.
3
9、423223423badccdab 10、mmmmm3249622
11、22222xyxxyxyxy 12、2544()()()mnmnnm
13、)2(216322baabcab 14、3592533522xxxxx
15、
三、分式方程
1、 2、
4
3、 4、
5、若关于x的方程2221xmxx产生增根,那么m的值是 .
6、若方程2122xkxx的一个解为2x,求代数式1kk的值.