150分学姐手抄概率论笔记融合了概率王王式安的总结,
- 格式:pdf
- 大小:34.04 MB
- 文档页数:41
第1 章随机事件及其概率在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
1°Ω={1,2 n},12°P(1) =P(2) = P(n) =n。
设任一事件A ,它是由1,2 m组成的,则有P(A)= {(1) (2) (m)}= P(1) +P(2) + +P(m)=m=A所包含的基本事件数n 基本事件总数第二章随机变量及其分布设随机变量X 的分布律为k-P( X =k ) = e ,> 0 ,k = 0,1,2 ,k!则称随机变量X 服从参数为的泊松分布,记为X ~ () 或者P()。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
e-x , x≥0,f (x) =0, x < 0 ,其中> 0 ,则称随机变量 X 服从参数为的指数分布。
X 的分布函数为1 -e-x, x≥0,F (x) =0,x<0。
记住积分公式:+∞⎰x n e -x dx =n!正态分布设随机变量 X 的密度函数为 21-( x -) 2- ∞ < x < +∞f (x ) =e 2 , , 2其中、> 0 为常数,则称随机变量 X 服从参数为、的正态分布或高斯(Gauss )分布,记为 X ~ N (,2) 。
f (x ) 具有如下性质:1° f (x ) 的图形是关于 x = 对称的;2° 当 x = 时, f ()= 1 为最大值;若 X ~ N (,2) ,则 X 2 的分布函数为1 x e- ( t - ) 2F (x ) =⎰- 2 2dt2∞参数= 0 、= 1时的正态分布称为标准正态分布,记为X ~ N (0,1) ,1 其-密x 2度函数记为 (x ) = e 22 , - ∞ < x < +∞ ,分布函数为21x - t Φ(x ) = 2⎰ e 2dt 。
概率论与统计学公式总结【已整理可直接打印】1. 概率公式概率 P(A) = n(A) / n(S),其中 n(A) 表示事件 A 发生的次数,n(S) 表示样本空间中所有可能事件发生的次数。
2. 条件概率公式事件 B 在事件 A 已经发生的条件下发生的概率,表示为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B) 表示事件 A 和事件 B 同时发生的概率。
3. 独立事件公式如果事件 A 和事件 B 相互独立,则事件 A 发生与否不会对事件 B 发生的概率产生影响,表示为P(A∩B) = P(A) * P(B)。
4. 期望值公式离散型随机变量 X 的期望值E(X) = ΣxP(X=x),其中 x 表示可能的取值,P(X=x) 表示 X 取值为 x 的概率。
5. 方差公式离散型随机变量 X 的方差Var(X) = Σ(x-E(X))^2 * P(X=x),其中 x 表示可能的取值,E(X) 表示随机变量 X 的期望值。
6. 正态分布公式正态分布的概率密度函数为f(x) = (1 / (σ * √(2π))) * exp(-(x-µ)^2 / (2σ^2)),其中 µ表示均值,σ 表示标准差。
7. 中心极限定理对于一个总体中的任意样本,样本均值的分布接近正态分布,当样本容量足够大时,均值的分布越接近正态分布。
8. 置信区间公式无偏样本的均值x的置信水平为 1-α 的置信区间为 [x - Z * (σ/√n), x + Z * (σ/√n)],其中x表示样本均值,Z 表示标准正态分布的分位数,σ 表示总体标准差,n 表示样本容量。
9. 假设检验公式在给定总体参数假设的条件下,进行样本均值的假设检验,计算统计量的值,与临界值进行比较,判断是否拒绝原假设。
10. 线性回归公式通过最小二乘法确定线性回归方程,表示为y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,其中 y 表示因变量,x₁, x₂, ..., xₙ 表示自变量,β₀, β₁, β₂, ..., βₙ 表示回归系数。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率知识点归纳总结一、基本概念1.1 随机试验与样本空间随机试验是指在一定条件下,可能出现多种结果的实验。
样本空间是指随机试验所有可能结果的集合。
样本点是样本空间中的元素,表示随机试验的单个结果。
例如,掷一枚硬币的试验,样本空间可以表示为{正面,反面},而样本点就是正面或反面。
1.2 事件与事件的概率事件是指样本空间的子集,表示某种结果的集合。
事件的概率表示该事件发生的可能性大小,通常用P(A)表示,其中A为事件。
概率的取值范围是[0,1],且满足P(Ω) = 1,P(∅) = 0,其中Ω表示样本空间,∅表示空集。
1.3 概率的计算概率的计算可以通过等可能原理、频率法、古典概率等方法进行。
等可能原理指各个基本事件发生的可能性相等,频率法指通过实验多次观察某事件发生的次数,古典概率指在条件相同的情况下,各个基本事件发生的概率相等。
二、条件概率2.1条件概率的概念条件概率是指在已知事件B发生的条件下,事件A发生的概率,通常用P(A|B)表示。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。
2.2 事件的独立性事件A和事件B独立,指的是事件A的发生不影响事件B的发生,反之亦然。
当事件A 和事件B独立时,有P(A∩B) = P(A) * P(B)。
2.3 全概率公式与贝叶斯公式全概率公式和贝叶斯公式是两种条件概率的重要公式。
全概率公式是指如果事件B1,B2,...Bn构成一个完备事件组,即B1∪B2∪...∪Bn = Ω,且P(Bi) > 0(i=1,2,...,n),那么对任意事件A都有P(A) = ∑ P(A|Bi) * P(Bi)。
而贝叶斯公式是指在事件A已发生的条件下,事件B的概率计算公式为P(Bi|A) = P(A|Bi) * P(Bi)/∑ P(A|Bj) * P(Bj)。
三、随机变量与概率分布3.1 随机变量的概念随机变量是指把样本空间上的每个样本点映射到实数轴上的一个实数的函数,它可以是离散型的也可以是连续型的。
概率高中知识点总结1. 基本概念概率是指某种可能事件发生的程度或可能性的度量。
在数学上,概率可以用数值来表示,一般用P(A)来表示事件A发生的概率。
样本空间:在进行一次随机实验时,可能出现的所有结果的集合称为样本空间,通常用S表示。
事件:在样本空间S中的一个子集称为一个事件,通常用A、B、C...来表示。
如果事件A发生,则称A发生。
基本事件:样本空间中的每个元素称为一个基本事件,基本事件是不可再分解的。
互斥事件:两个事件A、B不可能同时发生,则称A和B是互斥事件。
对立事件:事件A发生的概率加事件A不发生的概率等于1,称为对立事件。
事件A与其对立事件搭配,如A发生的概率为P(A),A不发生的概率为1-P(A)。
2. 概率计算概率计算是概率论中的一个重要内容,主要涉及到概率的计算方法和技巧。
加法原理:设A、B是两个事件,那么P(A∪B) = P(A) + P(B) - P(A∩B)。
其中P(A∩B)表示事件A和B同时发生的概率。
乘法原理:设A、B是两个事件,那么P(A∩B) = P(A) * P(B|A)。
其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
全概率公式:设A1、A2、...、An为一个样本空间S的一个分割,那么对任意事件B来说,有P(B) = ∑P(B|Ai)*P(Ai)。
3. 概率分布概率分布是指随机变量取各个不同的可能值时,这些值对应的概率。
在高中数学中,我们主要学习了离散型随机变量的概率分布。
离散型随机变量:如果一个随机变量取值为有限个或者可列个,那么称这个随机变量是离散型的。
概率质量函数:对离散型随机变量X来说,概率质量函数P(X=x) = P(X=x)。
期望和方差:对于离散型随机变量X,它的期望和方差分别为E(X) = ∑x*P(X=x)和Var(X)= E(X^2)-[E(X)]^2。
4. 期望和方差期望和方差是描述随机变量分布特征的重要统计量。
期望:对于一个离散型随机变量X,它的期望E(X) = ∑x*P(X=x)。
高考数学概率知识点整理总结高考数学概率知识点整理一、事件1.在条件SS的必然事件.2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.3.在条件SS的随机事件.二、概率和频率1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nAnA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).三、事件的关系与运算四、概率的几个基本性质1.概率的取值范围:2.必然事件的概率P(E)=3.不可能事件的概率P(F)=4.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B).5.对立事件的概率:若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).高中数学概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n. 当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.高中数学古典概率公式P(A)=A所含样本点数/总体所含样本点数实用中经常采用“排列组合”的方法计算附:由概率定义得出的几个性质:1、02、P(Ω)=1,P(φ) =0[1]概率的加法法则定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1 推论3: P(A)=1-P(A)推论4:若B包含A,则P(B-A)= P(B)-P(A)推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)[1]条件概率条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)条件概率计算公式:当P(A)0,P(B|A)=P(AB)/P(A)当P(B)0,P(A|B)=P(AB)/P(B)[1]乘法公式P(AB)=P(A)×P(B|A)=P(B)×P(A|B)推广:P(ABC)=P(A)P(B|A)P(C|AB)[1]全概率公式设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组。
《概率论与数理统计》笔记一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象➢确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.➢随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.➢统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●应用例子➢摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.➢ 戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。