六年级数学上册知识点复习(人教版)
- 格式:docx
- 大小:18.95 KB
- 文档页数:19
人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。
都是求几个一样加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。
〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。
一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。
一个数〔0除外〕乘1,积等于这个数。
〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。
〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。
用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。
〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。
〔4〕、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
最新人教版六年级上册数学知识点归纳与整理一、分数乘法(一)分数乘法的意义1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如:$\frac{2}{5}×3$表示 3 个$\frac{2}{5}$相加的和是多少。
2、一个数乘分数的意义就是求这个数的几分之几是多少。
例如:$\frac{3}{4}×\frac{1}{2}$表示$\frac{3}{4}$的$\frac{1}{2}$是多少。
(二)分数乘法的计算法则1、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
能约分的先约分,再计算。
例如:$\frac{3}{5}×5 =\frac{3×5}{5} = 3$2、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
能约分的先约分,再计算。
例如:$\frac{2}{3}×\frac{3}{4} =\frac{2×3}{3×4} =\frac{1}{2}$(三)积与因数的关系一个数(0 除外)乘大于1 的数,积大于这个数;一个数(0 除外)乘小于 1 的数,积小于这个数;一个数(0 除外)乘 1,积等于这个数。
二、位置与方向(一)确定物体位置的两个条件方向和距离。
(二)在平面图上标出物体位置的方法1、先确定方向。
2、再以选定的单位长度为基准,用直尺确定图上距离。
3、最后找出物体的具体位置,并标上名称。
(三)描述简单的路线图按行走路线,依次描述经过的方向和距离。
三、分数除法(一)分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
(二)分数除法的计算法则除以一个不为 0 的数,等于乘这个数的倒数。
例如:$\frac{3}{8}÷\frac{2}{5} =\frac{3}{8}×\frac{5}{2} =\frac{15}{16}$(三)商与被除数的关系1、当除数大于 1 时,商小于被除数。
人教版六年级上册数学期末复习知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
<p>一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
人教版六年级数学上册必背的基础知识点!展开全文第一单元分数乘法(一)分数乘法意义1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <><>一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
分数乘、除法一、分数乘法(一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:98×5表示:5的98是多少;5个98的和是多少;98的5倍是多少;2.分数乘分数是求一个数的几分之几是多少。
例如:98×43表示:98的43是多少;43的98是多少。
(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
画一画98×4365×32说一说3.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a一个数(0除外)乘小于1的数(0除外),积小于这个数。
a×b=c,当b <1时,c<a(b≠0)一个数(0除外)乘1,积等于这个数。
a×b=c,当b =1时,c=a在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
二、分数乘法的解决问题已知单位“1”的量,求单位“1”的几分之几是多少用乘法计算1.巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
2.求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
3.写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“=”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;⑨部分的比较量对部分的分率;⑩总量的比较量对总量的分率;4.什么是速度?速度是单位时间内行驶的路程。
六年级上册数学知识点 第一单元 位臵1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位臵。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?行号A ×61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
六年级上册数学知识点归纳与整理第一单元 分数乘法(一)、分数乘法的意义。
1 、分数乘整数:分数乘整数的意义与整数乘法的意义相同:就是求几个相同加数和得简便运算。
例如: 125× 6 ,表示: 6 个 125相加是多少,还表示 125的 6 倍是多少。
2 、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如: 6 ×125,表示: 6 的125是多少。
72×125,表示: 72的 125是多少。
(二)、分数乘法的计算法则:1 、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2 、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3 、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4 、分数的基本性质: 分子、分母同时乘或者除以一个相同的数( 0 除外),分数的大小不变。
(三)、分数大小的比较:1 、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2 、如果几个不为 0 的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、分数混合运算1 、分数混合运算顺序:与整数相同,先乘除后加减,有括号的先算括号里面的。
2 、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a ×b = b ×a 乘法结合律:(a ×b)×c = a ×(b ×c)乘法分配律: a ×( b ±c ) = a ×b ±a ×c第二单元 位置与方向一、确定位置的条件:当观测点(中心)确定以后,确定物体位置是条件是(方向)和(距离)。
人教版数学六年级上册重点知识点归纳第一单元知识点一、分数、百分数应用题解题公式单位“1” 已知:单位“1” × 对应分率= 对应数量求单位“1”或单位“1”未知:对应数量÷ 对应分率= 单位“1”1、求一个数是另一个数的几分之几(或百分之几)公式:一个数÷ 另一个数= 一个数是另一个数的几分之几(百分之几)2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)二、熟练掌握:百分数和分数、小数的互化,熟练背诵:2/1= 0.5 = 50% 4/1= 0.25=25% 4/3= 0.75 = 75%5/1= 0.2 = 20% 5/2= 0.4 = 40% 5/3= 0.6 = 60%5/4= 0.8 = 80% 8/1=0.125=12.5% 8/3=0.375=37.5%8/5=0.625=62.5% 8/7=0.875=87.5% 10/1=0.1=10%20/1=0.05=5% 25/1=0.04=4% 50/1=0.02=2%100/1=0.01=1%第二单元知识点1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
人教版六年级上册数学重点知识点归纳人教版六年级上册数学重点知识点归纳篇1小数1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
分数1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
约分和通分1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
数学0的性质1、0既不是正数也不是负数,而是介于—1和+1之间的整数。
2、0的相反数是0,即—0=0。
3、0的绝对值是其本身。
4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
六年级数学上册知识点复习(人教版) 分数乘法 一、分数乘法 分数乘法的计算法则: 分数与整数相乘:分子与整数相乘的积做分子,分母不 变。 分数与分数相乘:用分子相乘的积做分子,分母相乘的 积做分母。 为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假 分数再进行计算。 规律: 一个数乘大于1的数,积大于这个数。 一个数乘小于1的数,积小于这个数。 一个数乘1,积等于这个数。 分数混合运算的运算顺序和整数的运算顺序相同。 整数乘法的交换律、结合律和分配律,对于分数乘法也 同样适用。 乘法交换律:a x b=b x a 乘法结合律:x c=a x 乘法分配律:x c=ac+bcac+bc= x c 二、 分数乘法的解决问题 求单位“ 1”的几分之几是多少) 找单位“ 1” :在分率句中分率的前面; 或“占”、“是”、 “比”的后面 求一个数的几倍:一个数X几倍;求一个数的几分之几 是多少:一个数X。 写数量关系式技巧: “的”相当于“X” “占”、“是”、“比”相当于“=” 分率前是“的”:单位“ 1”的量X分率=分率对应量 分率前是“多或少”的意思:单位“ 1”的量X =分率对 应量 三、 倒数 倒数的意义:乘积是 1的两个数互为倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依 存,倒数不能单独存在。 。 求倒数的方法: 求分数的倒数:交换分子分母的位置。、求整数的倒数: 把整数看做分母是1的分数,再交换分子分母的位置。、求 带分数的倒数:把带分数化为假分数,再求倒数。 求小数的倒数:把小数化为分数,再求倒数。 1的倒数是1 ; 0没有倒数。因为1X仁1; 0乘任何数都 得0,
对于任意数,它的倒数为;非零整数的倒数为;分数的 倒数是; 真分数的倒数大于 1;假分数的倒数小于或等于 1;带 分数的倒数小于1。 分数除法 一、 分数除法 分数除法的意义: 分数除法与整数除法的意义相同,表示已知两个因数的 积和其中一个因数,求另一个因数的运算。 分数除法的计算法则:除以一个不为 0的数,等于乘这 个数的倒数。 规律:、当除数大于1,商小于被除数; 当除数小于1,商大于被除数;、当除数等于 1,商等 于被除数。 “”叫做中括号。一个算式里,如果既有小括号,又有 中括号,要先算小括号里面的,再算中括号里面的。 二、 分数除法解决问题 已知单位“ 1”的几分之几是多少,求单位“ 1”的量。) 数量关系式和分数乘法解决问题中的关系式相同: 分率前是“的”:单位“ 1”的量x分率=分率对应量 分率前是“多或少”的意思:单位“ 1”的量x =分率对 应量
解法: 方程:根据数量关系式设未知量为 X,用方程解答。 算术:分率对应量+对应分率 =单位“ 1”的量 求一个数是另一个数的几分之几:就一个数+另一个数 求一个数比另一个数多几分之几: ① 求多几分之几:大数*小数- 1②求少几分之几:1- 小数*大数 或①求多几分之几+小数②求少几分之几:+大数 三、比和比的应用 比的意义 比的意义:两个数相除又叫做两个数的比。 在两个数的比中,比号前面的数叫做比的前项,比号后 面的数叫做比的后项。比的前项除以后项所得的商,叫做比 值。 例如 15 : 10=15* 10=
前项比号后项比值 比可以表示两个相同量的关系,即倍数关系。也可以表 示两个不同量的比,得到一个新量。例:路程+速度 =时间 区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用 分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可 以是小数。 根据分数与除法的关系,两个数的比也可以写成分数形 式。 比和除法、分数的联系: 比前项比号“:”后项比值 除法被除数除号“+”除数商 分数分子分数线“一”分母分数值 比和除法、分数的区别:除法是一种运算,分数是一个 数,比表示两个数的关系。 根据比与除法、分数的关系,可以理解比的后项不能为 0。 体育比赛中出现两队的分是 2: 0等,这只是一种记分 的形式,不表示两个数相除的关系。 比的基本性质 根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数, 商不变。 分数的基本性质:分数的分子和分母同时乘或除以相同 的数时,分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的 数,比值不变。 最简整数比:比的前项和后项都是整数, 并且是互质数, 这样的比就是最简整数比。 根据比的基本性质,可以把比化成最简单的整数比。 化简比: ① 用比的前项和后项同时除以它们的最大公因数。 ② 两个分数的比:用前项后项同时乘分母的最小公倍 数,再按化简整数比的方法来化简。 ③ 两个小数的比:向右移动小数点的位置,先化成整数 比再化简。 用求比值的方法。注意:最后结果要写成比的形式。 女口: 15 : 10=15 - 10==3 : 2 .按比例分配:把一个数量按照一定的比来进行分配。 这种方法通常叫做按比例分配。 女口:已知两个量之比为,则设这两个量分别为。 路程一定,速度比和时间比成反比。 工作总量一定,工作效率和工作时间成反比。 圆 一、认识圆 圆的定义:圆是由曲线围成的一种平面图形。 圆心:将一张圆形纸片对折两次,折痕相交于圆中心的 一点,这一点叫做圆心 —般用字母0表示。它到圆上任意一点的距离都相等. 半径:连接圆心到圆上任意一点的线段叫做半径。一般 用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。 直径:通过圆心并且两端都在圆上的线段叫做直径。一 般用字母d表示。 直径是一个圆内最长的线段。 圆心确定圆的位置,半径确定圆的大小。 在同圆或等圆内,有无数条半径,有无数条直径。所有 的半径都相等,所有的直径都相等。 .在同圆或等圆内,直径的长度是半径的 2倍,半径的 长度是直径的。 用字母表示为:d= 2r或r = 轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全 重合,这个图形是轴对称图形。 折痕所在的这条直线叫做对称轴。 长方形、正方形和圆都是对称图形,都有对称轴。这些 图形都是轴对称图形。 0、只有1 一条对称轴的图形有:角、等腰三角形、等 腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 有无数条对称轴的图形是:圆、圆环。 二、圆的周长 圆的周长:围成圆的曲线的长度叫做圆的周长。用字母 c表示。 圆周率实验: 在圆形纸片上做个记号,与直尺 0刻度对齐,在直尺上 滚动一周,求出圆的周长。 发现一般规律,就是圆周长与它直径的比值是一个固定 数。 .圆周率:任意一个圆的周长与它的直径的比值是一个 固定的数,我们把它叫做圆周率。 用字母n表示。 一个圆的周长总是它直径的 3倍多一些,这个比值是一 个固定的数。 圆周率n是一个无限不循环小数。在计算时,一般取 n 〜
3.14。 在判断时,圆周长与它直径的比值是 n倍,而不是3.14 倍。 世界上个把圆周率算出来的人是我国的数学家祖冲之 圆的周长公式:c= n dd=c * n 或 c=2 n rr=c + 2 n
在一个正方形里画一个最大的圆,圆的直径等于正方形 的边长。 在一个长方形里画一个最大的圆,圆的直径等于长方形 的宽。 区分周长的一半和半圆的周长: 周长的一半:等于圆的周长+ 2计算方法:2n r + 2即 n r 半圆的周长:等于圆的周长的一半加直径。计算方法: n r + 2r 三、圆的面积 圆的面积:圆所占平面的大小叫做圆的面积。用字母 S 表示。 一条弧和经过这条弧两端的两条半径所围成的图形叫 做扇形。顶点在圆心的角叫做圆心角。 圆面积公式的推导: 用逐渐逼近的转化思想:体现化圆为方,化曲为直;化 新为旧,化未知为已知,化复杂为简单,化抽象为具体。 把一个圆等分成的扇形份数越多,拼成的图像越接近长 方形。 拼出的图形与圆的周长和半径的关系。 圆的半径=长方形的宽
圆的周长的一半二长方形的长 因为:长方形面积=长乂宽 所以:圆的面积=圆周长的一半X圆的半径 S 圆=n r X r 圆的面积公式:S圆=冗r2 环形的面积: 一个环形,外圆的半径是 R,内圆的半径是r。 S环=冗R2— n r2 或 环形的面积公式:S环=冗。 一个圆,半径扩大或缩小多少倍,直径和周长也扩大或 缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。例如: 在同一个圆里,半径扩大 3倍,那么直径和周长就都扩 大3倍,而面积扩大9倍。 两个圆:半径比=直径比=周长比;而面积比等于这比的 平方。例如: 两个圆的半径比是 2 : 3,那么这两个圆的直径比和周长 比都是2 : 3,而面积比是 4 : 9 任意一个正方形与它内切圆的面积之比都是一个固定 值,即:4 : n 当长方形,正方形,圆的周长相等时,圆面积最大,正 方形居中,长方形面积最小。反之,面积相同时,长方形的 周长最长,正方形居中,圆周长最短。