黄酮类化合物的结构解析
- 格式:ppt
- 大小:718.00 KB
- 文档页数:79
黄酮类化合物一概述黄酮类化合物(flavonoids)是一类存在于自然界的重要有机化合物。
黄酮类化合物不同的颜色为天然色素家族添加了更多的色彩。
这类化合物多存在与高等植物及蕨类植物中。
苔藓类植物中部分存在黄酮类化合物,而藻类,微生物(如细菌)及其他海洋生物中没有发现黄酮类化合物的存在。
黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。
绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方起着重要的作用。
它是很多中药的活性成分,具有抗氧化、抗菌消炎、抗病毒、抗癌等生物活性。
1.1黄酮类化合物的基本结构以前黄酮类化合物主要是指基本母核为2-苯基色原酮(flavone见图1)结构类的化合物。
现在泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳基团相互连接而成的一系列化合物。
图1它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。
黄酮类化合物结构中常见的取代基团有酚羟基、甲氧基、甲基、异戊烯基等。
1.2黄酮类化合物的生物合成黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生。
经同位素标记,大体合成过程如下图5所示:上述标记实验同时证明了间苯三酚不是黄酮类化合物的生物合成前体,而桂皮酸和对羟基桂皮酸是黄酮类化合物B环更适合的生物合成前体。
1.3黄酮类化合物的分类(见图2):根据中央三碳链的氧化程度、B-环连接位置(2-或3-)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类。
图2 黄酮类化合物的分类1.3.1黄酮类及黄酮醇类黄酮及黄酮醇类是数量最多、分布最广的黄酮类化合物。
木犀草素是最常见的黄酮类化合物,在植物界分布较广,具有抗菌作用。
清热解毒中药黄芩含有较多的黄酮类化合物,主要成分为黄芩苷和次黄芩苷等。
槲皮素及及其苷类则是植物界分布最广、最常见的黄酮化合物。
1.3.2二氢黄酮类及二氢黄酮醇类二氢黄酮和二氢黄酮醇类是黄酮和黄酮醇的2,3-双键饱和结构,绝大部分天然来源的二氢黄酮是2S构型,二氢黄酮醇是2R,3R构型。
黄酮类化合物的结构一、利用紫外光谱测定黄酮类化合物的结构大多数黄酮类化合物在甲醇中的紫外吸收光谱由两个主要吸收带组成。
出现在300~400nm之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。
不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。
当向黄酮类化合物的甲醇(或乙醇)溶液中分别加入甲醇钠(NaOMe)、乙酸钠(NaOAc)、乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。
据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。
黄酮和黄酮醇类(一)黄酮、黄酮醇类在甲醇中的UV光谱特征黄酮或黄酮醇的带Ⅰ是由B环桂皮酰基系统的电子跃迁所引起的吸收,带Ⅱ是由A环的苯甲酰基系统的电子跃迁所引起的吸收。
黄酮和黄酮醇的UV光谱图形相似,仅带Ⅰ位置不同,黄酮带Ⅰ位于304~350nm,黄酮醇带Ⅰ位于358~385nm。
利用带Ⅰ的峰位不同,可以区别这两类化合物。
黄酮、黄酮醇的B环或A环上取代基的性质和位置不同将影响带Ⅰ或带Ⅱ的峰位和形状。
例如,7和4′位引入羟基、甲氧基等含氧取代基,可引起相应吸收带向红位移。
又如3-或5-位引入羟基,因能与C4=O形成氢键缔合,前者使带Ⅰ向红位移,后者使带Ⅰ、带Ⅱ均向红位移。
B环上的含氧取代基逐渐增加时,带Ⅰ向红位移值(nm)也逐渐增加,但不能使带Ⅱ产生位移。
有时(例如3′,4′-位有2个羟基或2个甲氧基或亚甲二氧基)仅可能影响带Ⅱ的形状,使带Ⅱ歧分为双峰或1个主峰(Ⅱb位于短波处)和1个肩峰(sh)或弯曲(Ⅱa位于长波处)。
A环上的含氧取代基增加时,使带Ⅱ向红位移,而对带Ⅰ无影响,或影响甚微(但5-羟基例外)。
黄酮或黄酮醇的3-,5-或4′-羟基被甲基化或苷化后,可使带Ⅰ向紫位移,3-OH甲基化或苷化使带Ⅰ(328~357nm)与黄酮的带Ⅰ的波长范围重叠(且光谱曲线的形状也相似),5-OH甲基化使带Ⅰ和带Ⅱ都向紫位移5~15nm,4′-OH甲基化或苷化,使带Ⅰ向紫位移3~10nm。
黄酮醇类化合物结构解析黄酮醇类化合物是一类具有特殊结构的有机化合物,它们在植物当中常见,如:石花椒黄酮、山梨醇等,并且具有多种生物活性。
因此,针对黄酮醇类化合物的结构解析具有重要的意义。
黄酮醇类化合物的结构主要由:酮基、醇基及其相互连接而成,其中,酮基有两类:一类是常见的环状结构,常见的有苯乙烯环、芘环、芪环等,另一类是类似羧酸的结构,如:四氢呋喃酮、山梨酸酐等。
醇基主要有碳链结构,如月桂醇基等。
在醇基和酮基相互连接的情况下,得到的是黄酮醇类化合物。
黄酮醇类化合物结构的解析主要借助于分子对称性的概念,其中,对分子的对称性分析是非常重要的,常见的对称性分类有:哈贝马斯对称性、电偶极向量结构和平面分层对称性等。
在分析过程中,在酮基与醇基之间确定了C-O-C的键,结合对称性的概念,进行分子结构的解析。
以山梨醇类化合物为例,其分子对称性为C5v,通过在酮基和醇基之间确定C-O-C的键和选择对称轴等方式,实现对山梨醇结构的解析;其它黄酮醇类化合物的解析也可以以此为基础,发掘其在生物活性方面其特殊的结构特点。
此外,在结构解析方面,还可以运用NMR(核磁共振)、IR(红外光谱)、MS(质谱)、XRD(X射线衍射)等多种技术,实现对黄酮醇类化合物中各结构单元的准确定性和定位。
总之,利用上述技术,可以进行全面、准确的黄酮醇类化合物结构解析,从而更好地探索其特异的生物活性。
综上,黄酮醇类化合物是一类有机有机物,具有特殊的结构,其结构解析对于发掘其在生物活性方面的特异性具有重要意义。
故而,通过运用分子对称性概念,以及NMR、IR、MS、XRD等理论与技术,进行全面、准确的黄酮醇类化合物结构解析,以发掘其独特的生物活性,这是非常有价值的一个研究领域。
黄酮类化合物黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物黄酮类化合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。
此外,它还常与糖结合成苷。
多数科学家认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的。
经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A[1]。
1、分类:根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。
另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮。
2、理化性质:天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。
组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。
黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。
黄酮类化合物不同的颜色为天然色素家族添加了更多色彩。
这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。
黄酮苷一般易溶于水、乙醇、甲醇等级性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。
糖链越长则水溶度越大。
黄酮类化合物因分子中多具有酚羟基,故显酸性。
酸性强弱因酚羟基数目、位置而异。
3、显色:1.盐酸-镁粉(或锌粉)反应为鉴定黄酮类化合物最常用的颜色反应,反应机理现在认为是因为生成了阳碳离子缘故[1]。
2.四氢硼钠(NaBH4)是对二氢黄酮类化合物专属性较高的一种还原剂,产生红~紫色。
黄酮名称结构式黄酮是一种广泛存在于植物中的天然化合物,其基本结构是由两个苯环(A环和B环)通过中央三碳链相互连接而成的。
其中,黄酮的A环通常具有酚羟基,而B环则具有芳香环。
黄酮的名称和结构式可以根据其取代基的种类和位置而有所不同。
以下是几种常见的黄酮及其结构式:1.槲皮素(Quercetin):这是一种最常见的黄酮,存在于许多水果和蔬菜中,如洋葱、苹果和茶叶等。
槲皮素的结构式为:C15H10O7,其A环和B环之间存在多个取代基,其中包括酚羟基、甲基和羰基等。
2.山柰酚(Kaempferol):山柰酚也是常见的黄酮,广泛存在于植物中,如甘蓝、花椰菜和白杨树皮等。
其结构式为:C15H10O6,与槲皮素类似,山柰酚的A环和B环之间也存在多个取代基。
3.杨梅素(Myricetin):杨梅素是一种具有多个酚羟基的黄酮,其结构式为:C15H10O8,A环和B环之间同样存在多个取代基。
这种黄酮广泛存在于各种植物中,如杨梅、接骨木和越橘等。
4.芦丁(Rutin):芦丁是一种在植物中发现的黄酮类化合物,主要存在于荞麦、银杏和槐花等植物中。
其结构式为:C27H30O16,是由槲皮素与糖类结合而成的苷,具有很好的抗氧化作用。
5.淫羊藿苷(Icariin):淫羊藿苷是一种存在于淫羊藿中的黄酮类化合物,其结构式为:C33H40O19,是由两个葡萄糖和一个三萜类化合物结合而成的复合物。
这种黄酮具有改善性功能、抗衰老等作用。
除了以上这些常见的黄酮外,还有许多其他的黄酮类化合物,如儿茶素、儿茶酚、柚皮苷、橙皮苷等。
这些化合物在植物中广泛存在,并且具有多种生物活性,如抗氧化、抗炎、抗菌和免疫调节等。
因此,人们越来越重视从植物中提取和分离黄酮类化合物,并研究其在医药、食品和化妆品等领域的应用价值。
黄酮类化合物黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物。
它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。
黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。
绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方起着重要的作用。
查看精彩图册目录简介结构种类价值结构类型理化性质反应盐酸-镁粉还原反应金属盐类试剂络合反应分布特点黄酮类及二氢黄酮类黄酮醇类及二氢黄酮醇类查尔酮类异黄酮类和二氢异黄酮类花色素类黄烷类橙酮类双黄酮类其他药理活性心血管系统活性抗菌及抗病毒活性抗肿瘤活性抗氧化自由基活性抗炎、镇痛活性保肝活性其他展开简介结构种类价值结构类型理化性质反应盐酸-镁粉还原反应金属盐类试剂络合反应分布特点黄酮类及二氢黄酮类黄酮醇类及二氢黄酮醇类查尔酮类异黄酮类和二氢异黄酮类花色素类黄烷类橙酮类双黄酮类其他药理活性心血管系统活性抗菌及抗病毒活性抗肿瘤活性抗氧化自由基活性抗炎、镇痛活性保肝活性其他展开编辑本段简介结构flavonoid黄酮醇分子结构图以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素。
其中包括黄酮的同分异构体及其氢化的还原产物,也即以C6-C3-C6为基本碳架的一系列化合物。
黄酮类化合物在植物界分布很广,在植物体内大部分与糖结合成苷类或碳糖基的形式存在,也有以游离形式存在的。
天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。
由于这些助色团的存在,使该类化合物多显黄色。
又由于分子中γ-吡酮环上的氧原子能与强酸成?盐而表现为弱碱性,因此曾称为黄碱素类化合物。
种类根据三碳键(C3)结构的氧化程度和B环的连接位置等特点,黄酮类化合物可分为下列几类:黄酮和黄酮醇;黄烷酮(又称二氢黄酮)和黄烷酮醇(又称二氢黄酮醇);异黄酮;异黄烷酮(又称二氢异黄酮);查耳酮;二氢查耳酮;橙酮(又称澳咔);黄烷和黄烷醇;黄烷二醇(3,4)(又称白花色苷元。