小学奥数--四年级高斯求和(学生版)6份
- 格式:doc
- 大小:58.00 KB
- 文档页数:4
小学奥数题讲解:高斯求和(等差数列)小学奥数题讲解:高斯求和(等差数列)德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好能够分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+ (31)分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
第3讲高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
项数=(末项-首项)÷公差+1。
末项=首项+公差×(项数-1)。
对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。
即为中项定理【例题讲解及思维拓展训练】例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
高斯求和一、高斯求和相关定义:若干个数按一定顺序规律排列起来就是一个数列。
如果这个数列中任意两个相邻的数之间的差都相等,我们就把这个数列称为等差数列。
其中第一个数称为首项,最后一个数称为末项。
相邻两个数之间的差称为公差,这数列中数的个数称为项数。
求和公式为: 等差数列的和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)二、例题例1.计算10987654321+++++++++练习 (1) 1917531+++++ (2) 求50以内所有偶数的和。
例2.建筑工地上堆着一些钢管(如图),求这些钢管一共有多少根?练习(1)图中一共有多少个三角形?(2)下图是一垛电线杆的侧面示意图,试计算一下图中共有多少根电线杆?例3.下面一列数是按照一定规律排列的:3,7,11,15,...,95,99.请问:(1)这列数中的第20个数是多少?(2)39是这列数中的第几项?练习:(1)自1开始,每隔三个数数一数,得到数列1,4,7,10......问第100个数是多少?(2)某饭店的餐桌都是能做4人的正方形,如图①所示。
当团体客人在10人以上时,饭店允许客人将餐桌拼成一长条,如图②所示,但每张桌子不能呢个有空位。
问如果团体客人是22人,那么需要几张桌子?例4.计算11+21+31+41+51+61+71+81+91练习:(1)计算:11+13+15+17+19+21+23(2)明明用棋子摆了一个五层图形,每两层棋子的个数相差5,最内层用了18个棋子。
问一共用了多少个棋子?例5.求首项为5,末项为155,公差是3的等差数列的和。
练习:一个有17项的等差数列,末项为117,公差为7,求这个等差数列的和是多少?例6.如图所示,如果用3根火柴摆成一个等边三角形,用这样的方法,按图中所示铺满一个大的等边三角形,如果这个大的等边三角形的底边是10根火柴,那么一共放多少根火柴?练习:如图所示是一个五边形点阵,中心是一个点为第一层,第二层每边两个点,第三层每边三个点,第四层每边四个点,一次类推,如果这个五边形点阵共有100层,那么点阵中一共有多少个点?三、课后练习1、下面数列中,哪些是等差数列?如果是,请指明公差;如果不是,说明理由。
高斯求和练习1、1+2+3+∙∙∙+302、4+7+10+13+16+193、3+6+9+12+15+18+21+24+27+304、3+7+11+15+19+23+27+315、3+5+7+9+∙∙∙+356、2+5+8+11+14+∙∙∙+627、4+7+10+13+∙∙∙∙∙∙(共20项)8、6+10+14+18+∙∙∙∙∙∙(共20项)9、3+8+13+18+∙∙∙∙∙∙(共10项)10、1000-2-5-8-10-14-∙∙∙∙∙∙-62 11、40+41+42+43+∙∙∙+80 12、8+12+16+20+∙∙∙(共20项)13、1000-1-2-3-∙∙∙∙∙∙-40 14、9+16+23+30+37+44+5115、1+4+7+10+13+∙∙∙∙∙∙(共21项)16、1.5.9.13 ∙∙∙∙∙∙求这组的第21项是多少? 17、300-1-2-3-∙∙∙∙∙∙-2018、1+4+7+10+∙∙∙(共20项)19、50-49+48-47+46-45+∙∙∙-3+2-1 20、2000-1-2-3-∙∙∙-40 21、2310-2-4-6-8-∙∙∙-100高斯求和(解决问题)练习题1、在13和25两个数之问插入3个数,使这5个数构成等差数列,你知道插入的3个数分别是多少吗?2、5个连续奇数和是45,求这5个数是多少?3、一个剧场设置了22排座位,第一排有20个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位?3、一堆木材叠在一起,一共是20层,第l层有12根,第2层有13根,……下面每层比上一层多1根,这堆木材共有多少根?5、一个剧场设置了22排座位,第一排有36个座位,往后每排多2个座位,这个剧场共有多少个座位?6、在10和30两个数之间插入4个数,使这6个数构成等差数列,你知道插入的4个数分别是多少吗?7、有9个连续偶数和是180,求这9个数是多少?8、一个剧场设置了30排座位,第一排有20个座位,往后每排都比前一排多1个座位,这个剧场共有多少个座位?9、小马虎存计算从1加到100的和时,把其中一个数漏掉了,得出的和是5000,请问他把哪个数丢了?10、甲乙二人都住在同一个胡同一侧,这一侧的门牌号码是连续的奇数甲住在21号,乙住在193号,甲乙二人的住处相隔多少个门?11、我家在一条短胡同里,这条胡同门牌从1挨着编下去,如果除我家外,其余各家门牌号加起来,减去我家门牌号数,恰好等于100,我家门牌号是几?12、把一些圆柱形铁管按如图的样子摆在一起,如果正好摆了40层,共有多少根铁管?13、一个剧场设置了20排座位。
高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
第3讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。
例3 3+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。
第3讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+,+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=,=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5,,,100;(2)1,3,5,7,9,,,99;(3)8,15,22,29,36,,,71。
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+,+1999=?分析与解:这串加数1,2,3,,,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+,+31=?分析与解:这串加数11,12,13,,,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
高斯求和
姓名:
等差数列的和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
末项=首项+公差×(项数-1)
首项=末项-公差×(项数-1)
一、
(1)计算1+2+3+……+99的和
(3)第一行放了1颗糖果,第二行放了2颗糖果,第三行放了3颗糖果,以此类推,第四十行放了40颗糖果,那么,第一行到第四十行一共放了多少颗糖果?
二、
(1)计算3+7+11+……+43+47的和
(2)计算5+10+15+……+90+95+100的和
(3)美羊羊学做蛋糕,第一天做了5个蛋糕,以后每天都比前一天多做2个,最后一天做了25个蛋糕,美羊羊这些天中一共做了多少个蛋糕?
三、
(1)有一列数按如下规律排列:5、9、13、17……这列数中前24个数的和是多少?
(2)小明练习写毛笔字,第一天写了8个大字,以后每天都比前一天多写3个,小明30天一共写了多少个毛笔字?
(3)有一堆粗细均匀的圆木,最上面有33根,每一层都比上一层多1根,一共堆了15层,这堆圆木一共有多少根?
四、
(1)(7=9+11+……+25)-(5+7+9+……+23)的结果
(2)(1+3+5+……+2013)-(2+4+6+……+2014)的结果
(3)1+2-3+4+5-6+7+8-9+……+58+59-60
五、
(1)100以内所有加5后是6的倍数的数的和是多少?
(2)在1到400中,.所有不是9的倍数的数的和是多少?
(3)计算所有被7除余数是1的三位数的和?。
小学奥数高斯求和例题汇总奥数奥数,四年级奥数。
下面,就来看四年级奥数精讲:高斯求和!例1 :1+2+3+…+2022=?分析与解:这串加数1,2,3,…,2022是等差数列,首项是1,末项是2022,共有2022个数。
由等差数列求和公式可得原式=(1+2022)×2022÷2=2022000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 :11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。
例3 :3+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。
例4 :求首项是25,公差是3的等差数列的前40项的和。
分析与解:末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340。
利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
3.四年级上册奥数高斯求和优质课件四年级秋季尖子班第三谈高斯议和若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
数列中数的个数称为项数。
从第二项已经开始,后项与其相连的前项之高都成正比的数列称作等差数列,后项与前项的差称作公差。
这一周,我们将学习“等差数列求和”。
为了更好地掌握此类问题,我们需要记住三个公式:通项公式:第n项=首项十(项数一1)×公差项数公式:项数=(末项一首项)÷公差十1议和公式:总和=(首项十未项)×项数÷2典例精讲基准1数列1,4,7,10,……的第20项是多少?【思路指点】由数列的前几项可以看出,这个数列是等差数列。
数列的首项是1,公差是3,根据等差数列的通项公式:第n项=首项十(项数一1)×公差,可以求得第20项。
【详尽答疑】例2下列等差数列各有多少项?(1)5,9,13,17,……,89,93(2)2,5,8,11,……,98,101【思路点拨】在(1)中,首项就是5,末项就是93,公差就是4。
所以项数可以根据公式:项数=(末项一首项)÷公差十1求出。
在(2)中,首项是2,末项是101,公差是3。
所以项数可以根据公式:项数=(末项一首项)÷公差十1求得。
【详尽答疑】1优质课件例3求1+2+3+4+……+99+100的和是多少。
【思路点拨】谋上面算式的和,其实就是谋一个等差数列的和,而在这个数列中,首项就是1,末项就是100,公差就是1,从1至100共计100个数,项数就是100,所以这个称得上的和需用等差数列议和公式排序。
【详细解答】合格练1.数列2,7,12,17,22,……的第100项是多少?2.数列1,5,9,13,17,……的第25项是多少?3.某阶梯教室有20排座位,第一排有10个座位,其后每一排都比与它相邻的前一排多2个座位。
这个阶梯教室最后一排有多少个座位?4.以下各等差数列分别存有多少项?(1)9,18,27,36,……,261,270(2)5,10,15,20,……,85,90(3)4,7,10,13,……,151,1542优质课件5.快速算出下列各式的结果。
高斯求和(一)约翰·卡尔·弗里德里希·高斯德国著名数学家、物理学家、天文学家、大地测量学家。
是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
高斯和阿基米德、牛顿并列为世界三大数学家。
一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。
一、例题精讲例1.观察下面三组数据,你发现了什么?(1)1、 2、 3、 4、 5、 6、 7、 8、 9、 10(2)2、 4、 6、 8、 10、 12、14、 16(3)101、 98、 95、 92、 89、 86、 83(4)6、 6、 6、 6、 6、 6、 6例2.等差数列的初步认识我们把第一个数称为(首项),最后一项称为(末项)相邻两个数的差相等,所以这个差叫(公差)。
数列(1)的公差是(),数列(2)的公差是(),数列(3)的公差是(),数列(4)的公差是(),因为相邻两数的差都(),这样的数列就是等差数列。
数列中数的个数称为(项数),数列(3)的项数是()个。
例3.下列数列不是等差数列的是()。
A. 7、 8、 7、 8、 7、 8、 7、 8、 7B. 0、 5、 10、 15、 20、 25、 30、 35C. 50、 48、 46、 44、 42、 40、 38例4.花园里的玫瑰花如下图排列,请你快速算出花的数量?例5.通过例4的学习,我们小结等差数列求和的公式是:请你利用公式计算:(1)2+4+6+8+10+12+14+16+18=(2)25+21+17+13+9+5+1=例6.在下图中,每个小等边三角形的边长是1根火柴棒,面积是15平方厘米。
(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴摆成?二、课堂小测7. 5+9+13+17+21+25+29+33+378. 5+9+13+17+21+29+33+379. 3+6+9+12+15+18+21+24+22+20+18+16+14+12+10+810. 将正方形叠成山形(如图),叠1层一共用1个正方形,叠2层一共用4个正方形。
高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:
(1)1,2,3,4,5, (100)
(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
项数=(末项-首项)÷公差+1。
末项=首项+公差×(项数-1)。
对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。
即为中项定理
【例题讲解及思维拓展训练】
例1 1+2+3+…+1999=?
分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得
原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
【思维拓展训练一】
1、11+12+13+…+31=?
分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
2、3+7+11+…+99=?
分析与解:3,7,11,…,99是公差为4的等差数列,
项数=(99-3)÷4+1=25,
原式=(3+99)×25÷2=1275。
例2 求首项是25,公差是3的等差数列的前40项的和。
解:末项=25+3×(40-1)=142,
和=(25+142)×40÷2=3340。
利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
【思维拓展训练二】
1、求首项是34,公差是5的等差数列的前50项的和。
例3 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?
分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:
由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。
解:(1)最大三角形面积为
(1+3+5+…+15)×12=[(1+15)×8÷2]×12=768(厘米2)。
(2)火柴棍的数目为
3+6+9+…+24
=(3+24)×8÷2=108(根)。
答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。
【思维拓展训练三】
1、盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?
分析与解:一只球变成3只球,实际上多了2只球。
第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。
因此拿了十次后,多了
2×1+2×2+…+2×10
=2×(1+2+ (10)
=2×55=110(只)。
加上原有的3只球,盒子里共有球110+3=113(只)。
综合列式为:
(3-1)×(1+2+…+10)+3
=2×[(1+10)×10÷2]+3=113(只)。
例题4 建筑工地有一批砖,码成如下图的形状,最上层2块砖,第2层6块砖,第3层10块砖…,依次每层都比它上面一层多4块砖,已知最下一层2106块砖,问中间一层有多少块砖?这堆砖共有多少块?
【思维拓展训练三】
1、求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
2、连续九个自然数的和为54,则以这九个自然数的末项作为首相的连续九个自然数的和是多少?
高斯求和【课堂巩固训练题】
1.计算下列各题:
(1)2+4+6+...+200;(2)17+19+21+ (39)
(3)5+8+11+14+...+50;(4)3+10+17+24+ (101)
2.求首项是5,末项是93,公差是4的等差数列的和。
3.求首项是13,公差是5的等差数列的前30项的和。
4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。
问:时钟一昼夜敲打多少次?
5.求100以内除以3余2的所有数的和。
6.在所有的两位数中,十位数比个位数大的数共有多少个?
7、100个连续自然数(从小到大排列)的和是8450,取出其中第1个,第3个,…,第99个数,再把剩下的50个数相加,和是多少?
8、把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么第1个数和第6个数各是多少?
9、把27枚棋子放入7个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到,若能,写出具体方案,若不能,说明理由。