初中:《不等式的解集》说课稿
- 格式:docx
- 大小:32.57 KB
- 文档页数:6
八年级下册数学不等式的解集教案一、教学目标1. 理解不等式的解集的概念,掌握不等式的解集的表示方法。
2. 能够求解简单的不等式,并找出其解集。
3. 能够运用不等式的解集解决实际问题。
二、教学内容1. 不等式的解集的概念:不等式的解集是指满足不等式的所有实数的集合。
2. 不等式的解集的表示方法:用区间表示法表示不等式的解集,包括开区间、闭区间和半开半闭区间。
3. 求解简单不等式:线性不等式、一元一次不等式、绝对值不等式等。
4. 解集的运算:交集、并集、补集等。
三、教学重点与难点1. 教学重点:不等式的解集的概念、表示方法,求解简单不等式,解集的运算。
2. 教学难点:解集的运算,求解复杂不等式。
四、教学方法1. 采用问题驱动法,引导学生通过思考问题来理解和掌握不等式的解集的概念和表示方法。
2. 使用实例讲解法,通过具体的例子来讲解求解简单不等式和解集的运算。
3. 利用数轴辅助法,帮助学生直观地理解不等式的解集。
五、教学步骤1. 导入新课:通过引入实际问题,引导学生思考不等式的解集的概念。
2. 讲解不等式的解集的概念和表示方法:讲解不等式的解集的定义,介绍开区间、闭区间和半开半闭区间的表示方法。
3. 求解简单不等式:通过例题讲解如何求解线性不等式、一元一次不等式和绝对值不等式,并找出其解集。
4. 解集的运算:讲解解集的交集、并集和补集的运算方法,并通过例题进行演示。
5. 巩固练习:布置练习题,让学生巩固所学的不等式的解集的概念、表示方法和求解方法。
六、教学拓展1. 介绍不等式组的概念:不等式组是指由多个不等式组成的集合,其解集是这些不等式解集的交集。
2. 讲解如何求解不等式组:通过分别求解每个不等式的解集,取交集得到不等式组的解集。
七、教学互动1. 课堂提问:在学习不等式的解集的过程中,鼓励学生提出问题,并与老师和同学进行讨论。
2. 小组讨论:让学生分组讨论如何求解不等式,并分享他们的解题方法和思路。
七年级数学《不等式及其解集》说课稿范文(通用5篇)七年级数学《不等式及其解集》说课稿1尊敬的各位老师:你们好,今天我说课的题目是人教版数学七年级下册第九章第一节《不等式及其解集》,下面我将从说教材,说教法,说学法以及教学过程等几个方面对本课的设计进行说明。
一、说教材1、本节教材的地位和作用本节课是学生学习了等式,方程,方程组的概念,重点研究了解方程及方程组之后面临的一个新问题,不等式从某种程度上讲是等式的延伸,而在此之后,我们所要学的很多知识,比如,不等式的性质,一元一次不等式组,甚至以后的高等数学中所涉及到的优化问题都要用到本节课的内容,因此,本节课的内容在整个中学数学乃至整个数学领域都起着承前启后的作用,通过本节课的学习可以使学生思维变得更开阔,也对以后更好的学习各种科学知识有很大的帮助。
2、教学目标新课标下的教学活动必须建立在学生已有的认知发展水平及知识经验的基础上,新课程理念下的数学教学必须体现三维目标,因此根据本课内容的特点以及学生知识水平和认知水平,我确定了以下教学目标:(1)知识与技能:使学生掌握不等式的概念,理解不等式解集的意义,会用不等式表示简单的数量关系和不等式解集的表示法。
培养学生独立思考,分析及归纳能力。
(2)过程与方法:经历由具体实例建立不等式模型的过程,通过解决简单的实际问题,使学生自发的寻找不等式的解(3)精感态度与价值观:引导学生在独立思考的基础上,积极参与不等式类数学问题的讨论,逐步培养他们合作交流意识,让学生充分体会到数学在实际生活中的广泛存在,并能将他们应用到生活的各个领域,让学生感受到学习数学的乐趣。
二、说教法数学教学活动必须建立在学生的认知水平和已有的知识经验基础上,教师应激发学生的学习积极性,给学生提供参与数学活动的机会,多让学生交流合作。
引导学生动脑筋思考,协助学生归纳总结知识重点,最终达到教学相长。
因此,本节课我主要采用了以下教学方法:以启发式教学为主,讨论、交流合作等方法为辅。
不等式的解集一、课程目标通过本节课的学习,学生将能够:1.掌握不等式的基本概念及解集表示方法;2.熟练运用加减乘除的性质求解不等式;3.理解不等式在实际问题中的应用。
二、教学重难点1. 教学重点•不等式的基本概念及表示方法;•加减乘除性质的运用。
2. 教学难点•不等式的应用问题;•不等式组的解集表示。
三、教学过程1. 导入新知识引导学生回顾线性方程的解集表示方法,并通过与之对比,讨论不等式的解集表示有何不同。
提问:同学们,你们还记得线性方程的解集是怎么表示的吗?与之相比,不等式的解集有什么不同呢?2. 知识讲解(1) 不等式的基本概念介绍不等式的定义和符号表示,并与线性方程进行比较,明确不等式的不同之处。
不等式是一个数学语句,其中包含有不等号(大于、小于、大于等于、小于等于),表示两个数或表达式之间的关系。
符号含义: - <表示小于; - >表示大于; - $\\leq$ 表示小于等于; - $\\geq$ 表示大于等于;- eq表示不等于。
(2) 不等式的解集表示讲解不等式解集在数轴上的表示方法,引导学生画出简单不等式的解集,例如x>2。
提示:将不等式解集画在数轴上有助于我们直观地理解解集的概念。
(3) 加减乘除性质的运用依次介绍加减乘除的性质,并示例说明如何利用这些性质求解不等式。
性质举例: - 加法性质:如果a>b,那么a+c>b+c; - 乘法性质:如果a>b且c>0,那么ac>bc。
3. 案例分析向学生提供一些实际问题,并引导学生将问题转化为不等式,并求出其解集。
例如:小明成绩在一次考试中取得了x分,他想知道自己的分数是否高于班级平均分75分,请帮助小明设置不等式并求解。
4. 拓展练习提供一些更复杂的不等式题目,供学生进行练习。
例如:解不等式组 $\\begin{cases} x > 2 \\\\ x - 3 < 7 \\end{cases}$。
北师大版数学八年级下册《3. 不等式的解集》说课稿一. 教材分析北师大版数学八年级下册《3. 不等式的解集》这一节主要讲述了不等式的解集及其表示方法。
学生在学习了不等式的基本概念和性质后,对本节内容有了初步的了解。
教材通过实例引导学生掌握不等式的解集表示方法,并运用不等式的性质求解不等式的解集。
本节内容是整个不等式知识体系的重要组成部分,对于学生来说,理解并掌握不等式的解集表示方法及其求解技巧具有重要意义。
二. 学情分析在教学前,我了解到学生已经掌握了不等式的基本概念和性质,但对不等式的解集表示方法及求解技巧还不够熟练。
此外,学生的数学思维能力、逻辑推理能力和团队合作能力有待进一步提高。
因此,在教学过程中,我需要关注学生的这些特点,有针对性地进行教学设计和指导。
三. 说教学目标1.知识与技能目标:使学生掌握不等式的解集表示方法,能够运用不等式的性质求解不等式的解集。
2.过程与方法目标:通过自主学习、合作交流和教师引导,培养学生解决实际问题的能力,提高学生的数学思维能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。
四. 说教学重难点1.教学重点:不等式的解集表示方法及其求解技巧。
2.教学难点:如何运用不等式的性质求解复杂的不等式解集。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流和教师引导相结合的教学方法,让学生在实践中掌握知识,提高能力。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合学生分组讨论、上台展示等互动环节,提高教学效果。
六. 说教学过程1.导入新课:通过实例引入不等式的解集概念,激发学生的学习兴趣。
2.自主学习:让学生独立思考,探索不等式的解集表示方法。
3.合作交流:学生分组讨论,分享各自的方法和心得,互相学习,共同进步。
4.教师引导:教师针对学生的讨论情况进行点评,引导学生正确理解和掌握不等式的解集表示方法。
初中数学说课稿《不等式的解集》2019-01-01各位评委老师大家好!我说课的题目是华东师大版初中数学七年级(下)第八章第二节《解一元一次不等式》的第一节《不等式的解集》,下面我从教材分析等方面对本课的设计进行说明,。
一、教材分析本节课研究的是不等式的解集和不等式解集在数轴上的表示。
这之前学生已经初步学习了不等式和不等式解,这部分在本章中不但有承上启下的作用,而且为今后学习函数的应用奠定了数形结合的基础,因此它在教材中处于非常重要的位置。
一元一次不等式的解集是前面一元一次方程解的扩展,两者存在区别与联系。
在数轴上表示不等式的解集,是学生学习数轴之后,又一次接触到图形与数量的对应关系,同时为今后函数的学习提供了方法和依据。
二、目标分析根据学生已有的认知基础和本科教材的地位,由于数学教学不仅是知识的教学,技能的训练,更能重视能力的培养及情感教育,因此确定教学目标1,2,3。
即:1.知识目标:了解不等式解集的意义和不等式的解集在数轴上的表示。
2.能力目标:建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想。
3.情感目标:引导学生在独立思考的基础上,参与问题的讨论,激发学生主动获取知识的兴趣增强学生学习的信心。
教学重点:一元一次不等式的解集和表示。
教学难点:一元一次不等式解集的意义和不等式解集在数轴上的表示。
教学难点突破办法:通过观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。
三、教法分析为创设宽松民主的学习气氛,激发学生思维的主动性,顺利完成教学目标根据学生特点和学生的实际情况采用引导发现法,计算机辅助教学。
将学生个体的自我反馈,小组间的合作交流,与师生间的信息及时联系起来,形成多层次多方面的合作交流,共同发现知识,获取知识。
学生知识掌握过程离不开学生自身的活动,因此,在教学中,突出引导学生观察,分析,以旧探新,猜测论证等方法,揭示数学问题,并采用个人思考,分组讨论,汇报结果等多种形式,使每个学生都参与到学习中来,学生在获得知识的过程中悟出道理,得出结论,增强学习数学的自信心,四、学法分析1.学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。
不等式的解集教案一、教学目标1.了解不等式的基本概念。
2.学会解一元一次不等式。
3.掌握解不等式的方法。
二、教学重点1.不等式的基本概念。
2.解一元一次不等式。
三、教学难点1.解不等式的方法。
四、教学方法1.教师讲解法。
2.示例分析法。
五、教学过程Step1:导入新课教师通过提问“什么是不等式?”引出本节课的主题,并激发学生的学习兴趣。
Step2:概念讲解1.教师讲解不等式的定义:“不等式是表示两个数大小关系的符号表达式,它以使不等式成立的所有实数作为解。
”2.教师解释不等式的符号表示:“不等于”用“≠”表示;“小于”用“<”表示;“大于”用“>”表示;“小于等于”用“≤”表示;“大于等于”用“≥”表示。
Step3:解一元一次不等式1.教师通过示例分析法,解释如何解一元一次不等式。
2.教师讲解解一元一次不等式的方法:- 消去分数、化简不等式;- 保持不等式不变,对不等式两边同时加或减一个相同的数;- 保持不等式不变,对不等式两边同时乘或除一个相同的正数;- 对不等式两边同时乘或除一个相同的负数,需改变不等号方向。
3.教师通过示例演算法,详细讲解如何解一元一次不等式。
Step4:课堂练习1.教师布置不等式的解集练习题,要求学生用解不等式的方法解题。
2.学生独立完成课堂练习。
3.教师巡视并指导学生完成题目。
Step5:总结归纳教师与学生一起总结不等式的解集方法,并对方法进行复习。
六、教学总结通过本节课的学习,学生掌握了不等式的基本概念和解不等式的方法,提高了解决实际问题的能力。
在下节课中,将进一步深入学习不等式的性质和解法。
《不等式及其解集》说课稿下面是《不等式及其解集》说课稿,欢迎阅读。
我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册9.1.1《不等式及其解集》一、教材内容分析1、教材的地位和作用本章学习的一元一次不等式的知识及其应用,是中学数学的重要内容,在学习了一元一次方程和二元一次方程组之后,进一步探究现实世界中的数量关系.本章通过对汽车行驶速度问题的分析,使学生经历实际问题中数量关系的分析、抽象过程,体会到现实世界中有各种各样错综复杂的数量关系,既有相等关系,也有不等关系,使学生在分析问题的过程中了解不等式.通过讨论、交流、归纳得到:大于3的每个数都是不等式x+2>5的解,而小于3的每一个数都不是不等式x+2>5的解,因此不等式x+2》5的解有无限多个,它们组成集合,称为一元不等式x+2》5的解集。
即表示为x》3。
2、主要知识结构不等式的概念—→一元一次不等式—→不等式的解—→不等式的解集—→—→在数轴上表示不等式的解集这还是要从考研大纲中所给出的题型以及各个题型的分值结构开始说起。
考研英语试卷由三部分构成,第一部分为useofEnglish,也就是我们常说的完形填空。
这一部分对于单词的考查主要有三种考法:3、教学重点和难点对于初一学生来说,以前接触到的代数式及方程等知识都具有唯一性,给定字母的值,能确定唯一的代数式的值,给定方程能得到唯一的解,而这一节所接触到的一元一次不等式却有无数个解,需要我们去用集合的形式来表示,这对学生形象思维来说是一个大的转变,所以我们将不等式解集的理解和表示作为本节课的重点,将不等式解集的概念本节课的难点.明确转化原理后,让学生试算例题。
在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。
具体做法如下:二、教学目标分析根据学生的认知水平和新课程标准的要求,本课题学习力求达到如下目标:知识与技能:1.理解不等式的意义,不等式解的意义,并能判断出不等式的解.2.理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式.过程与方法:使学生在学习中经历问题的提出→分析→探索→类比的过程,体会到生活中数量关系的多样性,初步了解数形结合的重要数学思想.情感与态度:从实际问题中抽象出数学模型,让学生认识数学与人类生活的密切联系,通过师生共同探索不等式的意义及找到不等式的解集的过程,体验数学活动充满着探索与创造,培养学生自主探索、合作学习的能力.三、教法学法分析本节课主要是教给学生"动手做,动脑想,多合作,大胆猜,会验证" 的研讨式学习方法.这样做增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径和思考问题的方法,使学生真正成为学习的主体.以及通过动手实践,理解记忆和强化训练的学法掌握本节课内容.根据本节课的实际情况,在教学中主要以讲学稿为载体,采用探索发现法,以问题为主线,体现“问题情境—建立数学模型—求解与解释—应用与拓展”的模式.通过情境的分析过程,强化学生的主动探索,加强对实际问题中抽象出数量关系的数学建模思想教学,体现新课程标准里,对重要的概念和数学思想呈螺旋上升的原则.四、教学过程分析(一)创设情境,导入新课(二)师生互动,课堂探究1、导入新知,解释疑难(1)不等式的概念通过对前面情境的分析,学生对生活中的不等关系有了一定的了解和认识,并对进一步了解不等式产生了极大的兴趣,此时再引入新的情境,让学生去分析其中的不等关系,学生乐于接受.问题:一辆匀速行驶的汽车在11:20距A地50千米,要在12:00之前驶过A地,车速应满足什么条件?分析:设车速是x千米/时.从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到小时,即①从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶小时的路程要超过50千米,即②通过对20世纪科技发展成果的讨论,发表自己的看法,训练学生的创新思维能力,获得更多的科技前沿的信息,增强他们的口语表达能力,养成学生热爱科学、关注科学的习惯.式子①和②从不同角度表示了车速应满足的条件.(2)不等式的解和解集在了解不等式之后,学生很容易将思维转移到什么样的值才满足这个不等式,光凭想像很难得出结果,此时利用多媒体的交互作用,让学生对未知数的值进行试探. 比如:若速度为100千米/时,(多媒体演示)输入速度x的值为100,多媒体中的汽车随之进行运动,观察运动的结果,满足题目的要求,所以100是这个不等式的解,从中得到不等式解的概念.师:其实只要我们留心观察,在我们的身边就有很多数学问题,南京地铁中就蕴含着许多数学问题。
《不等式的解集》教学目的1、使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法.2、培养学生观察、分析、比较的能力,并初步掌握对比的思想方法.3、在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.教学重难点重点:不等式的解集的概念及在数轴上表示不等式的解集的方法. 难点:不等式的解集的概念.教学过程一、快速反应:你能举出不等式2x +4>0的三个解吗?这个不等式的解有多少个?它的解集是什么?有多少个解集?1-=x 是不等式( )的解.A .2+x <0B .43-x >0C .12+x <0D .25+-x >0 将不等式的解集3≤x 表示在数轴上.二、自主学习:某市自来水公司按如下标准收取水费,若每户每月用水不超过5m 3则每立方米收费1.5元;若每户每月用水超过5m 3,,则超出部分每立方米收费2元.小颖家某月的水费不少于15元,那么她家这个月的用水量至少是多少?答案:设小颖家这个月的用水量是xm 3,由于15>1.5×5,所以即:155.2215)5(255.1≥-≥-+⨯x x(1)你能找出几个使不等式155.22≥-x 成立的x 的值吗?(2)963,,=x 能使不等式155.22≥-x 成立吗? 答案:(1)可以找出许多使不等式155.22≥-x 成立的x 的值,比如:取10=x ,则5.175.2102=-⨯>15不等式成立,取2.10=x 则9.175.22.102=-⨯>15不等式成立,取12=x ,则,5.215.2122=-⨯>15不等式成立,等等.(2)当3=x 时,5.35.232=-⨯<15不等式不成立.当6=x 时,5.95.262=-⨯<15不等式不成立.当9=x ,5.155.292=-⨯>15不等式成立.判断下列说法是否正确:(1)2=x 是不等式3+x <4的解;(2)2=x 是不等式x 3<7的解集;(3)不等式x 3<7的解是2=x ;(4)3=x 是不等式93≥x 的解.答案:(1)不正确; (2)不正确; (3)不正确; (4)正确. 在数轴上表示出下列不等式的解集:(1)x >﹣1; (2)1-≥x ;(3)x <﹣1; (4)1-≤x答案:(1)数轴上实心与空心的区别在于:空心点表示解集不包括这一点,实心点表示解集包括这一点.(2)数轴上表示不等式的解集遵循“大于向右走,小于向左走”这一原则.求不等式3+x <6的正整数解.答案:在不等式3x<6的两边都减去3,得:+x<36-+33-∴x<3而满足x<3的正整数有1,2,所以不等式的正整数解为1,2.。
不等式的解集说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“不等式的解集”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“不等式的解集”是人教版数学七年级下册第九章第一节的内容。
不等式是数学中的重要概念之一,而解集则是不等式的核心内容之一。
本节课是在学生已经学习了一元一次方程和二元一次方程组的基础上进行的,为后续学习不等式组、函数等知识奠定了基础。
通过本节课的学习,学生将进一步理解不等式的概念,掌握不等式解集的表示方法,提高数学思维能力和解决实际问题的能力。
二、学情分析从学生的知识基础来看,他们已经掌握了等式的基本性质和一元一次方程的解法,对数学中的数量关系有了一定的认识。
但对于不等式的概念和解集的理解可能会存在一定的困难。
从学生的思维特点来看,七年级的学生正处于从具体形象思维向抽象逻辑思维过渡的阶段,他们需要更多的直观感知和实际操作来帮助理解抽象的数学概念。
从学生的学习兴趣来看,不等式在实际生活中有广泛的应用,通过联系实际问题,可以激发学生的学习兴趣和积极性。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解不等式的解、不等式的解集的概念。
(2)掌握在数轴上表示不等式解集的方法。
2、过程与方法目标(1)通过实际问题的引入,培养学生从实际问题中抽象出数学模型的能力。
(2)通过观察、比较、分析、归纳等数学活动,培养学生的逻辑思维能力和创新能力。
3、情感态度与价值观目标(1)让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
(2)培养学生的合作交流意识和勇于探索的精神。
四、教学重难点1、教学重点(1)理解不等式的解集的概念。
(2)掌握在数轴上表示不等式解集的方法。
2、教学难点正确理解不等式解集的概念,以及在数轴上准确表示不等式的解集。
五、教法与学法1、教法为了突出重点,突破难点,我将采用以下教学方法:(1)情境教学法:通过创设实际问题情境,激发学生的学习兴趣和求知欲。
不等式的性质与解集说课稿6篇不等式的性质与解集说课稿(精选篇1)我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。
一、教材分析:1.教材的地位和作用本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。
是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。
2.教学目标的确定教学目标分为三个层次的目标:1)知识目标:主要是理解并掌握不等式的三个基本性质。
2)能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的性质的能力。
3)情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。
3.教学重点和难点不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。
本节课的难点是用不等式的性质化简。
二、教学方法、教学手段的选择:本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。
使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。
为了突破学生对不等式性质应用的.困难,采取了类比操作化抽象为具体的方法来设置教学。
整节课采取精讲多练、讲练结合的方法来落实知识点。
三、学法指导:鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。
鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。
例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。
充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
四、(主要环节)教学流程:创设情境,复习引入等式的基本性质是什么?学生活动:独立思考,指名回答教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误。
初中新课程标准教材
教学设计( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
说课稿 / 初中说课稿 / 初中说课稿范文
编订:XX文讯教育机构
《不等式的解集》说课稿
教材简介:本教材主要用途为学习教案中的内容,提升自我能力、提升个人素质、提升德智体美劳等作用,本说课稿资料适用于初中科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
说课其实就是说说你是怎么教的,你为什么要这样教。
说课也是教师资格证考试和教师招聘考试中必需的环节。
下面是初中数学《不等式的解集》说课稿范文,欢迎借鉴!
《不等式的解集》说课稿
各位评委老师大家好!我说课的题目是华东师大版初中数学七年级(下)第八章第二节《解一元一次不等式》的第一节《不等式的解集》,下面我从教材分析等方面对本课的设计进行说明。
一、教材分析
本节课研究的是不等式的解集和不等式解集在数轴上的表示。
这之前学生已经初步学习了不等式和不等式解,这部分在本章中不但有承上启下的作用,而且为今后学习函数的应用奠定了数形结合的基础,因此它在教材中处于非常重要的位置。
一元一次不等式的解集是前面一元一次方程解的扩展,两者存在区别与联系。
在数轴上表示不等式的解集,是学生学习数轴之后,又一次接触到图形与数量的对应关系,同时为今后函数的学习提供了方法和依据。
二、目标分析
根据学生已有的认知基础和本科教材的地位,由于数学教学不仅是知识的教学,技能的训练,更能重视能力的培养及情感教育,因此确定教学目标1,2,3。
即:
1.知识目标:了解不等式解集的意义和不等式的解集在数轴上的表示。
2.能力目标:建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想。
3.情感目标:引导学生在独立思考的基础上,参与问题的讨论,激发学生主动获取知识的兴趣增强学生学习的信心。
教学重点:一元一次不等式的解集和表示。
教学难点:一元一次不等式解集的意义和不等式解集在数轴上的表示。
教学难点突破办法:通过观察,分析、概括过程,使学生对不等式的解集有了初步的理解,然后通过数轴直观地表示出不等式的解集,从而加深了学生对不等式的解集的理解。
三、教法分析
为创设宽松民主的学习气氛,激发学生思维的主动性,顺利完成教学目标根据学生特点和学生的实际情况采用引导发现法,计算机辅助教学。
将学生个体的自我反馈,小组间的合
作交流,与师生间的信息及时联系起来,形成多层次多方面的合作交流,共同发现知识,获取知识。
学生知识掌握过程离不开学生自身的智力活动,因此,在教学中,突出引导学生观察,分析,以旧探新,猜测论证等方法,揭示数学问题,并采用个人思考,分组讨论,汇报结果等多种形式,使每个学生都参与到学习中来,学生在获得知识的过程中悟出道理,得出结论,增强学习数学的自信心,
四、学法分析
1.学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。
2.合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。
五、教学过程
1.创设情景,提出问题
通过实际应用问题让学生在解决的过程中先找出几个符合题意的解,然后发现问题,这样,既复习了不等式,又给新课做好了铺垫,由此可以发现,不等式的解有许多个,他们组成一个集合,称为不等式的解集,这样既符合认知规律,又能找到最佳切入点,使学生产生探索的欲望,从而引出不等式的解集。
2.探究新知
通过讨论、交流、归纳得到:大于3的每个数都是不等式x+2>5的解,而小于3的每一
个数都不是不等式x+2>5的解,因此不等式x+2>5的解有无限多个,它们组成集合,称为一元不等式x+2>5的解集。
即表示为x>3。
由实例概括出不等式的解集以及解不等式的概念:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集过程,叫做解不等式。
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x>3.那么如何在数轴上直观地表示不等式x+2>5的解集x>3呢? 不等式解集x>3,在数轴上可以直观地表示出来。
如图8.2.1 如果某个不等式x≤-2,也可在数轴上直观地表示出来,如图8.2.2
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时往左拐。
3,讲解补充例题,
例1:判断:
①x=2是不等式4x<9的一个解.( )
② x=2是不等式4x<9的解集.( )
例2、将下列不等式的解集在数轴上表示出来:
(1)x<2
(2)x≥-2
(设计意图:例1是让学生理解不等式的解与不等式的解集。
联系与区别,例2揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)
4.巩固练习:课本44页练习2,3题
5.归纳总结,
结合板书,引导学生自我总结,重点知识和学习方法,达到掌握重点,顺理成章的目的。
6.作业:课本49页习题1,2题
设计意图:促进学生及时地复习课文,巩固和强化所学知识,提高解决问题的能力
附板书设计:(略)
XX文讯教育机构
WenXun Educational Institution。