碳纳米管纤维研究进展
- 格式:pdf
- 大小:609.32 KB
- 文档页数:6
10碳纳米管在橡胶工业中的应用研究进展崔小明摘 要:碳纳米管(CNTs)独特的结构使其具有超高的强度、极大的韧性、独特的导电、导热等性能,作为增强材料在橡胶工业中具有重要的应用。
介绍了碳纳米管在天然橡胶、合成橡胶以及多种橡胶并用方面的应用研究进展,指出了其今后的发展前景。
关键词:碳纳米管;天然橡胶;合成橡胶;橡胶并用;应用研究进展碳纳米管(C N T s)具有与炭黑相似的表面结构和化学组成,具有密度小、比表面积大、热化学稳定性好、力学性能优异、电磁性能和场发射性能良好等优点,作为一维结构的纳米填充材料不仅可以显著改善橡胶复合材料的导电、导热和力学等性能,同时也可赋予橡胶材料高强度、低膨胀、高耐磨、高导电、高导热等性能,在橡胶工业中具有广泛的应用。
介绍了CNTs在天然橡胶、合成橡胶以及多种橡胶并用方面的应用研究进展,指出了其今后的发展前景。
1 在天然橡胶中的应用太原理工大学化学化工学院李龙等[1]为了提高CO2分离膜的性能,将多壁碳纳米管(MWCNTs)添加到天然橡胶(NR)中制备NR/MWCNTs混合基质膜。
考察了MWCNTs含量对混合基质膜机械性能的影响,研究了MWCNTs含量、进料气压力和热交联时间对NR/MWCNTs混合基质膜CO2分离性能的影响以及膜的耐老化性能。
结果表明,随着MWCNTs的增加,混合基质膜的C O2渗透系数逐渐增加,而CO2/N2选择性先增加后减少;当MWCNTs与NR的质量比为2.0%,混合基质膜的气体分离性能达到最优,其C O2渗透系数和C O2/N2选择性分别为138B a r r e r和12.5。
随着压力的增加,膜的C O2渗透系数和CO2/N2选择性逐渐增加。
当热交联时间为24h,在压力为2bar下,MWCNTs与NR的质量比为2.0%的NR/MWCNTs混合基质膜的CO2渗透系数和CO2/N2选择性分别为95Barrer和16.8;且热交联的膜比未交联的混合基质膜具有更优异的耐老化性能。
收稿:2011-04-25;修回:2011-07-18;基金项目:国家高技术研究发展计划(863计划)项目(2009A A03Z528);作者简介:邱军,男,工学博士,教授,博士研究生导师,研究方向为高性能聚合物基复合材料;E -mail :qiujun @tong ji .edu .cn .碳纳米管及碳纤维增强环氧树脂复合材料研究进展邱 军,陈典兵(同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804) 摘要:碳纳米管与碳纤维具有优异的力学、电学等性能,广泛用做复合材料增强体,但目前碳纳米管/碳纤维/环氧树脂复合材料的研究具有一定的局限性,只考虑了两相材料间的作用,即仅对单一相进行处理而忽略了另一相的改性。
本文从碳纳米管/碳纤维协同增强环氧树脂基体复合材料的思路入手,结合自己的研究成果,综述了国内外相关研究进展。
从研究结果可以看出,将三相材料之间完全有效地联系起来,发挥三者间的协同效应,复合材料的性能可以发生质的飞跃。
关键词:碳纳米管;碳纤维;环氧树脂;三相复合材料引言日本科学家Iijim a [1]在1991年首次发现碳纳米管(CN Ts )。
碳纳米管具有着优异的力学、电性能和热性能,抗拉强度达到200GPa ,弹性模量可达1TPa ,并且具有低密度、高长径比等结构特点,因此成为聚合物复合材料的理想增强材料。
碳纤维(CF )具有十分优异的力学性能,同时耐高温、耐腐蚀、耐摩擦、抗疲劳、低热膨胀系数、导电导性、电磁屏蔽性优良等。
碳纤维复合材料同样具有其它复合材料无法比拟的优良性能,广泛应用于航空航天、汽车、电子电气等领域[2]。
环氧树脂(EP )是一种高性能复合材料基体,具有优良的机械性能、绝缘性能、耐腐蚀性能、黏接性能和低收缩性能。
当前以环氧树脂为基体的高性能复合材料应用广泛,碳纳米管/环氧树脂复合材料和碳纤维/环氧树脂复合材料凸显了优异的力学和综合性能,那么如何再进一步提高这两类复合材料的性能呢?本文在简要综述碳纳米管和碳纤维对环氧树脂复合材料性能改善的前提下,进一步综述了碳纳米管/碳纤维/环氧树脂三相复合材料的研究进展,并对其可能的发展进行了预测。
关于碳纳米管的研究进展1、前言1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。
这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新的“大碳结构”概念诞生了。
之后,人们相继发现并分离出C70、C76、C78、C84等。
1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。
年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。
1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。
1996年,我国科学家实现了碳纳米管的大面积定向生长。
1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。
1999年,国的一个研究小组制成了碳纳米管阴极彩色显示器样管。
2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。
2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。
2、碳纳米管的制备方法获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。
而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。
因此对碳纳米管制备工艺的研究具有重要的意义。
目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。
一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。
碳纳米管与碳纤维的生长及其应用研究碳纳米管(CNT)和碳纤维(CF)是两种独特的材料,拥有许多优异的物理性质和应用潜力。
CNT是由碳原子围绕着中心轴线成穹顶状排成的管状结构,而CF则是由大量细小的碳纤维缠绕聚合而成。
这两种材料的生长机制和应用研究日益引起科学家的关注。
1.碳纳米管的生长机制碳纳米管最初是由日本科学家尘烟秀男通过电弧放电法在石墨电极上制备出来的,随后有多种生长方法被发明并得到了广泛应用。
其中,最为常见的方法是基于化学气相沉积法(CVD),具体过程是,在一定温度下将碳源(如甲烷)与催化剂(如氧化镍)作用于CVD反应器中,形成的碳原子在催化剂表面的孔洞中聚集,随后形成管状结构并随气流被带走。
这个过程中,温度、气流速度和气相化学反应等参数都会影响CNT的生长速率和形貌,因此需要通过不断优化反应条件和控制催化剂表面形貌来获得理想的CNT。
除了CVD法之外,还有许多其他生长方法,如射频等离子体法、激光热解法、化学还原法等,它们各有优缺点,且能够制备出不同品质和形态的CNT。
对CNT的生长机制的深入探究以及对不同生长条件下CNT的生长形貌和性能的研究,能够为CNT的大规模制备和优化提供宝贵的理论和实践指导。
2.碳纤维的生长机制与CNT相比,碳纤维是一种更为传统和成熟的碳材料,其生长机制主要涉及碳化纤维的制备及碳化反应。
晶体结构的研究显示,CNT其实是由一层层的类石墨纳米片叠加而成,而纤维则是由纳米片层叠后再聚集成束。
因此,纤维的生长主要包括聚结和碳化两个过程:首先是聚结过程,其中纤维毛细力作用引起了类石墨片层的分布排列,形成初步连续的CBN(碳化硼氮)网络结构。
之后是碳化过程,即将预制的CBN网络结构在高温下用溶剂稀释制成流动的碳源溶液,再将其放在内部练制好的石墨坯体中,在真空或者惰性气氛中,经过热熔并反应生长出纤维形态的炭/碳或其复合材料。
纤维的生长过程主要受制于碳化速率及溶液纯度等因素,并且同时也能对于纤维性能的表现产生重要的影响。
Material Sciences 材料科学, 2020, 10(12), 952-956Published Online December 2020 in Hans. /journal/mshttps:///10.12677/ms.2020.1012114碳纳米管(CNT)纯化研究进展王白雪1,蒋姝1,陈顺才1,黄承洪21重庆轻工职业学院,重庆2重庆科技学院,重庆收稿日期:2020年11月16日;录用日期:2020年12月14日;发布日期:2020年12月21日摘要碳纳米管自被发现以来,由于其独特的分子结构与电化学特性,有望在物理、化学、生物等领域获得巨大的应用,而引起广泛的重视。
但由于规模化生产等工艺原因导致其含有较多的杂质,获得纯净的单壁(SWCNT)就显得较为困难。
本文就当前SWCNT的纯化方法包括氧化法、生物高聚物法、卟啉超分子法等纯化SWCNT进行了综述,为该领域的研究者们提供参考。
关键词碳纳米管,纯化Research Progress of Single Wall CarbonNanotubes (CNT) PurificationBaixue Wang1, Shu Jiang1, Shuncai Chen1, Chenghong Huang21Chongqing Light Industry Polytechnic College, Chongqing2Chongqing University of Science and Technology, ChongqingReceived: Nov. 16th, 2020; accepted: Dec. 14th, 2020; published: Dec. 21st, 2020AbstractCarbon nanotubes are taken more seriously importance since it was found as it has unique struc-ture and electrochemical characteristics. But, it usually carried impurities, which attributed to the inherent fabrication method of large-scale production. So, it is difficult to obtain unadulterated王白雪等CNT. This paper mainly reviews the progress of the purification of CNT by many methods including oxidation process, handling of acid, treatment of polymers and porphyrin supermolecules, etc. It aims to offer references for related researchers.KeywordsCarbon Nanotubes (CNT), PurificationThis work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言碳纳米管(Carbon nanotubes, CNTs)被发现以来就成为业界研究的热点[1]。
碳纳米管的制备方法研究进展一、本文概述随着纳米科技的飞速发展,碳纳米管作为一种具有独特结构和优异性能的一维纳米材料,受到了广泛关注。
碳纳米管因其出色的电学、力学、热学等特性,在能源、电子、生物医疗等领域具有巨大的应用潜力。
然而,碳纳米管的规模化制备及其性能优化仍是当前研究的热点和难点。
本文旨在综述近年来碳纳米管制备方法的研究进展,分析不同制备方法的优缺点,探讨未来可能的发展方向,以期为推动碳纳米管的实际应用提供理论支持和技术指导。
文章首先回顾了碳纳米管的基本结构和性质,为后续研究方法的介绍奠定基础。
随后,重点介绍了化学气相沉积法、电弧放电法、激光烧蚀法等多种碳纳米管制备方法的研究进展,分析了这些方法在制备过程中的关键因素及其对碳纳米管性能的影响。
文章还关注了新兴制备方法如溶液法、模板法等在碳纳米管制备中的应用,以及这些方法的创新点和挑战。
通过对已有文献的梳理和评价,本文总结了当前碳纳米管制备领域的主要成果和不足,展望了未来的发展趋势。
未来,随着科学技术的不断进步,碳纳米管的制备方法将更加多样化、高效化,有望为碳纳米管的产业化发展奠定坚实基础。
二、碳纳米管的基本性质碳纳米管(Carbon Nanotubes,CNTs)是一种由碳原子以特定方式排列形成的一维纳米材料,自从1991年被首次发现以来,因其独特的结构和性质,已成为纳米科学和技术领域的研究热点。
碳纳米管的基本性质主要体现在其结构、电学、热学和力学性能上。
结构上,碳纳米管可以看作是由单层或多层石墨烯片卷曲而成的无缝管状结构,这种独特的结构赋予了碳纳米管出色的物理和化学性质。
电学方面,碳纳米管因其特殊的电子结构和量子限域效应,表现出优异的导电性能,既可以是金属性,也可以是半导体性,这取决于其直径和螺旋度。
热学方面,碳纳米管具有极高的热导率,使其成为潜在的散热材料。
力学性能上,碳纳米管具有超高的强度和模量,比钢强而轻,这使得它在复合材料增强和纳米机械等领域具有广阔的应用前景。