Medium-Voltage Matrix Converter Design Using Cascaded Single-Phase Power Cell Modules
- 格式:pdf
- 大小:935.32 KB
- 文档页数:7
2007年 3 月电工技术学报Vol.22 No.3 第22卷第3期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Mar. 2007矩阵变换器−永磁同步电机矢量控制系统的新型电流控制方法葛红娟周波苏国庆张绍(南京航空航天大学自动化学院南京 210016)摘要分析了基于电流滞环控制的矩阵变换器−永磁同步电机(MC-PMSM)系统的开关组合状态和存在的缺点:系统侧电流存在较大的5次和7次谐波分量。
提出了一种改进电流控制方法,该方法采用电机电流双环控制,得出三相电机电流的6个电流控制信号,并将输入三相电压分成12个相区,根据电流控制信号和相区号的不同,选择不同的输入相与输出相连接,确定出矩阵变换器开关组合状态。
在该方法中,每个输入相在整个周期内都参与调制,降低了系统输入电流的谐波分量,提高了系统输入电流的正弦度。
关键词:矩阵变换器永磁同步电机谐波分量电流双环控制矢量控制中图分类号:TM301Novel Current Modulation Approach for the Vector Control ofMC-PMSM SystemGe Hongjuan Zhou Bo Su Guoqing Zhang Shao(Nanjing University of Aeronautics and Astronautics Nanjing 210016 China)Abstract An improved current hysteresis-loop modulation approach for the vector control of matrix converter-permanent magnet synchronous motor (MC-PMSM) system is presented in this paper.With the approach, the three-phase input voltages are divided into twelve sections and three pairs of current control signals are deduced by comparing the reference values and the measured values of the output currents based on double current loops. Then, the states of the switches in the MC-PMSM system are determined according to the section number of the input voltages and one of the three pairs of current control signals, so that the modulation of every input voltage phase hold in the whole periods.Hence the 5th harmonic, the 7th harmonic, and the total harmonic distortion (THD) of the input currents, which are relative large when the based current hysteresis-loop modulation method is adopted in the system, are obviously reduced and the input currents of the system become more sinusoidal.Keywords:Matrix converter, permanent magnet synchronous motor, harmonic components, double current loop modulation, vector control1引言矩阵变换器可以实现输入电流和输出电压波形的正弦化,输入功率因数可调,没有大体积的直流环节,因此,在交流传动系统中蕴藏着良好的应用前景。
1 backplane 背板2 Band gap voltage reference 带隙电压参考3 benchtop supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capcitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Sataration 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障。
建议不要工作在电特性表规定的参数范围以外。
25 Failling edge 下降沿26 figure of merit 品质因数27 float charge voltage 浮充电压28 flyback power stage 反驰式功率级29 forward voltage drop 前向压降30 free-running 自由运行31 Freewheel diode 续流二极管32 Full load 满负载33 gate drive 栅极驱动34 gate drive stage 栅极驱动级35 gerber plot Gerber 图36 ground plane 接地层37 Henry 电感单位:亨利38 Human Body Model 人体模式39 Hysteresis 滞回40 inrush current 涌入电流41 Inverting 反相42 jittery 抖动43 Junction 结点44 Kelvin connection 开尔文连接45 Lead Frame 引脚框架46 Lead Free 无铅47 level-shift 电平移动48 Line regulation 电源调整率49 load regulation 负载调整率50 Lot Number 批号51 Low Dropout 低压差52 Miller 密勒53 node 节点54 Non-Inverting 非反相55 novel 新颖的56 off state 关断状态57 Operating supply voltage 电源工作电压58 out drive stage 输出驱动级59 Out of Phase 异相60 Part Number 产品型号61 pass transistor pass transistor62 P-channel MOSFET P沟道MOSFET63 Phase margin 相位裕度64 Phase Node 开关节点65 portable electronics 便携式电子设备66 power down 掉电67 Power Good 电源正常68 Power Groud 功率地69 Power Save Mode 节电模式70 Power up 上电71 pull down 下拉72 pull up 上拉73 Pulse by Pulse 逐脉冲(Pulse by Pulse)74 push pull converter 推挽转换器75 ramp down 斜降76 ramp up 斜升77 redundant diode 冗余二极管78 resistive divider 电阻分压器79 ringing 振铃80 ripple current 纹波电流81 rising edge 上升沿82 sense resistor 检测电阻83 Sequenced Power Supplys 序列电源84 shoot-through 直通,同时导通85 stray inductances. 杂散电感86 sub-circuit 子电路87 substrate 基板88 Telecom 电信89 Thermal Information 热性能信息90 thermal slug 散热片91 Threshold 阈值92 timing resistor 振荡电阻93 Top FET Top FET94 Trace 线路,走线,引线95 Transfer function 传递函数96 Trip Point 跳变点97 turns ratio 匝数比,=Np / Ns。
英文电子专业词汇(新手必备)1 backplane 背板2 Band gap voltage reference 带隙电压参考3 bench top supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capacitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Saturation 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障。
建议不要工作在电特性表规定的参数范围以外。
25 Failing edge 下降沿26 figure of merit 品质因数27 float charge voltage 浮充电压28 flyback power stage 反驰式功率级29 forward voltage drop 前向压降30 free-running 自由运行31 Freewheel diode 续流二极管32 Full load 满负载33 gate drive 栅极驱动34 gate drive stage 栅极驱动级35 gerber plot Gerber 图36 ground plane 接地层37 Henry 电感单位:亨利38 Human Body Model 人体模式39 Hysteresis 滞回40 inrush current 涌入电流41 Inverting 反相42 jittery 抖动43 Junction 结点44 Kelvin connection 开尔文连接45 Lead Frame 引脚框架46 Lead Free 无铅47 level-shift 电平移动48 Line regulation 电源调整率49 load regulation 负载调整率50 Lot Number 批号51 Low Dropout 低压差52 Miller 密勒53 node 节点54 Non-Inverting 非反相55 novel 新颖的56 off state 关断状态57 Operating supply voltage 电源工作电压58 out drive stage 输出驱动级59 Out of Phase 异相60 Part Number 产品型号61 pass transistor pass transistor62 P-channel MOSFET P沟道MOSFET63 Phase margin 相位裕度64 Phase Node 开关节点65 portable electronics 便携式电子设备66 power down 掉电67 Power Good 电源正常68 Power Groud 功率地69 Power Save Mode 节电模式70 Power up 上电71 pull down 下拉72 pull up 上拉73 Pulse by Pulse 逐脉冲(Pulse by Pulse)74 push pull converter 推挽转换器75 ramp down 斜降76 ramp up 斜升77 redundant diode 冗余二极管78 resistive divider 电阻分压器79 ringing 振铃80 ripple current 纹波电流81 rising edge 上升沿82 sense resistor 检测电阻83 Sequenced Power Supplys 序列电源84 shoot-through 直通,同时导通85 stray inductances. 杂散电感86 sub-circuit 子电路87 substrate 基板88 Telecom 电信89 Thermal Information 热性能信息90 thermal slug 散热片91 Threshold 阈值92 timing resistor 振荡电阻93 Top FET Top FET94 Trace 线路,走线,引线95 Transfer function 传递函数96 Trip Point 跳变点97 turns ratio 匝数比,=Np / Ns。
第51卷第23期电力系统保护与控制Vol.51 No.23 2023年12月1日Power System Protection and Control Dec. 1, 2023 DOI: 10.19783/ki.pspc.230464可实现低频输电系统不对称故障穿越的M3C电容电压均衡控制策略郑 涛1,康 恒1,宋伟男2(1.新能源电力系统国家重点实验室(华北电力大学),北京 102206;2.国网辽宁省电力有限公司大连供电公司,辽宁 大连 116000)摘要:低频输电作为一种新型输电技术,在海上风电送出、新能源场站送出等多个场景具有良好的应用前景。
但在不对称故障下,故障侧功率不对称将严重影响模块化多电平矩阵变换器(modular multilevel matrix converter, M3C)的电容电压均衡,对低频输电系统安全稳定运行产生不利影响。
为此,提出了一种可实现低频输电系统不对称故障穿越的M3C电容电压均衡控制策略。
首先,介绍M3C的系统结构及双αβ0数学模型,并分析不对称故障下电容电压不均衡的原因。
然后,基于双αβ0数学模型针对输电线路不对称故障情况计算桥臂功率不均衡分量的表达式,通过M3C功率平衡关系引入电流补偿分量,消除桥臂功率的不均衡,并得到适用于不对称故障的环流控制目标,进而通过环流控制实现故障下M3C电容电压的均衡。
最后,搭建基于M3C的低频输电系统仿真模型验证所提控制方案的可行性和有效性。
关键词:低频输电;模块化多电平矩阵变换器;环流控制;电容电压均衡Asymmetric fault ride-through control strategy for low-frequency transmission systems realizing the capacitor voltage balance of modular multilevel matrix convertersZHENG Tao1, KANG Heng1, SONG Weinan2(1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China ElectricPower University), Beijing 102206, China; 2. Dalian Power Supply Company, State Grid LiaoningElectric Power Company, Dalian 116000, China)Abstract: As a new transmission technology, low frequency transmission has good application prospects in several scenarios such as offshore wind power transmission and new energy field station transmission. However, with asymmetric faults, the power asymmetry on the fault side will affect the capacitor voltage balance of the M3C and affect the stable operation of the low frequency transmission system. Therefore, an M3C capacitor voltage balance control strategy that can realize asymmetric fault ride-through in low frequency transmission systems is proposed. First, the system structure and dual αβ0 mathematical model of an M3C are introduced, and the causes of capacitor voltage imbalance under asymmetric faults are analyzed. Second, based on the dual αβ0 mathematical model for the transmission line asymmetric fault case, the expression for the bridge arm power imbalance component is calculated. Then the M3C power balance relationship introduces the current compensation to eliminate the power imbalance. It also obtains the circulating currents control objective applicable to asymmetric faults. Then through the loop current control it achieves the M3C capacitor voltage balance under faults. Finally, a simulation model of the M3C-based low frequency transmission system is built to verify the feasibility and effectiveness of the proposed control scheme.This work is supported by the Joint Fund of National Natural Science Foundation of China (No. U2166205).Key words: low frequency transmission system; modular multilevel matrix converter; circulating currents control;capacitor voltage balance基金项目:国家自然科学基金联合基金项目资助(U2166205)郑涛,等可实现低频输电系统不对称故障穿越的M3C电容电压均衡控制策略- 131 -0 引言低频输电技术,也被称为分频输电技术,通过AC/AC变频器将传统工频交流电变换为低频交流电进行输送,或者直接对新能源场站低频交流电进行送出[1-3]。
专利名称:MATRIX CONVERTER 发明人:LACAZE, ALAIN申请号:EP06708716.3申请日:20060310公开号:EP1864371B1公开日:20091014专利内容由知识产权出版社提供摘要:The invention concerns a matrix converter (3) for converting a polyphase alternating current (6) into a desired output alternating current (7), a plurality of controllable two-way switches (4) converting a polyphase alternating current (6) with m phases into an output alternating current with n (n < m) phases (L1,...,L3) of a load. The invention aims at substantially reducing and simplifying the architecture of such a matrix converter. Therefor, according to the invention, there are provided at least two stages (8, 9), each phase of the polyphase alternating current (6) being controlled by a controllable two-way switch in at least one stage (8) of the converter. The architecture is still more significantly simplified, if m is an integral multiple of n and if, in at least one stage (9) of the converter, m/n groups (12) of controllable two-way switches (4) are used, each group (12) having n parallel two-way switches (4) which are connected individually to each of the phases of the output alternating current (7).申请人:ALSTOM TECHNOLOGY LTD,ALSTOM TECHNOLOGY LTD,ALSTOM TECHNOLOGY LTD地址:CH国籍:CH更多信息请下载全文后查看。
有伴电流源accompanied current source有伴电压源accompanied voltage source有功分量 active component有源低通网络active low-pass network有功功率 active power有源二端网络active two-terminal network加法器adder可加性 additivity property导纳 admittance导纳三角形 admittance triangle空心变压器 air-core transformer交变电磁场 alternating electromagnetic field安培ampere振幅 amplitude振幅相量 amplitude phasor幅值频谱 amplitude spectrum幅频特性 amplitude-frequency characteristic角频率 angular frequency阻尼振荡角频率angular frequency of the damped oscillation 视在功率 apparent power参考方向 associated reference directions衰减常数 attenuation constant平均功率average power支路branch支路导纳矩阵branch admittance matrix支路电导矩阵 branch conductance matrix支路电流向量branch current vector支路阻抗矩阵branch impedance matrix支路电阻矩阵branch resistance matrix支路电压向量branch voltage vector支路分析法branch-analysis method支路电流法branch-current method支路电压法branch-voltage method电桥电路bridge circuit电容capacitance容抗capacitive reactance容纳capacitive susceptance电容元件 capacitor纯电容回路 capacitor-only loop级联cascade connection特性方程 characteristic equation特性阻抗characteristic impedance特征根 characteristic root电荷 charge电路 circuit电路元件circuit element电路参数circuit parameter补图 complement subgraph通解 complementary-function solution全响应 complete response复指数函数 complex exponential function复频率complex frequency复频域导纳 complex frequency-domain admittance 复频域阻抗 complex frequency-domain impedance 复功率complex power部件,分量component凹电阻元件concave resistor电导conductance共轭匹配conjugate matching连通图connected graph顺接(正向串联)connection in aiding非独立源(受控源)controlled source凸电阻元件convex resistor补树cotree库仑 coulomb耦合电感元件 coupled inductors耦合系数 coupling coefficient临界阻尼情形critically damped case电流 current电流放大系数 current amplification factor电流源 current source电流源向量 current source vector电流控制的电流源 current-controlled current source 电流控电阻元件current-controlled resistor电流控制的电压源 current-controlled voltage source 割集 cut set割集导纳矩阵cut set admittance matrix割集分析法 cut set analysis method割集电导矩阵 cut set conductance matrix割集电流源向量 cut set current source vector阻尼系数 damping coefficient三角形电阻网络 delta-connected resistance network 差动输入电压 differential input voltage回转方向direction of gyration非连通图 disconnected graph位移电流 displacement current分布参数电路 distributed circuit同名端 dotted terminals策动点导纳driving point admittance策动点函数driving point function策动点阻抗driving point impedance对偶元件 dual element对偶图dual graph对偶网络dual network对偶参数 dual parameter对偶性duality动态电路 dynamic circuit动态元件 dynamic element有效值 effective value有效值相量 effective value phasor效率efficiency电场electric field电场能量 electric field energy电磁波 electromagnetic wave等效导纳 equivalent admittance等效电导 equivalent conductance等效阻抗 equivalent impedance等效电抗equivalent reactance等效电纳equivalent susceptance偶函数 even function激励 excitation法拉 farad法拉第电磁感应定律Farady’s law of electromagnetic induction 一阶电路 first-order circuit强制分量 forced component强迫响应 forced response自由分量free component频率 frequency频域frequency domain频率响应frequency response频谱 frequency spectrum选频特性frequency-selection characteristic基本割集fundamental cut set基本割集矩阵fundamental cut set matrix基本回路 fundamental loop基本回路矩阵 fundamental loop matrix基波(一次谐波) fundamental wave(first harmonic)充气二极管 gas diode图graph回转电导gyration conductance回转电阻gyration resistance回转器 gyrator半波对称函数 half-wave symmetrical function谐波分析 harmonic analysis亨利 henry赫兹(赫) hertz(Hz)高次谐波higher order harmonic齐次性 homogeneity property混合参数矩阵 hybrid parameter matrix理想二极管ideal diode理想变量器 ideal transformer虚部imaginary part阻抗 impedance阻抗三角形impedance triangle非常态网络improper network冲激响应impulse response同相 in phase关联矩阵 incidence matrix独立源 independent source电感 inductance感抗inductive reactance感纳inductive susceptance电感元件inductor纯电感割集 inductor-only cut set初始条件initial condition初始状态 initial state输入 input输入阻抗input impedance输入端口 input port输入-输出方程input-output equation瞬时功率 instantaneous power拉普拉斯反变换 inverse Laplace transform逆传输矩阵 inverse transmission matrix反接(反向串联) inversed connection, connection in opposition 反相放大器 inverting amplifier反相输入端inverting input terminal千赫kilohertz基尔霍夫定律 Kirchhoff’s law基尔霍夫电流定律Kirchhoffs current law基尔霍夫电压定律Kirchhoffs voltage law滞后 lag拉普拉斯变换 Laplace transform超前lead楞次定律Lenz’s law线电流line current线电压line voltage线性电容元件linear capacitor线性电路 linear circuit线性受控源linear controlled source线性耦合电感元件 linear coupled inductors线性电感元件linear inductor线性网络linear network线性电阻元件 linear resistor连支link连支电流向量 link current vector负载 load有载二端口网络loaded two-port network回路loop回路电流loop current回路阻抗矩阵 loop impedance matrix回路电阻矩阵 loop resistance matrix回路电压源向量 loop voltage source vector回路分析法loop-analysis method无损耗线lossless line集中参数电路lumped circuit集中参数元件lumped element磁场 magnetic field磁场能量 magnetic field energy磁通 magnetic flux磁通链(全磁通) magnetic flux linkage (total magnetic flux)匹配matching记忆元件memory element无记忆元件memoryless element网孔电流mesh current网孔分析法mesh-analysis method微法 microfarad微亨microhenry毫亨millihenry模型model互电导mutual conductance互感mutual inductance互感电抗 mutual inductive reactance互电阻mutual resistance固有频率(自然频率) natural frequency自然响应natural response逆序(负序)negative sequence负阻抗变换器 negative-impedance converter网络network网络函数 network function网络变量 network variable中性点(中点)neutral point中线neutral wire节点 node节点导纳矩阵 node admittance matrix节点电导矩阵node conductance matrix节点电流源向量 node current source vector节点电压node voltage节点电压向量node voltage vector节点分析法node-analysis method节点-支路关联矩阵node-to-branch incidence matrix标称值nominal value非能元件non-energic element同相输入端non-inverting input terminal非线性电容元件nonlinear capacitor非线性电路nonlinear circuit非线性受控源 nonlinear controlled source非线性耦合电感元件 nonlinear coupled inductors非线性电感元件 nonlinear inductor非线性电阻元件 nonlinear resistor非正弦信号nonsinusoidal signal诺顿等效电路Norton’s equivalent circuit诺顿定理 Norton’s theorem奇函数odd function奇谐波函数odd harmonic function欧姆 ohm欧姆定律 Ohm’s law开路open-circuit开路阻抗矩阵 open-circuit impedance matrix开路阻抗参数 open-circuit impedance parameters开路输入阻抗 open-circuit input impedance开路输出阻抗 open-circuit output impedance开环电压增益open-loop voltage gain工作点operating point运算导纳operational admittance运算放大器operational amplifier运算阻抗 operational impedance反相 opposite phase有向图 oriented graph, digraph原始状态 original state振荡情形(欠阻尼情形) oscillatory case(underdamped case)外网孔outer mesh输出output输出方程output equation输出阻抗 output impedance输出端口output port并联谐振parallel resonance部分分式展开法 partial-fraction-expansion method特解 particular solution通频带宽度pass-band width路径path阻尼振荡周期 period of the damped oscillation初相phase相角phase angle相移常数phase constant相电流 phase current相位差 phase difference相电压phase voltage相频特性 phase-frequency characteristic相量图phasor diagram电路元件方程的相量形式 phasor relations for circuit elements 皮法 picofarad分段线性处理法piecewise-linear technique平面电路 planar circuit平面图 planar graphPN结二极管P-N junction diode端口端点port terminal正相序(正序) positive sequence电位potential电位差 potential difference电位降potential drop电位参考点 potential reference point电位升 potential rise功率因素 power factor功率因素角 power factor angle功率三角形power triangle初级电路(原边)primary circuit脉冲幅值(脉冲高度)pulse amplitude(pulse altitude)脉冲持续时间(脉冲宽度)pulse duration(pulse width)品质因数 quality factor似功率(拟功率)quasi-power额定容量 rated capacity额定电流rated current额定功率rated power额定电压rated voltage无功分量reactive component无功功率 reactive power实部real part互易二端口网络 reciprocal two-port network互易条件 reciprocity condition互易网络 reciprocity network互易定理reciprocity theorem矩形脉冲rectangular pulse参考方向reference direction参考相量reference phasor收敛域region of convergence电阻resistance电阻元件 resistor谐振电路 resonant circuit响应response右螺旋定则right-handed screw rule均方根值root-mean-square value旋转相量 rotating phasor采样性质 sampling property比例器 scaler次级电路(副边) secondary circuit二阶电路 second-order circuit选择性selectivity自电导self conductance自感self inductance自电阻self resistance串联谐振 series resonance串联谐振角频率 series resonance angular frequency短路short circuit短路导纳矩阵short-circuit admittance matrix短路导纳参数short-circuit admittance parameters短路输入导纳short-circuit input admittance短路输出导纳 short-circuit output admittance西门子 siemens信号 signal奇异函数singular function正弦函数 sinusoidal function正弦稳态 sinusoidal steady state正弦稳态响应 sinusoidal steady-state response小信号等效电路small-signal equivalent circuit小信号电阻small-signal resistance小信号分析法 small-signal-analysis method电源 source星形电阻网络 star-connected resistance network状态方程 state equation状态变量state variable稳定状态(稳态)steady state稳态分量steady-state component稳态响应steady-state response阶跃响应 step response子图 subgraph替代定理 substitution theorem广义节点supernode叠加定理superposition theorem换路 switching对称三相电路symmetrical three-phase circuit对称三相电压 symmetrical three-phase voltages对称三端电阻网络symmetrical three-terminal resistance network 对称二端口网络 symmetrical two-port networkT形网络T- connected network特勒根功率定理Tellegen’s power theorem特勒根似(拟)功率定理Tellegen’s quasi-power theorem特勒根定理Tellegen’s theorem端电流 terminal current端电压terminal voltage端线terminal wire戴维南等效电路Thevenin's equivalent circuit戴维南定理Thevenin's theorem三相电路 three-phase circuit三相四线制 three-phase four-wire system三相制three-phase system三相三线制three-phase three-wire system时间常数 time constant非时变性time-invariance property非时变电阻元件 time-invariant resistor非时变电容元件 time-invarying capacitor非时变电感元件 time-invarying inductor时域位移定理time-shift theorem时变电容元件 time-varying capacitor时变电感元件time-varying inductor时变电阻元件time-varying resistor拓扑约束 topological constraint转移导纳 transfer admittance转移电导 transfer conductance转移电流比transfer current ratio转移电流比 transfer current ratio转移函数transfer function转移函数矩阵transfer function matrix转移阻抗transfer impedance转移电阻 transfer resistance转移电压比 transfer voltage ratio转移电压比transfer voltage ratio变比 transformation ratio暂态分量 transient component暂态响应 transient response暂态(瞬变状态) transient state传输参数矩阵(传输矩阵) transmission parameter matrix传输参数transmission parameters树 tree树支 tree branch树支电压向量 tree branch voltage vector隧道二极管 tunnel diode二端口耦合电感元件two-port coupled inductors二端口元件two-port element二端口网络two-port network二端口网络two-port network二端元件two-terminal element二端网络two-terminal network等幅振荡(欠阻尼振荡)unattenuated oscillation (undamped oscillation)均匀传输线uniform transmission line单位冲激函数 unit-impulse function单位阶跃函数unit-step function不对称三相电路unsymmetrical three-phase circuit基本割集电压向量vector of fundamental cut set voltage基本回路电流向量 vector of fundamental loop currentv-i特性v-i characteristic虚短路 virtual short circuit伏特 volt电压voltage电压放大系数 voltage amplification factor电压跟随器 voltage follower电压源 voltage source电压源向量 voltage source vector电压控制的电流源 voltage-controlled current source 电压控电阻元件voltage-controlled resistor电压控制的电压源 voltage-controlled voltage source 无功伏安(乏)volt-ampere reactive(var)瓦特watt波长 wave length韦伯weber零电位点zero potential point零状态zero state零输入响应 zero-input response零状态响应 zero-state response。
自动化英语专业英语词汇表文章摘要:本文介绍了自动化英语专业的一些常用的英语词汇,包括自动化技术、控制理论、系统工程、人工智能、模糊逻辑等方面的专业术语。
本文按照字母顺序,将这些词汇分为26个表格,每个表格包含了以相应字母开头的词汇及其中文释义。
本文旨在帮助自动化专业的学习者和从业者掌握和使用这些专业英语词汇,提高他们的英语水平和专业素养。
A英文中文acceleration transducer加速度传感器acceptance testing验收测试accessibility可及性accumulated error累积误差AC-DC-AC frequency converter交-直-交变频器AC (alternating current) electric drive交流电子传动active attitude stabilization主动姿态稳定actuator驱动器,执行机构adaline线性适应元adaptation layer适应层adaptive telemeter system适应遥测系统adjoint operator伴随算子admissible error容许误差aggregation matrix集结矩阵AHP (analytic hierarchy process)层次分析法amplifying element放大环节analog-digital conversion模数转换annunciator信号器antenna pointing control天线指向控制anti-integral windup抗积分饱卷aperiodic decomposition非周期分解a posteriori estimate后验估计approximate reasoning近似推理a priori estimate先验估计articulated robot关节型机器人assignment problem配置问题,分配问题associative memory model联想记忆模型associatron联想机asymptotic stability渐进稳定性attained pose drift实际位姿漂移B英文中文attitude acquisition姿态捕获AOCS (attritude and orbit control system)姿态轨道控制系统attitude angular velocity姿态角速度attitude disturbance姿态扰动attitude maneuver姿态机动attractor吸引子augment ability可扩充性augmented system增广系统automatic manual station自动-手动操作器automaton自动机autonomous system自治系统backlash characteristics间隙特性base coordinate system基座坐标系Bayes classifier贝叶斯分类器bearing alignment方位对准bellows pressure gauge波纹管压力表benefit-cost analysis收益成本分析bilinear system双线性系统biocybernetics生物控制论biological feedback system生物反馈系统C英文中文calibration校准,定标canonical form标准形式canonical realization标准实现capacity coefficient容量系数cascade control级联控制causal system因果系统cell单元,元胞cellular automaton元胞自动机central processing unit (CPU)中央处理器certainty factor确信因子characteristic equation特征方程characteristic function特征函数characteristic polynomial特征多项式characteristic root特征根英文中文charge-coupled device (CCD)电荷耦合器件chaotic system混沌系统check valve单向阀,止回阀chattering phenomenon颤振现象closed-loop control system闭环控制系统closed-loop gain闭环增益cluster analysis聚类分析coefficient of variation变异系数cogging torque齿槽转矩,卡齿转矩cognitive map认知图,认知地图coherency matrix相干矩阵collocation method配点法,配置法combinatorial optimization problem组合优化问题common mode rejection ratio (CMRR)共模抑制比,共模抑制率commutation circuit换相电路,换向电路commutator motor换向电动机D英文中文damping coefficient阻尼系数damping ratio阻尼比data acquisition system (DAS)数据采集系统data fusion数据融合dead zone死区decision analysis决策分析decision feedback equalizer (DFE)决策反馈均衡器decision making决策,决策制定decision support system (DSS)决策支持系统decision table决策表decision tree决策树decentralized control system分散控制系统decoupling control解耦控制defuzzification去模糊化,反模糊化delay element延时环节,滞后环节delta robot德尔塔机器人demodulation解调,检波density function密度函数,概率密度函数derivative action微分作用,微分动作design matrix设计矩阵E英文中文eigenvalue特征值,本征值eigenvector特征向量,本征向量elastic element弹性环节electric drive电子传动electric potential电势electro-hydraulic servo system电液伺服系统electro-mechanical coupling system电机耦合系统electro-pneumatic servo system电气伺服系统electronic governor电子调速器encoder编码器,编码装置end effector末端执行器,末端效应器entropy熵equivalent circuit等效电路error analysis误差分析error bound误差界,误差限error signal误差信号estimation theory估计理论Euclidean distance欧几里得距离,欧氏距离Euler angle欧拉角Euler equation欧拉方程F英文中文factor analysis因子分析factorization method因子法,因式分解法feedback反馈,反馈作用feedback control反馈控制feedback linearization反馈线性化feedforward前馈,前馈作用feedforward control前馈控制field effect transistor (FET)场效应晶体管filter滤波器,滤波环节finite automaton有限自动机finite difference method有限差分法finite element method (FEM)有限元法finite impulse response (FIR) filter有限冲激响应滤波器first-order system一阶系统fixed-point iteration method不动点迭代法flag register标志寄存器flip-flop circuit触发器电路floating-point number浮点数flow chart流程图,流程表fluid power system流体动力系统G英文中文gain增益gain margin增益裕度Galerkin method伽辽金法game theory博弈论Gauss elimination method高斯消元法Gauss-Jordan method高斯-约当法Gauss-Markov process高斯-马尔可夫过程Gauss-Seidel iteration method高斯-赛德尔迭代法genetic algorithm (GA)遗传算法gradient method梯度法,梯度下降法graph theory图论gravity gradient stabilization重力梯度稳定gray code格雷码,反向码gray level灰度,灰阶grid search method网格搜索法ground station地面站,地面控制站guidance system制导系统,导航系统gyroscope陀螺仪,陀螺仪器H英文中文H∞ control H无穷控制Hamiltonian function哈密顿函数harmonic analysis谐波分析harmonic oscillator谐振子,谐振环节Hartley transform哈特利变换Hebb learning rule赫布学习规则Heisenberg uncertainty principle海森堡不确定性原理hidden layer隐层,隐含层hidden Markov model (HMM)隐马尔可夫模型hierarchical control system分层控制系统high-pass filter高通滤波器Hilbert transform希尔伯特变换Hopfield network霍普菲尔德网络hysteresis滞后,迟滞,磁滞I英文中文identification识别,辨识identity matrix单位矩阵,恒等矩阵image processing图像处理impulse response冲激响应impulse response function冲激响应函数inadmissible control不可接受控制incremental encoder增量式编码器indefinite integral不定积分index of controllability可控性指标index of observability可观测性指标induction motor感应电动机inertial navigation system (INS)惯性导航系统inference engine推理引擎,推理机inference rule推理规则infinite impulse response (IIR) filter无限冲激响应滤波器information entropy信息熵information theory信息论input-output linearization输入输出线性化input-output model输入输出模型input-output stability输入输出稳定性J英文中文Jacobian matrix雅可比矩阵jerk加加速度,冲击joint coordinate system关节坐标系joint space关节空间Joule's law焦耳定律jump resonance跳跃共振K英文中文Kalman filter卡尔曼滤波器Karhunen-Loeve transform卡尔胡南-洛维变换kernel function核函数,核心函数kinematic chain运动链,运动链条kinematic equation运动方程,运动学方程kinematic pair运动副,运动对kinematics运动学kinetic energy动能L英文中文Lagrange equation拉格朗日方程Lagrange multiplier拉格朗日乘子Laplace transform拉普拉斯变换Laplacian operator拉普拉斯算子laser激光,激光器latent root潜根,隐根latent vector潜向量,隐向量learning rate学习率,学习速度least squares method最小二乘法Lebesgue integral勒贝格积分Legendre polynomial勒让德多项式Lennard-Jones potential莱纳德-琼斯势level set method水平集方法Liapunov equation李雅普诺夫方程Liapunov function李雅普诺夫函数Liapunov stability李雅普诺夫稳定性limit cycle极限环,极限圈linear programming线性规划linear quadratic regulator (LQR)线性二次型调节器linear system线性系统M英文中文machine learning机器学习machine vision机器视觉magnetic circuit磁路,磁电路英文中文magnetic flux磁通量magnetic levitation磁悬浮magnetization curve磁化曲线magnetoresistance磁阻,磁阻效应manipulability可操作性,可操纵性manipulator操纵器,机械手Markov chain马尔可夫链Markov decision process (MDP)马尔可夫决策过程Markov property马尔可夫性质mass matrix质量矩阵master-slave control system主从控制系统matrix inversion lemma矩阵求逆引理maximum likelihood estimation (MLE)最大似然估计mean square error (MSE)均方误差measurement noise测量噪声,观测噪声mechanical impedance机械阻抗membership function隶属函数N英文中文natural frequency固有频率,自然频率natural language processing (NLP)自然语言处理navigation导航,航行negative feedback负反馈,负反馈作用neural network神经网络neuron神经元,神经细胞Newton method牛顿法,牛顿迭代法Newton-Raphson method牛顿-拉夫逊法noise噪声,噪音nonlinear programming非线性规划nonlinear system非线性系统norm范数,模,标准normal distribution正态分布,高斯分布notch filter凹槽滤波器,陷波滤波器null space零空间,核空间O英文中文observability可观测性英文中文observer观测器,观察器optimal control最优控制optimal estimation最优估计optimal filter最优滤波器optimization优化,最优化orthogonal matrix正交矩阵oscillation振荡,振动output feedback输出反馈output regulation输出调节P英文中文parallel connection并联,并联连接parameter estimation参数估计parity bit奇偶校验位partial differential equation (PDE)偏微分方程passive attitude stabilization被动姿态稳定pattern recognition模式识别PD (proportional-derivative) control比例-微分控制peak value峰值,峰值幅度perceptron感知器,感知机performance index性能指标,性能函数period周期,周期时间periodic signal周期信号phase angle相角,相位角phase margin相位裕度phase plane analysis相平面分析phase portrait相轨迹,相图像PID (proportional-integral-derivative) control比例-积分-微分控制piezoelectric effect压电效应pitch angle俯仰角pixel像素,像元Q英文中文quadratic programming二次规划quantization量化,量子化quantum computer量子计算机quantum control量子控制英文中文queueing theory排队论quiescent point静态工作点,静止点R英文中文radial basis function (RBF) network径向基函数网络radiation pressure辐射压random variable随机变量random walk随机游走range范围,区间,距离rank秩,等级rate of change变化率,变化速率rational function有理函数Rayleigh quotient瑞利商real-time control system实时控制系统recursive algorithm递归算法recursive estimation递归估计reference input参考输入,期望输入reference model参考模型,期望模型reinforcement learning强化学习relay control system继电器控制系统reliability可靠性,可信度remote control system遥控系统,远程控制系统residual error残差误差,残余误差resonance frequency共振频率S英文中文sampling采样,取样sampling frequency采样频率sampling theorem采样定理saturation饱和,饱和度scalar product标量积,点积scaling factor缩放因子,比例系数Schmitt trigger施密特触发器Schur complement舒尔补second-order system二阶系统self-learning自学习,自我学习self-organizing map (SOM)自组织映射sensitivity灵敏度,敏感性sensitivity analysis灵敏度分析,敏感性分析sensor传感器,感应器sensor fusion传感器融合servo amplifier伺服放大器servo motor伺服电机,伺服马达servo valve伺服阀,伺服阀门set point设定值,给定值settling time定常时间,稳定时间T英文中文tabu search禁忌搜索,禁忌表搜索Taylor series泰勒级数,泰勒展开式teleoperation遥操作,远程操作temperature sensor温度传感器terminal终端,端子testability可测试性,可检测性thermal noise热噪声,热噪音thermocouple热电偶,热偶threshold阈值,门槛time constant时间常数time delay时延,延时time domain时域time-invariant system时不变系统time-optimal control时间最优控制time series analysis时间序列分析toggle switch拨动开关,切换开关tolerance analysis公差分析torque sensor扭矩传感器transfer function传递函数,迁移函数transient response瞬态响应U英文中文uncertainty不确定性,不确定度underdamped system欠阻尼系统undershoot低于量,低于值unit impulse function单位冲激函数unit step function单位阶跃函数unstable equilibrium point不稳定平衡点unsupervised learning无监督学习upper bound上界,上限utility function效用函数,效益函数V英文中文variable structure control变结构控制variance方差,变异vector product向量积,叉积velocity sensor速度传感器verification验证,校验virtual reality虚拟现实viscosity粘度,黏度vision sensor视觉传感器voltage电压,电位差voltage-controlled oscillator (VCO)电压控制振荡器W英文中文wavelet transform小波变换weighting function加权函数Wiener filter维纳滤波器Wiener process维纳过程work envelope工作空间,工作范围worst-case analysis最坏情况分析X英文中文XOR (exclusive OR) gate异或门,异或逻辑门Y英文中文yaw angle偏航角Z英文中文Z transform Z变换zero-order hold (ZOH)零阶保持器zero-order system零阶系统zero-pole cancellation零极点抵消。
目录一方案比较、设计与论证 (2)二理论分析与计算 (5)三系统框图及电路设计 (6)四单片机软件设计 (11)五校准、测试数据及结果分析 (13)六设计总结 (15)七参考资料 (16)八附件一(系统设计总电路图) (17)摘要本数控电流源由四部分组成:CPU主控及键盘显示电路、恒流源产生电路、信号检测电路和电源电路。
采用128×64点阵LCD汉字显示使显示更为直观。
MAX531 12位D/A转换器作数控电流源控制,具用1/4096的分辨率。
采用高性能运算放大器使电流源的调节范围达到了2~2200mA,步进为1mA,最大负载电压可以大于10V,负载变化对电流无影响。
使用具有双路检测功能的16位Σ-ΔA/D转换器AD7705作为测量部件,测量精度达到了0.01%。
在信号处理时用标准表测量数据和数字恒流源显示数据相比对的方法对数控电流源的误差进行修正,从根本上消除了系统误差。
系统采用线性直流稳压电源,减小了纹波电流。
CPU 采用89C51,软件用C51编写。
整体技术指标达到了题目的全部要求并有所创新。
关键词:数控恒流源;串联稳压电源;数字校准AbstractThe NC current supply comes in four parts: CPU and keyboards circuits and displaying circuits; constant-current source; signal detecting circuits of current and voltage; power circuits. It has more intuitive displaying by using 128×64 dot matrix LCD. MAX531, 12 bits D/A converter with 1/4096 resolution, controls NC current supply. Higher performance operational amplifier adjusts current range from 2 to 2200mA, in which current step is set 1mA. The change of load does not affect current, when the maximum of load voltage less or equal to 10V. Measurement components use 16 bits Σ-Δ A/D converter AD7705 with two-way detecting function, and its accuracy arrives 0.01%. By comparing standard meter measuring data with NC current supply displaying data, the system corrects error of the NC current source in processing signals in order to eliminate systematic errors radically. The system reduces ripple current by using DC regulated power supply.The CPU uses 89C51 MCU. The software is programmed by C51. The whole technology data has met entirely the needs of this subject and has some innovation.Key Words: Numeric control constant current source; Series-wound regulated power supply; Numeric calibration一方案比较、设计与论证⒈恒流源电路的选择根据题目要求,设计一个输出电流范围在20~2000mA、负载电压在10V以内变化的受控恒流源,我们构想了如下三个方案:方案一:图1-1为固定恒流源,如果把基准源LM336-2.5 上的基准电压替换成D/A转换器上的输出电压,此恒流源就是一个受控电流源。
第28卷㊀第1期2024年1月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.28No.1Jan.2024㊀㊀㊀㊀㊀㊀不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略程启明,㊀杜婷伟,㊀赖宇生(上海电力大学自动化工程学院,上海200090)摘㊀要:针对目前模块化多电平矩阵变换器(M3C )研究中常用的双αβ坐标变换解耦不彻底㊁传统PID 控制方法效果差㊁不平衡工况研究少等问题,在分析拓扑结构和数学模型的基础上,采用双dq 坐标变换对电气量进行解耦,建立了M3C 的输入输出侧数学模型,分别对电压㊁电流进行正负序分离,并结合微分平坦理论,推导了输入侧㊁输出侧的微分平坦控制(DFC ),最后模拟了两种不平衡工况下的运行情况㊂仿真结果表明,与线性PID 控制相比,非线性的微分平坦控制提高了内环电流的跟踪速度和精度,更适用于非线性的M3C 系统㊂在电网平衡或电网出现不对称故障时,微分平坦控制下M3C 系统的动态稳定性与快速性更好,电能质量更高,电流谐波含量最多可以降低1.42%,能够更有效地抑制负序电流㊂关键词:海上风力发电;模块化多电平矩阵变换器;不平衡电网;双dq 坐标变换;微分平坦控制;PID 控制DOI :10.15938/j.emc.2024.01.005中图分类号:TM762文献标志码:A文章编号:1007-449X(2024)01-0049-12㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-12-09基金项目:国家自然科学基金(62303301);上海市电站自动化技术重点实验室资助项目(13DZ2273800)作者简介:程启明(1965 ),男,博士,教授,研究方向为电力系统自动化㊁发电过程控制㊁先进控制及应用;杜婷伟(2000 ),女,硕士研究生,研究方向为新能源发电控制㊁海上风力发电控制;赖宇生(1996 ),男,硕士研究生,研究方向为新能源发电控制㊁电力电子控制㊂通信作者:杜婷伟Differential flatness control strategy of modular multilevel matrix converter based on double dq coordinate transformation underunbalanced grid conditionsCHENG Qiming,㊀DU Tingwei,㊀LAI Yusheng(College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)Abstract :Aiming at the problems of incomplete decoupling of double αβcoordinate transformation com-monly used in modular multilevel matrix converter (M3C)research,on the basis of the analysis of topol-ogical structure and mathematical model,poor effect of traditional PID control method,and little research on unbalanced working conditions,etc.,double dq coordinate transformation was adopted to decouple the electrical quantity.The mathematical model of M3C s input and output side was established,the voltage and current were separated in positive and negative order,and the differential flatness control (DFC)of the input side and the output side was derived by combining the differential flatness theory.Finally,the operation under two unbalanced conditions was pared with linear PID control,the simula-tion results show that nonlinear differential flat control improves the tracking speed and accuracy of innerloop current,and is more suitable for nonlinear M3C system.When the power grid balance or asymmetricfault occurs,M3C system under differential flat control has better dynamic stability and rapidity,higher power quality,and can suppress negative sequence current more effectively.The current THD can be re-duced by up to1.42%.Keywords:offshore wind power;modular multilevel matrix converter;unbalanced grid;double dq coor-dinate transformation;differential flatness control;PID control0㊀引㊀言随着气候变暖㊁环境恶化等导致能源危机,新型清洁能源已成为了国家经济发展的方向之一[1-2]㊂其中海上风电由于具备稳定性强㊁可再生㊁受环境影响小等优势,极具开发前景㊂但如何将海上发电厂并入主电网正成为国内外海上风电领域的研究重点[3-4]㊂与常规的50Hz的高压交流输电[5]和高压直流输电[6]相比,50/3Hz的低频交流输电,又称分频传输系统,具有显著优势:可以提高交流海缆输电能力,只需一个AC/AC换流站,且设备投资成本少[7-9]㊂在现有的AC/AC变换设备中,模块化多电平矩阵变换器(modular multilevel matrix converter, M3C)[10]由Erickson R.和AI-Naseem O.于2001年提出,作为直接AC/AC变换器具有高电压㊁大容量的优点㊂M3C拓扑由9条桥臂构成,以3ˑ3矩阵形式排布,每条桥臂的电压㊁电流分量均包含两种不同频率的交流分量,存在强耦合现象,控制难度大㊂目前国内外学者已经对M3C的控制策略开展了一些研究,最为普遍应用的是基于双αβ0坐标变换的解耦控制方法㊂文献[11]的αβ0变换方法仅能将M3C的输入电流和输出电流解耦㊂文献[12-14]提出双αβ0变换,能将桥臂电流中的输入电流㊁输出电流和环流完全解耦,同时增加了两个对角维度的平衡控制,控制桥臂能量均衡分布㊂文献[15]将预测控制用于M3C中,然而M3C包含大量的状态变量,导致参数复杂㊁计算量庞大不具有实用性㊂文献[16-17]研究了双αβ0变换的非线性无源控制和微分平坦控制,系统跟踪速度有很大提升㊂尽管双αβ0变换被广泛采纳,但是这种控制方案也存在缺点,其被控量都是交流量,物理概念易混淆,且功率分量计算复杂㊂文献[18]提出了双dq坐标变换的方法,采用直流量作为内环被控量,但其采用的PID控制不仅调参复杂,而且是线性控制方法,作用在非线性的M3C上并不能使系统迅速稳定㊂到目前为止,采用双dq解耦方法的研究较少,并且其中未有文献考虑在发生不平衡故障时的非线性控制方案㊂非线性的微分平坦控制(differential flatness control,DFC)对系统稳定性的提升,超调量的降低等方面颇具优势,在电力电子领域和清洁能源领域已成为了研究热点[19-20]㊂与线性PID控制相比, DFC控制能使M3C系统稳定运行,避免因内外部扰动而发生动态特性变差的现象,提高内环电流的跟踪速度和精度㊂本文首次提出在不平衡电网下将微分平坦控制策略应用到基于双dq坐标变换的M3C控制中㊂首先给出M3C的拓扑结构与工作原理,建立M3C在双dq坐标变换下的数学模型,然后在输入侧与输出侧出现不对称故障时,将电压电流正负序分离,进一步运用微分平坦理论,设计输入侧㊁输出侧的DFC控制器㊂最后,在MATLAB/Simulink平台上建立两种不平衡工况,分别模拟DFC控制和传统PID控制,通过仿真验证在电网电压不平衡条件下,采用DFC控制能使系统稳定运行,且效果优于传统PID 控制㊂1㊀M3C的电路结构及数学模型M3C变换器的主电结构如图1所示㊂M3C以H全桥子模块(用SM表示,由T1~T44个IGBT和1个电容组成)为基本单元,等效电阻R㊁电感L以及n个子模块级联构成1个换流桥臂,共有9个桥臂,可分为3个子换流器㊂M3C的输入侧是低频三相交流电源,输出侧是工频三相交流电源㊂图1中:输入侧交流电压为u su㊁u sv㊁u sw,电流为i u㊁i v㊁i w;输出侧交流电压为u1a㊁u1b㊁u1c,电流为i a㊁i b㊁i c;桥臂电流为i xy,桥臂总电容电压为u c xy(x=u㊁v㊁w,y=a㊁b㊁c),u NO为共模电压㊂可以将每个桥臂的子模块视为受控电压源,得到图2所示的简化结构图㊂05电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图1㊀M3C 拓扑结构Fig.1㊀Topology ofM3C图2㊀M3C 的简化结构图Fig.2㊀Simplified structure diagram of M3C分析图2所示的输入侧㊁输出侧的电压㊁电流关系,由Kirchhoff 定律建立回路电压方程可得:u su =Ri uy +L d iuy d t +u uy +u 1y +u NO ;u sv =Ri vy +L d i vyd t +u vy +u 1y +u NO ;u sw =Ri wy +L d i wyd t+u wy +u 1y +u NO ㊂üþýïïïïïï(1)i a +i b +i c =0;i u +i v +i w =0㊂}(2)对式(1)进行αβ0坐标变换,可将两种频率分量解耦,得到3个子换流器的电压电流关系为:u s αu s βéëêêùûúú=R +L d d t ()i αa i βa éëêêùûúú+u αa u βa éëêêùûúú;u s αu s βéëêêùûúú=R +L d d t ()i αb i βb éëêêùûúú+u αb u βb éëêêùûúú;u s αu s βéëêêùûúú=R +L d d t ()i αc i βc éëêêùûúú+u αc u βc éëêêùûúú㊂üþýïïïïïïïï(3)u so u so u so éëêêêùûúúú=R +L d d t ()i oa i ob i oc éëêêêùûúúú+u oa u ob u oc éëêêêùûúúú+3u 1a u 1b u 1c éëêêêùûúúú+3u NO u NO u NO éëêêêùûúúú㊂(4)当输入输出系统三相对称时,可忽略零序分量,对式(4)进行第2次αβ0坐标变换可得0[]=R +Ld d t()i o αi b βéëêêùûúú+u o αu o βéëêêùûúú+3u 1αu 1βéëêêùûúú㊂(5)式(3)与式(5)为M3C 在αβ坐标系下的数学模型㊂其中:式(3)为输入侧电压㊁电流αβ分量,其频率仅与输入侧频率相同;式(5)为输出侧电压㊁电流αβ分量,其频率仅与输出侧频率相同㊂由此实现了桥臂电压电流的解耦㊂对式(3)㊁式(5)分别采用各自频率的dq 坐标变换,可得M3C 在双dq 坐标系下的数学模型为:u da u qa éëêêùûúú=u sd u sq éëêêùûúú-R +L d d t ()i da i qa éëêêùûúú-ωs L -i qa i da éëêêùûúú;u db u qb éëêêùûúú=u sd u sq éëêêùûúú-R +L d d t ()i db i qb éëêêùûúú-ωs L -i qb i db éëêêùûúú;u dc u qc éëêêùûúú=u sd u sq éëêêùûúú-R +L d d t ()i dc i qc éëêêùûúú-ωs L -i qc i dc éëêêùûúú;u od u oq éëêêùûúú=-3u 1d u 1q éëêêùûúú-R +L d d t ()i od i oq éëêêùûúú-ω1L -i oq i od éëêêùûúú㊂üþýïïïïïïïïïïïï(6)式中:ωs 表示输入侧频率;ω1表示输出侧频率㊂由M3C 换流器稳态工作时的对称性可知i da i qa éëêêùûúú=i db i qb éëêêùûúú=i dc i qc éëêêùûúú=13i sd i sq éëêêùûúú㊂(7)式中i sd ㊁i sq 分别为输入侧电流的d㊁q 分量㊂由坐标变换原理可得,桥臂电流在dq 坐标下的输出侧频率分量满足下式:i 1d i 1q éëêêùûúú=3i od i oq éëêêùûúú㊂(8)式中i 1d ㊁i 1q 分别为输出侧电流的d㊁q 分量㊂对输出侧电压d㊁q 分量进行逆坐标变换,可得桥臂电压的输出侧频率分量如下:u oau ob u oc éëêêêùûúúú=T αβ/abc T dq /αβ-1u od u oqéëêêùûúú㊂(9)式中T dq /αβ㊁T dq /αβ-1为输出侧的逆坐标变换矩阵㊂15第1期程启明等:不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略将桥臂电压中的输入㊁输出频率分量叠加,可将桥臂电压表示如下:u ua u va u wa éëêêêùûúúú=T αβ/abc T dq /αβ-s u da u qa éëêêùûúú+u oa u oa u oa éëêêêùûúúú;u ub u vb u wb éëêêêùûúúú=T αβ/abc T dq /αβ-s u db u qb éëêêùûúú+u ob u ob u ob éëêêêùûúúú;u uc u vc u wc éëêêêùûúúú=T αβ/abc T dq /αβ-s u dc u qc éëêêùûúú+u oc u oc u oc éëêêêùûúúú㊂üþýïïïïïïïïïïïïïï(10)式中T dq /αβ-s 为输入侧的逆坐标变换矩阵㊂2㊀不平衡电网下微分平坦控制策略在不平衡工况下,M3C 系统中会出现负序分量,导致过电流和非特征谐波的产生,影响控制效果,甚至烧毁元器件,对系统的安全稳定运行造成威胁,所以本文旨在研究基于M3C 系统在不对称故障条件下的控制策略㊂图3为不平衡电网下M3C 的总体控制结构图,其控制策略包括输入侧控制㊁输出侧控制㊁正负序分离㊁功率控制㊁桥臂分层直流稳压控制以及载波移相调制㊂图3㊀M3C 的整体控制结构图Fig.3㊀General control structure diagram of M3C1)正负序分离:运用双dq 坐标变换对输入侧和输出侧的电压㊁电流进行解耦,然后分别计算出正㊁负序电压电流分量;2)功率控制:根据不平衡工况下M3C 的运行要求,引入功率控制来求解期望电流值;3)输入/输出侧控制:基于微分平坦理论,推导出输入侧㊁输出侧的DFC 控制器;4)子模块独立均压控制:用于平衡桥臂的子模块电容电压,此控制有利于保证系统的安全稳定运行㊂2.1㊀正负序分离当三相系统不对称时,系统中将会出现负序分量,导致系统出现过电流,会严重威胁整个系统的安全稳定运行[21]㊂因此,需要分离电气量中的正㊁负序分量,分别提取电压㊁电流的正序分量和负序分量,再设计相应的正㊁负序的控制策略㊂由于篇幅限制,本文仅以输入侧为例,系统的电压㊁电流可表示为f uvw=f u f v f w éëêêêùûúúú=f +cos βf +(cos β-2π/3)f +(cos β+2π/3)éëêêêùûúúú+f-cos γf -(cos γ+2π/3)f-(cos γ-2π/3)éëêêêùûúúú+f 0f 0f 0éëêêêùûúúú㊂(11)式中:β=ω+t +α+,ω+=ωs ;γ=ω-t +α-,ω-=-ωs ;α+㊁α-分别为正㊁负序分量的初相角;f uvw 表示输入侧系统的电压或电流;f +㊁f -分别为正㊁负序分量的幅值;f 0为零序分量㊂本文系统为三相三线制,无零序回路,所以可以忽略零序分量㊂三相坐标系向两相旋转坐标系转换的正负序矩阵分别为:T +=23cos ωt cos(ωt -2π/3)cos(ωt +2π/3)-sin ωt -sin(ωt -2π/3)-sin(ωt +2π/3)[];T -=23cos ωt cos(ωt +2π/3)cos(ωt -2π/3)sin ωtsin(ωt +2π/3)sin(ωt -2π/3)[]㊂üþýïïïï(12)对式(11)进行正负序dq 变换可得:f ᶄ+d f ᶄ+q éëêêùûúú=f +cos α+f +sin α+éëêêùûúú+f -cos(2ω+t +α-)-f -sin(2ω+t +α-)éëêêùûúú;f ᶄ-d f ᶄ-qéëêêùûúú=f -cos α-f -sin α-éëêêùûúú+f +cos(2ω-t +α+)-f +sin(2ω-t +α+)éëêêùûúú㊂üþýïïïïïï(13)将式(13)延迟π/2,可得25电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀f ᶄ+d f ᶄ+q f ᶄ-d f ᶄ-qéëêêêêêùûúúúúúe -jπ2=-f +sin α+-f -sin(2ω+t +α-)f +cos α+-f -cos(2ω+t +α-)-f -sin α--f +sin(2ω-t +α+)f -cos α--f +cos(2ω-t +α+)éëêêêêêùûúúúúú㊂(14)联立式(13)和式(14)可将正负序分离如下:f +d f +q f -d f -q éëêêêêêùûúúúúú=12f ᶄ+d +f ᶄ+q exp(-jπ/2)f ᶄ+q-f ᶄ+d exp(-jπ/2)f ᶄ-d +f ᶄ-q exp(-jπ/2)f ᶄ-q-f ᶄ-dexp(-jπ/2)éëêêêêêùûúúúúú㊂(15)2.2㊀功率控制根据瞬时无功功率理论,可将瞬时有功功率和无功功率表示为:P =P 0+P s2sin(2ωt )+P c2cos(2ωt );Q =Q 0+Q s2sin(2ωt )+Q c2cos(2ωt )㊂}(16)式中:P 0是有功功率的直流分量;Q 0是无功功率的直流分量;P s2为有功功率的正弦2倍频分量;P c2为有功功率的余弦2倍频分量;Q s2为无功功率的正弦2倍频分量;Q c2为无功功率的余弦2倍频分量㊂将式(16)整理后,其矩阵形式如下:P 0P s2P c2Q 0Q s2Q c2éëêêêêêêêêùûúúúúúúúú=u +sd u +squ -sdu -sq u -sq -u -sd -u +sq u +sd u -sd u -sq u +sd u +sq u +sq -u +sd u -sq -u -sd -u -sd-u -sq u +sd u +squ -sq-u -sdu +sq -u +sdéëêêêêêêêêêùûúúúúúúúúúi +sdi +sq i -sd i -sq éëêêêêêùûúúúúú㊂(17)根据常见不平衡工况的负面影响,可将系统控制目标设为:1)平衡电网电流;2)消除有功功率纹波;3)消除无功功率纹波㊂对应的电流期望值分别如下:i +sdref =u +sdP 0+u +sqQ 0u +2sd+u +2sq ,i -sdref =0;i +sqref=u +sq P 0-u +sd Q 0u +2sd +u +2sq,i -sqref =0㊂üþýïïïï(18)i +sdref i +sqref i -sdref i -sqref éëêêêêêùûúúúúú=u +sd u +squ -sd u -sq u +sq -u +sdu -sq-u -sd -u -sd -u-squ+sdu +sq u -sq-u -sdu +sq-u +sdéëêêêêêùûúúúúú-1P 0Q 0Q s2Q c2éëêêêêêùûúúúúú;(19)i +sdref i +sqref i -sdref i -sqref éëêêêêêùûúúúúú=u +sdu +sq u -sd u -sq u +sq -u +sd u -sq-u -sd u -sq -u -sd -u +sq u +sd u -sdu -squ +sdu +sqéëêêêêêùûúúúúú-1P 0Q 0P s2P c2éëêêêêêùûúúúúú㊂(20)2.3㊀输入/输出侧平坦控制微分平坦控制多用于连续时间的非线性控制系统中,能快速㊁准确地跟踪参考值,主要由前馈期望量和误差反馈补偿量组成,其理论框图如图4所示㊂首先分析微分平坦理论的基本原理㊂图4㊀微分平坦控制策略框图Fig.4㊀Block diagram of DFC control strategy设非线性系统为:x ㊃=f (x ,u ),x ɪR n ,u ɪR m ;y =g (x ),y ɪR n ㊂}(21)式中u ㊁y ㊁x 分别为系统的输入变量㊁输出变量和状态变量㊂微分平坦理论的判断条件为:x =x (y ,y ㊃, ,y (λ1));u =u (y ,y ㊃, ,y(λ2))㊂}(22)式中λ1㊁λ2均为正整数,它们分别为状态变量㊁输入变量的微分阶数㊂微分平坦控制策略框图如图4所示:u ref,c 为前馈控制量;u ref,b 为误差反馈补偿值;u ref 为参考输入量;y 为输出实际值;y ref 为其期望值;Δy 为两者误值;Δy ref 为Δy 的期望值㊂由于3个子换流器的结构相同,控制器也相同,本文仅以a 相的子换流器为例具体分析㊂另外,正㊁负序分量的控制类似,在此仅推导正序分量的控制过程㊂根据式(6),可以推出输入侧正序的平坦控制器的前馈控制量为u +da_ref,c u +qa_ref,c éëêêùûúú=u +sd u +sq éëêêùûúú-R +L d d t ()i +da_ref i +qa_ref éëêêùûúú-ωs L -i +qa_ref i +da_ref éëêêùûúú㊂(23)35第1期程启明等:不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略式中u +da_ref,c ㊁u +qa_ref,c 分别为输入电流参考值i +da_ref ㊁i +qa_ref 生成的前馈控制量㊂将系统状态变量误差表示为:Δi +da =i +da -i +da_ref ;Δi+qa=i+qa-i+qa_ref㊂}(24)将式(24)代入式(6),可得误差模型如下:Δu +da Δu +qa éëêêùûúú=-R +L d d t()Δi +da Δi +qa éëêêùûúú-ωs L -Δi +qa Δi +da éëêêùûúú㊂(25)由式(25)可得相应误差反馈补偿值为Δu +da_ref,b Δu +qa_ref,b éëêêùûúú=-k DFp +k DFi s ()Δi +da_ref -Δi +da Δi +qa_ref -Δi +qa éëêêùûúú-ωs L -Δi +qa Δi +da éëêêùûúú㊂(26)式中:k DFp ㊁k DFi 为PI 参数;u +da_ref,b ㊁u +qa_ref,b 分别为Δi +da㊁Δi +qa与参考值生成的误差反馈补偿值㊂令Δi +da_ref =0,Δi +qa_ref =0,可得Δu +da_ref Δu +qa_ref éëêêùûúú=Δu +da_ref,b Δu +qa_ref,b éëêêùûúú+Δu +da_ref,c Δu +qa_ref,c éëêêùûúú㊂(27)联立式(6)和式(27)可得(R +Ls )Δi +da_refΔi +qa_ref éëêêùûúú-k DFp +k DFis ()i +da-i +da_refi +qa -i +qa_ref éëêêùûúú=(R +Ls )i +dai +qa éëêêùûúú㊂(28)由式(28)可得d㊁q 轴电流的闭环传递函数如下:H d (s )H q (s )éëêêùûúú=i+dai+da_refi+qai +qa_ref[]T=11[]㊂(29)因此,上述设计的M3C 平坦控制器能实现电气量的解耦,响应速度快,跟踪效果好㊂类似地,可以推导出输入侧b 相子换流器㊁c 相子换流器以及输出侧的正序前馈控制量㊁误差反馈补偿量和平坦控制器分别为:u +db_ref,c u +qb_ref,c éëêêùûúú=u +sd u +sq éëêêùûúú-R +L d d t ()i +db_ref i +qb_ref éëêêùûúú-ωs L -i +qb_ref i +db_ref éëêêùûúú;(30)Δu +db_ref,b Δu +qb_ref,b éëêêùûúú=-k DFp +k DFis ()Δi +db_ref -Δi +db Δi +qb_ref -Δi +qb éëêêùûúú-ωs L -Δi +qb Δi +db éëêêùûúú;(31)Δu +db_ref Δu +qb_ref éëêêùûúú=Δu +db_ref,b Δu +qb_ref,b éëêêùûúú+Δu +db_ref,c Δu +qb_ref,c éëêêùûúú;(32)u +dc_ref,c u +qc_ref,c éëêêùûúú=u +sd u +sq éëêêùûúú-R +L d d t ()i +dc_ref i +qc_ref éëêêùûúú-ωs L -i +qc_ref i +dc_ref éëêêùûúú;(33)Δu +dc_ref,b Δu +qc_ref,b éëêêùûúú=-k DFp +k DFis ()Δi +dc_ref -Δi +dc Δi +qc_ref -Δi +qc éëêêùûúú-ωs L -Δi +qc Δi +dc éëêêùûúú;(34)Δu +dc_ref Δu +qc_ref éëêêùûúú=Δu +dc_ref,b Δu +qc_ref,b éëêêùûúú+Δu +dc_ref,c Δu +qc_ref,c éëêêùûúú;(35)u +od_ref,c u +oq_ref,c éëêêùûúú=-3u +1d u +1q éëêêùûúú-R +L d d t ()i +od_ref i +oq_ref éëêêùûúú-ω1L -i +oq_ref i +od_ref éëêêùûúú;(36)Δu +od_ref,b Δu +oq_ref,b éëêêùûúú=-k DFp +k DFi s ()Δi +od_ref -Δi +od Δi +oq_ref -Δi +oq éëêêùûúú-ωs L -Δi +oq Δi +od éëêêùûúú;(37)Δu +od_ref Δu +oq_ref éëêêùûúú=Δu +od_ref,b Δu +oq_ref,b éëêêùûúú+Δu +od_ref,c Δu +oq_ref,c éëêêùûúú㊂(38)M3C 输入侧㊁输出侧正序平坦控制的详细框图如图5所示㊂2.4㊀子模块独立均压控制本文采用子模块独立均压控制使各子模块的电容电压达到稳定㊁均衡,其具体原理为:通过每个桥臂上的电流㊁对应桥臂的直流电压㊁单个子模块的电容电压,结合输入侧㊁输出侧的平坦控制信号,得出最终的桥臂控制信号,再送入载波移相调制,以此保证子模块电容电压的稳定㊂控制框图见图6㊂以桥臂u a 为例,其总电容电压u Cua ,子模块平均电容电压为u -Cua ,调制信号为u ∗ua ,第j 个子模块的45电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀电容电压为u Cua j㊂图5㊀M3C 系统的微分平坦控制框图Fig.5㊀DFC control block diagram of M3Csystem图6㊀子模块独立均压控制Fig.6㊀Independent and average voltage control ofsub-module3㊀仿真实验分析本文在MATLAB /Simulink 仿真平台上对图1所示M3C 系统进行了模拟㊂由此设计了两种不平衡故障工况,分别仿真了微分平坦控制与传统的PID 控制,并对比仿真效果㊂系统仿真参数如表1所示㊂表1㊀系统仿真实验参数Table 1㊀Parameters of system simulation experiment㊀㊀参数数值输入侧电压幅值/kV 10输出侧电压幅值/kV 10输入侧频率/Hz 50/3输出侧频率/Hz 50桥臂子模块数/个7子模块电容/mF 10子模块电容电压/V 3000桥臂电感/mH203.1㊀工况1实验分析在工况1下,由控制目标1(平衡电网电流)变为控制目标2(消除有功功率纹波)再变回控制目标1㊂具体如下:1)0~0.1s 内,电网电压无故障,系统正常运行,此时输入侧㊁输出侧均选择控制目标1,且P 0=12MW,Q 0=0;2)0.1~0.2s 内,输出侧电压a 相跌落20%,构造输出侧三相电压不对称工况,此时输出侧选择控制目标2,且P 0=6MW,Q 0=0,输入侧无变化;3)0.2~0.3s 内,输入侧电压u 相跌落20%,构造输入侧㊁输出侧三相电压均不对称的工况,输入侧输出侧均选择控制目标2;4)0.3~0.4s 内,设定输入侧㊁输出侧电压恢复原值,交流系统对称,回到无故障正常运行工况㊂图7和图8为工况1下PID 控制策略与微分平坦控制策略的仿真波形,包括输入侧电压u su /u sv /u sw ㊁输入侧电流i su /i sv /i sw ㊁输出侧电压u 1a /u 1b /u 1c ㊁输出侧电流i 1a /i 1b /i 1c ㊁输入侧有功无功功率P s /Q s ㊁输出侧有功无功功率P 1/Q 1㊂表2分别列出了工况1下PID 控制策略与微分平坦控制策略的输入侧电流㊁输出侧电流的性能指标,并从稳定时间与总谐波畸变率(total harmonic distortion,THD)两个方面来进行对比分析㊂由于篇幅有限,本文截取了0.1~55第1期程启明等:不平衡电网下双dq 坐标变换的M3C 微分平坦控制策略0.2s 内输出侧电流的THD 值制成图9,其余THD 值将直接表示在表2中㊂图7㊀工况1下PID 控制的仿真结果Fig.7㊀Simulation results of PID control under workingcondition 1分析图7㊁图8㊁图9和表2可知,在电网出现不对称故障时,传统PID 控制策略与本文所提的微分平坦控制策略均能达到控制要求,保证系统稳定运行,且微分平坦控制策略下各电气量的性能指标均优于传统PID 控制㊂图8㊀工况1下微分平坦控制(DFC )的仿真结果Fig.8㊀Simulation results of DFC control under workingcondition 165电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图9㊀工况1下输出侧电流谐波分析(0.1~0.2s) Fig.9㊀Output current spectrums of M3C on working condition1(0.1~0.2s)表2㊀工况1下输入侧㊁输出侧电流性能指标分析Table2㊀Analysis of current performance index of input side and output side under working condition1两侧电流性能指标分析时间段/ms0~100100~200200~300300~400输入侧稳定时间/ms(PID)59100238339输入侧稳定时间/ms(DFC)34100225320输入侧THD/%(PID) 1.970.240.52 1.29输入侧THD/%(DFC)0.620.140.290.15输出侧稳定时间/ms(PID)21118200330输出侧稳定时间/ms(DFC)14107190313输出侧THD/%(PID) 1.710.870.480.99输出侧THD/%(DFC)0.290.220.240.11 1)0~0.1s内,系统处于无故障正常运行状态,在控制目标1下,两种控制方法下的输入侧㊁输出侧电流都具有较好的三相对称性,系统在微分平坦控制下的稳定速度较PID控制稍快,电能质量较高;2)0.1~0.2s内,输出侧出现不对称故障,a相电压跌落20%,输出侧控制目标为消除有功功率纹波,两种控制方法下的输出侧电流,在不对称故障与功率改变后都能达到新的稳定值㊂PID控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.118s后稳定,输出侧电流THD值为0.87%;微分平坦控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.107s后稳定,输出侧电流THD值为0.22%,对比可知微分平坦控制下输出侧电流能够更快达到稳定,系统的谐波污染更低;3)0.2~0.3s内,输入侧和输出侧均出现不对称故障,控制目标均为消除有功功率纹波,PID控制和微分平坦控制下系统的输入侧电流i uvw的THD值分别为0.52%和0.29%,说明微分平坦控制下系统的电能质量高;4)0.3~0.4s内,输入侧㊁输出侧均恢复无故障正常运行状态,由表2可知,微分平坦控制下系统的能更快达到稳态,谐波含量更低,电能质量更高,能够更有效地抑制负序电流㊂3.2㊀工况2实验分析在工况2下,由控制目标1变为控制目标3再变回控制目标1㊂工况2具体如下:1)0~0.1s内,电网电压无故障,系统正常运行,此时输入侧㊁输出侧均选择控制目标1,且P0= 12MW,Q0=0㊂2)0.1~0.2s内,输入侧电压u相跌落20%,构造输入侧三相电压不对称工况,此时输出侧选择控制目标3,且P0=6MW,Q0=0,输出侧无变化;3)0.2~0.3s内,输出侧电压a相跌落20%,构造输入侧㊁输出侧三相电压均不对称的工况,输入侧输出侧均选择控制目标3;4)0.3~0.4s内,设定输入侧㊁输出侧电压恢复原值,交流系统对称,回到无故障正常运行工况㊂图10和图11为工况2下PID控制策略与微分平坦控制策略的仿真波形,包括输入侧电压u su/u sv/ u sw㊁输入侧电流i su/i sv/i sw㊁输出侧电压u1a/u1b/u1c㊁输出侧电流i1a/i1b/i1c㊁输入侧有功无功功率P s/Q s㊁输出侧有功无功功率P1/Q1㊂由于篇幅有限,本文截取了0.1~0.2s内输出侧电流的THD值制成图12,其余THD值将直接表示在表中㊂表3分别列出了工况2下两种控制策略的输入侧电流㊁输出侧电流的性能指标,便于进一步对比分析㊂75第1期程启明等:不平衡电网下双dq坐标变换的M3C微分平坦控制策略图10㊀工况2下PID控制的仿真结果Fig.10㊀Simulation results of PID control under working condition2分析图10㊁图11㊁图12和表3可知,在工况2下,微分平坦控制策略的控制效果优于传统PID控制㊂具体分析如下:1)0~0.1s内,系统为无故障正常运行状态;2)0.1~0.2s内,输入侧出现不对称故障,u相电压跌落20%,输入侧控制目标为消除无功功率纹波,两种控制方法下的输入侧㊁输出侧电流,在不对称故障与功率改变后都能迅速稳定;图11㊀工况2下微分平坦控制(DFC)的仿真结果Fig.11㊀Simulation results of DFC control under working condition285电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图12㊀工况2下输出侧电流谐波分析(0.2~0.3s) Fig.12㊀Output current spectrums of M3C on working condition2(0.2~0.3s)表3㊀工况2下输入侧㊁输出侧电流性能指标分析Table3㊀Analysis of current performance index of input side and output side under working condition2两侧电流性能指标分析时间段/ms0~100100~200200~300300~400输入侧稳定时间/ms(PID)65134200327输入侧稳定时间/ms(DFC)29126200311输入侧THD/%(PID) 1.970.940.48 1.28输入侧THD/%(DFC)0.620.490.290.16输出侧稳定时间/ms(PID)24100214325输出侧稳定时间/ms(DFC)151********输出侧THD/%(PID)0.970.670.89 1.04输出侧THD/%(DFC)0.370.120.270.953)0.2~0.3s内,输入侧和输出侧均出现不对称故障,控制目标均为消除无功功率纹波,PID控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.214s后稳定,输出侧电流THD值为0.89%;微分平坦控制下系统的输出侧电流i abc与输出侧功率P1/Q1在0.207s后稳定,输出侧电流THD值为0.27%,对比可知微分平坦控制下动态稳定性与快速性更好,谐波污染更低;4)0.3~0.4s内,输入侧㊁输出侧均恢复无故障正常运行状态,由表3可知,微分平坦控制下系统的稳定速度㊁动态性能㊁控制效果均优于传统PID 控制㊂通过对比上述两种运行工况的仿真结果,不难得知无论是在正常运行工况下,或是系统出现单侧㊁双侧不对称故障的工况下,微分平坦控制的效果均优于PID控制㊂4㊀结㊀论本文对电网不平衡下的M3C微分平坦控制进行了深入研究㊂首先,根据双dq坐标变换建立了M3C的输入输出侧解耦模型,提取电压电流的正负序分量,基于微分平坦理论,设计出了输入侧㊁输出侧的微分平坦控制器,最后在MATLAB/Simulink平台上设计了两种不平衡工况,分别模拟了微分平坦控制和传统PID控制的运行效果,验证了本文所提控制策略的先进性㊂且通过理论分析和仿真对比可以得到以下结论:1)双dq坐标变换中所有的受控量均为直流量,控制结构较双αβ更简单,实现容易,同时也具备优良的稳态和动态性能㊂2)与传统的线性PID控制相比,非线性的平坦控制更适用于非线性的M3C系统㊂在平衡电网或电网出现不对称故障时,微分平坦控制下的控制效果均优于PID控制,其动态稳定性与快速性更好,谐波污染更低㊂参考文献:[1]㊀YOU Shutang,ZHAO Jiecheng,YAO Wenxuan,et al.FNET/grideye for future high renewable power grids-applications overview[C]//2018IEEE PES Transmission&Distribution Conferenceand Exhibition-Latin America(T&D-LA),September18-21, 2018,Lima,Peru.2018:1-5.[2]㊀WU Jiahui,WANG Haiyun,WANG Weiqing,et al.Performanceevaluation for sustainability of wind energy project using improved multi-criteria decision-making method[J].Journal of Modern Power Systems and Clean Energy,2019,7(5):1166. [3]㊀KAWAMUR W,CHEN Kuanliang,HAGIWARA M,et al.Alow-speed,high-torque motor drive using a modular multi-level cascade converter based on triple-star bridge cells(MMCC-TSBC)[J].IEEE Transactions on Industry Applications,2015,51(5): 3966.[4]㊀HOSSAIN M I,ABIDO M A.Positive-negative sequence cur-rentcontroller for LVRT improvement of wind farms integrated MMC-HVDC network[J].IEEE Access,2020,8:193314. [5]㊀杨硕,郭春义,王庆,等.分层接入特高压直流输电系统协调95第1期程启明等:不平衡电网下双dq坐标变换的M3C微分平坦控制策略控制策略研究[J].中国电机工程学报,2019,39(15):4357YANG Shuo,GUO Chunyi,WANG Qing,et al.Coordinated con-trol approach for UHVDC system under hierarchical connection mode[J].Proceedings of the CSEE,2019,39(15):4357.[6]㊀邓银秋,汪震,韩俊飞,等.适用于海上风电接入的多端柔直网内不平衡功率优化分配控制策略[J].中国电机工程学报, 2020,40(8):2406.DENG Yinqiu,WANG Zhen,HAN Junfei,et al.A novel chopper topology for grid side fault ride through in VSC-HVDC based off-shore wind power connection[J].Proceedings of the CSEE, 2020,40(8):2406.[7]㊀LUO Jiajie,ZHANG Xiaoping,XUE Ying,et al.Harmonic anal-ysis of modular multilevel matrix converter for fractional frequency transmission system[J].IEEE Transactions on Power Delivery, 2020,35(3):1209.[8]㊀Al-TAMEEMI M,MIURA Y,LIU J,et al.A novel controlscheme for multi-terminal low-frequency AC electrical energy transmission systems using modular multilevel matrix converters and virtual synchronous generator concept[J].Energies,2020, 13(3):748.[9]㊀MENG Yongqing,SHANG Shuonan,ZHANG Haitao,et al.IDA-PB control with integral action of Y-connected modular multilevel converter for fractional frequency transmission application[J].IET Generation Transmission&Distribution,2018,12(14):3386.[10]㊀ERICKSON R W,Al-NASEEM O A.A new family of matrixconverters[C]//27th Annual Conference of the IEEE IndustrialElectronics Society,November29-December2,2001,Denver,USA.2001:1515-1520.[11]㊀OATES C.A methodology for developing Chainlink converters[C]//13th European Conference on Power Electronics and Ap-plications,September8-10,2009,Barcelona,Spain.2009:1-10.[12]㊀KAMMERER F,KOLB J,BRAUN M.Fully decoupled currentcontrol and energy balancing of the modular multilevel matrixconverter[C]//15th International Power Electronics and MotionControl Conference(EPE/PEMC),September4-6,2012,Novi Sad,Serbia.2012:LS2a.3-1-LS2a.3-8. [13]㊀KAWAMUR W,AKAGI H.Control of the modular multilevelcascade converter based on triple-star bridge-cells(M2CC-TS-BC)for motor drives[C]//IEEE Energy Conversion Congressand Exposition(ECCE),September15-20,2012,Raleigh,USA.2012:3506-3513.[14]㊀KAWAMUR W,HAGIWARA M,AKAGI H.Control and exper-iment of a modular multilevel cascade converter based on triple-star cells[J].IEEE Transactions on Industry Applications,2014,50(5):3537.[15]㊀NADEMI H,NORUM L E,SOGHOMONIAN Z,et al.Low fre-quency operation of modular multilevel matrix converter using op-timization-oriented predictive control scheme[C]//2016IEEE17th Workshop on Control and Modeling for Power Electronics(COMPEL),June27-30,2016,Trondheim,Norway.2016:1-6.[16]㊀程启明,马信乔,江畅,等.模块化多电平矩阵换流器输入侧的无源控制策略[J].电力系统自动化,2021,45(11):137.CHENG Qiming,MA Xinqiao,JIANG Chang,et al.Passivity-based control strategy for input side of modular multi-level matrixconverter[J].Automation of Electric Power Systems,2021,45(11):137.[17]㊀程启明,谢怡群,马信乔,等.模块化多电平矩阵变换器的平坦控制策略[J].电力自动化设备,2022,42(1):187.CHENG Qiming,XIE Yiqun,MA Xinqiao,et al.Flat controlstrategy for modular multilevel matrix converter[J].Power Auto-mation Equipment,2022,42(1):187.[18]㊀孟永庆,王健,李磊,等.基于双dq坐标变换的M3C变换器的数学模型及控制策略研究[J].中国电机工程学报,2016,36(17):4703.MENG Yongqing,WANG Jian,LI Lei,et al.Research on mod-eling and control strategy of modular multilevel matrix converterbased on double dq coordinate transformation[J].Proceedings ofthe CSEE,2016,36(17):4703.[19]㊀宋平岗,周鹏辉,肖丹,等.MMC-RPC的功率同步平坦控制策略[J].电力自动化设备,2019,39(11):146.SONG Pinggang,ZHOU Penghui,XIAO Dan,et al.Power syn-chronization flatness control strategy of MMC-RPC[J].PowerAutomation Equipment,2019,39(11):146. [20]㊀SHAHIN A,MOUSSA H,FORRISI I,et al.Reliability im-provement approach based on flatness control of parallel-connect-ed inverters[J].IEEE Transactions on Power Electronics,2017,32(1):682.[21]㊀张翀.模块化多电平矩阵换流器在AC/AC系统应用中的关键技术研究[D].杭州:浙江大学,2020.(编辑:刘琳琳)06电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀。
行销应用处处长电源的周边环境–使用场景增多通过减少用电量和提升电源的使用效率为社会可持续发展做贡献家用储能和应急储能EV 充电数据中心工业储能系统基站工业设备电源plantpower plantgrid connectionsystemvehicle (EV)Base Station Data CenterStorage Battery UtilizationAGV电机控制虚拟电厂的引入和扩张新唐电源控制技术的历史路线图160MHz Arm CM7 高精度PWM120MHz Arm CM4F1998年带传感器正弦波控制单电阻采样FOC 控制(2 路)转换器控制(3 路)多级控制1st Gen Inv MCU2nd Gen Inv MCU3rd Gen Inv MCU4th Gen Inv MCU4.5th Gen Inv MCU5th Gen 电源控制MCU6th Gen 电源控制MCU单电阻采样FOC 控制(3 路)单电阻采样FOC 控制(1 路)2020年60MHz/120MHz 内置变频运算单元40MHz 矩阵式的转换控制业界首创60MHz 安全功能电机控制业界首创业界首创电源控制在通过尖端技术实现高性能和低能耗领域积累20年以上的经验新唐数字电源控制MCU 的特点电源控制系统高性能MCU (Cortex®-M7/M4)高速的计算和校准高速, 高精度ADC(业界领先)转换时间0.2us*12-bit 3unit抗干扰能力强独特的噪声抑制电路技术驱动(PWM)检测(ADC)高精度PWM(业界领先)精度高达208ps*参考软件控制软件积累了很多年经验Si/SiC/GaN高速环*: Functions and specifications vary depending on the product.数字电源控制MCU 目标市场EV 快充太阳能逆变基站储能系统服务器电源为数字电源控制提供最好的MCU ACDC/DCAC/DCDC第五代产品介绍KM1M7AF 系列CPU 性能Cortex®-M7 160 MHz 浮点运算单精度&双精度FLASH/Data MAX 512 KB / 64 KBSector 0/1 支持可以切换ADC 12-bit / 0.5us(2 Msps) / 3unit PWM 精度208ps集成模拟外设差分运放&比较器安全功能Memory 错误矫正、时钟错误检测、AD 失败诊断供电5V 供电采用高性能的Arm® Cortex®-M7 CPU 核(5.01 Core Mark/MHz)通过高速& 高精度的模拟功能为马达和数字电源控制提供最优的产品通过同时可读写FLASH 的功能实现内置EEPROM1电源控制Cortex-M7FPU,MPU 160MHzI-Flash ~512KBI-RAM 64KB16-bit TimerUART/SPI/I2C/SMBusMatrix converter controlComplementary output PWM ×12unitcomparatorFB control assist hardwareD-RAM 32KB D-RAM 32KBITCM 64DTCM 32I$4KB64D-Flash 64KB direct memoryaccessAHBP 3210bit / 8bit DAC12-bit ADCOscillatorPLLclock Monitor Functional Safety (ECC, CRC, etc.)D$4KBDifferential input amplifier144/100 pinCAN FDAXIM64-bit Bus Matrix 32-bit Bus MatrixDTCM 32第六代产品KM1M7CF 系列CPU 性能Cortex®-M7 160 MHz 浮点运算单精度&双精度FLASH/DataMAX 256 KB ×2Bank / 64 KB ADC 速度12bit / 0.2us(5 Msps)/ 3unitPWM 精度208ps内置模拟功能12-bit DAC, 比较器特性Memory 错误矫正、时钟错误检测、AD 失败诊断安全功能安全启动、真随机数发生器、加密引擎, etc.供电3.3V 单路供电采用高性能的Arm® Cortex®-M7 核CPU (5.01 Core Mark/MHz)通过高速& 高精度的模拟功能为马达和数字电源控制提供最优的产品通过2Bank Flash 和安全保护功能实现软件更新的保护2电源控制Cortex®-M7 160MHzFPU,MPU I$4KBD$4KB32DTCM 32D-RAM 32KB D-RAM 32KBI-RAM 64KB64ITCM I-Flash 256KBD-Flash 32KBI-Flash 256KBAXIMAHBPOscillator PLL Functional SafetyECC, Write Protect,Clock Monitor, WDT, LVD,ADC Fault Diag.HIRC 1HIRC 2SWDSecurity FunctionSecure Boot,TRNG, AES, SHA64-bit Bus Matrix64direct memoryaccess32-bit Bus Matrix16bit Timer x 12For power control PWM x 6pairs RTCFeedback controlassist12-bit DAC x 12For comparator For external output32External InterruptGPIO I2C SMBus 3.0CAN FD UART (LIN)SPI12bit ADC x 3Comparator ×6pairs 80/64/48/32 pin数字电源控制参考方案控制板~1kW ~ 1kW1kW 1.5kW3kW~10kW~DCACDCDCACDC矩阵式转换ACAC1kW~3kW compatibleBidirectional inverter(Grid-connected)1kW~3kW compatibleBidirectional converter LiBcontrolhigh efficiencyTP-PFC (GaN)15 kWMatrix converter(EV quick charge)Power supplies for wirelesspower transmission(Storage Battery Control)Power supplies for wirelesspower transmission(Storage Battery Control)Power supplies for wirelesspower transmission(Storage Battery Control)matrix converterControl BoardCortex®-M7 (with FPU)PWM output port for gate (max. 4ch)Insulation voltage sensor (3ch)24V power supply for cooling fanCortex®-M7 (with FPU)PWM output port for gate (max. 16ch)Insulation voltage sensor (5ch)24V power supply for cooling fanCortex®-M7 (with FPU)PWM output port for gate (12ch)Equipped with a flow diversioncontrol systemPC AppsPC Apps3kWLLC ConverterUnder development6kWCLLC ConverterUnder development方案菜单•马达控制的应用手册•电源控制的应用手册•驱动层参考控制软件•IEC60730, etc.开发工具软件支持硬件Digital power control solution •合作开发•技术支持(现场支持、QA 、技术培训)•控制MCU •MCU 评估板•参考设计评估板•集成开发环境•开发工具•基于模式控制的开发工具Q&A 快速响应,1 个工作日内回复开发周期的减少软件品质的提升最少的维修快速的本地技术支持辅助开发的工具编码功能校验设备校验系统校验功能设计系统设计+-2) Model –Based 模块化的开发工具Model-based design support + block setsC 语言代码自动生成4) RAM 监控工具3) 集成的开发环境调试工具Debug 示波器Mathworks, Inc.For Matlab®/simulink®*1 Source: https:///jp/products/architectures/arm/i-jet/*2 Source: https:///store/debug-probes/ulinkpro-debug-adapter?_ga=2.145815538.719634597.1632873814-1854199051. 1610951068/调查原型1) 智能化调试工具NU-Link2-PROI-Jet ™.IAR EWARMULINKplus Keil® MDK-ARM®(Methylmethacrylate-ARM®)*1*2应用数字电源控制(服务器电源、基站电源、无线电源、FA电源、逆变、V2H 、储能系统等)我们为数字电源应用提供整体的解决方案总结开发工具软件支持硬件如果您想了解更多细节,请登录我们的官网https://C hip S cale P ackageSimple packagingLarger active areaEasily transfer heatLow failure rate超小尺寸封装低阻抗更佳散热性能高品质No Wire产品优势我们专注于CSP 封装MOSFETTWSAR/VR/e-glassSmartphoneTabletWearableSmarthome(Cam,Doorbell)Thermostat Note Book更安全更高效率更省空间CSP MOSFET广泛应用于锂电池保护电路通过CSP 技术优势贡献更安全,更便利的用户体验深耕锂电池市场,市占率首位CSP MOSFET 累计出货量超过115 亿颗20122013201420152016201720182019202020212022&&High PowerCharge…NewShort charging timeLong battery life Small &lightweightStylish designCSP MOSFET 技术优势及价值体现引领更低阻抗性能改善拓展小型化封装技术12V30V 60V耐压(VDS,VSS)电流(IS)50AFor WearableIoTMedicalFor NotebookTabletSmartphone5A20A For AutomotiveCSP MOSFET 产品布局Part♯KFC6B21B70L KFCAB21B30L KFCAB21B50L KFCAB21B10L Unit Outline-Size X ×Y 1.89 x 1.24 2.08 x 1.45 1.96 x 1.84 3.20 x 1.95mm Chip Area 2.34 3.02 3.61 6.24mm2 VSS12121212V VGS±8±8±8±8VRSS(on) Typ.VGS 4.5V 4.2 2.05 1.50.85mΩVGS 3.8V 4.6 2.2 1.60.9mΩVGS3.1V 5.4 2.55 1.9 1.15mΩVGS 2.5V7.4 3.3 2.45 1.55mΩStatusUnder Mass ProductionCSP MOSFET 新产品:用于锂电池保护(新产品)适用于汽车级的小型化器件1.低不良率相比于树脂封装不良率更低2.小封装Small size; 1.2 x 1.2mm3.防止干扰造成的故障Low inductance; L=0.01nH* FR4 board (25.4mm×25.4mm×t1.0mm), Full CuCSP MOSFET 新产品:应用于车载开关电路适用于汽车级的小型化器件https:///products/mosfet/样品2CSP组装技术服务3技术支持4文档5MOSFET 选型Evaluation BoardCut tapeReel-Data sheet -Spice-RoHS/REACH-Mount application note -CSP Advantages -CSP FAQ etc1服务与支持NuDeveloper Ecosystem–Make the engineers’ job easier.。
术语表Switcher 切换器Video 视频Audio 音频YUV Y、U、V分量视频DVI(Digital Visual Interface) 数字视频接口HDMI(High Definition Multimedia Interface)高清晰度多媒体接口SDI (serial digital interface) 数字串行接口SDTV(Standard-Definition Television)标准清晰度电视HDTV(High Definition Television)高清晰度电视YPbPr YCbCr 色差分量接口(隔行扫描) 色差分量接口(逐行扫描)VGA (Video Graphics Array) VGA接口SNMP (Simple Network Management Protocol) 简单网络管理协议TR101.290 DVB 系统测量标准RU(Rack Unit)标准计量单位(1RU=44mm)DB9 9芯D型插座DB15 15芯D型插座Lock 锁定Source 源C-Bus(Control-Bus) 控制母线Data Bus 数据母线Node Bus 节点母线AC Power 交流电源AC(Alternating Current) 交流DC(Direct Current) 直流GND (Ground) 接地In 输入Input 输入端口Video Input 视频输入Out 输出Output 输出端口Audio Output 音频输出On 开Off 关Level 幅度,电平Alarm 报警RS-232 RS-232控制信号端口RS-422 RS-422控制信号端口BNC(Bayonet Nut Connector)BNC接口RCA(Radio Corporation of American) RCA接口(莲花插座,A V接口) AC Couple 交流耦合DC Couple 直流耦合DC Restore 直流恢复Send 发送Salvo 齐切TX(Tranceive Data)发信号RX(Receive Data)收信号CMOS(Complementary Metal Oxide Semiconductor)CMOS电路SMT(Surface Mounted Technology)表面贴装技术LED(Light Emitting Diode)指示灯PCB(Printed Circuit Board)印刷电路板Auto 自动Manual 手动Main 主要Backup 备份NV-RAM 驱动内存Size 尺寸Level 层Load 负载CPU 中央处理器DIP 拨码开关Reset 复位开关Node 节点Power Supply 供电系统Check 检测Stop 停止Switch 切换,开关Encoder 编码器Decoder 解码器Normal 正常Debug 调试Baud Rate 波特率SDI(Serial Digital Interface) 数字视频信号CVBS(Composite Video Broadcast Signal) 复合视频信号数字音频信号AES/EBU(Audio Engineering Society/European BroadcastUnion)AGC(Automatic Gain Control)自动增益设置Clamp 箝位Mix 混合Mixing 混音Mute 静音Phase Lock 锁相Pulsing Signal 脉冲信号Time Pulsing Signal 时间脉冲信号GPS(Global Positioning System) 全球卫星定位系统Time Service 授时Timing 校时B-Y Signal B-Y信号Chroma 色度Color Bar 彩条Component Signal 分量信号Composite Signal 复合信号YCbCr Signal 色差信号Horizontal 行H-Blank(Horizontal-Blank) 行消隐HSYNC (Horizontal Synchronization) 行同步Progressive 逐行扫描Interlacing 隔行扫描Field 场Field Intensity 场强Vertical Active 场正程VBI(Vertical Blanking Interval)场逆程V-Blank(Vertical-Blank) 场消隐VSYNC (Vertical Synchronization) 场同步Frame 帧Frame synchronizer 帧同步REF(Reference) 参考视频(同步信号)(外接同步信号)Gen-lock 同步信号锁定Hue 色调Luminance signal 亮度信号R-Y signal R-Y信号Saturation 饱和度Contrast 对比度Grayscale 灰度Channel 通道Amplifier 放大器Distributor 分配器Filter 滤波器SC(Sub-carrier) 副载波Delay 延时Real Time 实时Time 定时process 处理Level 电平Error 误差Color Burst 色同步Synchronous Head 同步头Phase 相位H_ Phase( Horizontal Phase) 行相位SC_Phase 副载波相位Interference 干扰EMC(Electromagnetic Compatibility)电磁兼容性Pixel 像素Resolution 分辨率Definition 清晰度Code Rate 码率Frequency 频率Frequency Band 频段Frequency Spectrum 频谱Power 功率Power Consumption 功耗BB(Black Burst) 黑场Color Field 彩场Static frame 静帧Interrupt, Break Down (off) 中断Mosaic 马赛克Jitter 抖动Monitoring(Video) 监看Monitoring(Audio) 监听Sound 伴音Embed 嵌入De-embed 解嵌Balance 平衡Nonbalance 非平衡Module 模块SCM(Single-Chip Microcomputer)单片机NTSC(National Television Standards Committee) (美国)国家电视标准委员会(标准)PAL(Phase Alternating Line)逐行倒相(又称为帕尔制)SECAM(Sequentiel Couleur A Memoire)法语按顺序传送彩色与存储(又称塞康制)TALL Y 播出指示器H.264 MPEG-4 A VC、MPEG-4 Part 10CCIR656=CCIR601+HSYNC+VSYNC 656串行数据传输,行场同步信号嵌入数据流中I2S (Inter—IC Sound) I2S总线I2C (Inter-Integrated Circuit) I2C总线(两线式串行总线)MPEG (Moving Pictures Experts Group) 动态图像专家组DVB(Digital Video Broadcasting)数字电视广播TS(Transport Stream)传输流(MPEG-TS)ASI(Asynchronous Serial Interface) 异步串行接口SPI(Synchronous Parallel Interface)同步并行接口MPTS(Multiprogram Transport Stream)多节目传输流SPTS(Single-Program Transport Stream)单节目传输流RJ45(Registered Jack-45)RJ45 型网线插头又称水晶头BYPASS 旁路,旁通IP(Internet Protocol)网络之间互连的协议(网协)IPTV(Internet Protocol TV))交互式网络电视Dbfs(Decibels Full Scale)以满刻度为基准的分贝表示方法PGM(Program)节目(播出监视)PST(Pre-Set)预置(监视)PVW 预览监视COM(Component Object Mode)串口LPT(Line Printer)并口(行式打印机口)Hard disk 全硬盘Disk/Tape-Combined 盘带结合Upload 上载Broadcast 播出Networked Broadcasting 网络播Local Broadcasting 本地播Band Width 带宽Time-base 时基Take 触发None-linear Editing 非编Review 审片Spot 插播Backup Broadcasting 垫播Subtitle 字幕Scroll Subtitle 拉滚字幕Swimming Subtitle 游动字幕Overlay 叠加Material 素材Media Assets 媒资Decomposition 分解Test Card 测试卡Optical Signal 光信号Transformer 变压器Distortion 失真Trailing 拖尾SNR(Signal to Noise Ratio)信噪比Mulitiviewer 多画面Server 服务器Secondary storage 二级存储RAID(Redundant Arrays of Inexpensive Disks)磁盘阵列Key signal 键信号Fill Signal 填充信号Bypass 断电直通Bypass 旁通RI/RO(Ring-in/Ring-out) 环入/环出REC (Record)录制Playback 回放Storage 存储Remote Control 远程控制LBN(Low Noise Block)高频头RF(Radiofrequency) 射频Compression 压缩Modulation 调制Narrowband 窄带Broadband 宽带Car 车载Clip Fastening 扣板Individual Soldier 单兵Portable 便携Transmit 发射Receive 接收Relay 中继Omnidirectional Antenna 全向天线Directional Antenna 定向天线Frequency 频点Down conversion 下变频LNA(Low Noise Amplifier)低噪放NTSC 美国国家电视标准委员会VHF(Very High Frequency)高频(甚高频)UHF(Ultra High Frequency)特高频VCR(Video Cassette Recorder) 视频磁带录像机PLL (Phase-Locked Loop) 锁相环VCO (voltage-controlled oscillator) 压控振荡器NLE(Non Linear Edition) 非线性编辑DVB-S 数字卫星直播系统标准DVB-C 数字有线广播系统标准DVB-T 数字地面广播系统标准DVB-SMA TV 数字(卫星共用天线电视)广播系统标准DVB-MS 高于10GHZ的数字广播MMDS分配系统标准DVB-MC 低于10GHZ的数字广播MMDS分配系统标准COFDM(coded orthogonal frequency division multiplexing)编码正交频分复用SSI(Synchronous Serial Interface) 同步串行接口ELF (Extremely Low Frequency) 极低频SLF (Super Low Frequency) 超低频ULF (Ultra Low Frequency) 特低频VLF (Very Low Frequency) 甚低频LF ( Low Frequency) 低频MF (Medium Frequency) 中频HF (High Frequency) 高频SHF (Super High Frequency) 超高频EHF (Extremely High Frequency) 极高频Gateway 网关Demodulator 解调器Optical Fiber 光纤Protocol 协议Adapter 适配器SONET (Synchronous Optical Network) 同步光纤网络Acquisition 采集Animation 动画Integrators 集成Aggregator 聚合器Converter 转换器Matrix 矩阵Interactive TV 互动电视AES(Audio Engineering Society) 音频工程协会EBU((European Broadcasting Union) 欧洲广播联盟BMP( Bit Map) 位图CA(Conditional Access) 条件接入DMUX 解复用器DTV(Digital Television) 数字电视DTVC(Digital Television Cable) 有线数字电视RTP(Real-time Transport Protocol)实时传送协议UDP(User Datagram Protocol)用户数据协议包IGMP(Internet Group Management Protocol)Internet 组管理协议SMPTE 时间码概念Degradation 老化Differential gain 微分增益Differential phase 微分相位OSD(On-Screen Display) 屏幕菜单式调节方式。
电源专业英语词汇2009-05-31 12:23电源专业词汇(一)背板 backplane带隙电压参考 Band gap voltage reference工作台电源 benchtop supply方块图 Block Diagram波特图 Bode Plot自举 Bootstrap桶形电容 bucket capcitor机架 chassis恒流源 constant current source铁芯饱和 Core Sataration交叉频率 crossover frequency纹波电流 current ripple逐周期 Cycle by Cycle周期跳步 cycle skipping死区时间 Dead Time核心温度 DIE Temperature非使能,无效,禁用,关断 Disable主极点 dominant pole 主极点使能,有效,启用 Enable额定值 ESD Rating ESD评估板 Evaluation Board超过下面的规格使用可能引起永久的设备损害或设备故障.建议不要工作在电特性表规定的参数范围以外. Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.下降沿 Failling edge品质因数 figure of merit浮充电压 float charge voltage反驰式功率级 flyback power stage前向压降 orward voltage drop自由运行 free-running续流二极管 Freewheel diode满负载 Full load栅极驱动 gate drive栅极驱动级 gate drive stage 图 gerber plot Gerber接地层 ground plane电感单位(亨利) Henry人体模式 Human Body Model滞回 Hysteresis涌入电流 inrush current反相 Inverting抖动 jittery结点 Junction开尔文连接 Kelvin connection引脚框架 Lead Frame无铅 Lead Free电平移动 level-shift电源调整率 Line regulation负载调整率 load regulation批号 Lot Number低压差 Low Dropout密勒 Miller节点 node非反相 Non-Inverting新颖的 novel关断状态 off state电源工作电压 Operating supplyvoltage输出驱动级 out drive stage异相 Out of Phase产品型号 Part NumberP沟道MOSFET P-channel MOSFET相位裕度 Phase margin开关节点 Phase Node便携式电子设备 portable electronics掉电 power down电源正常 Power Good功率地 Power Groud节电模式 Power Save Mode上电 Power up下拉 pull down上拉 pull up逐脉冲 Pulse by Pulse推挽转换器 push pull converter斜降 ramp down斜升 ramp up冗余二极管 redundant diode电阻分压器 resistive divider振铃 ringing纹波电流 ripple current上升沿 rising edge检测电阻 sense resistor序列电源 Sequenced Power Sup plys直通,同时导通 shoot-through杂散电感 stray inductances子电路 sub-circuit基板 substrate电信 Telecom热性能信息 Thermal Information散热片 thermal slug阈值 Threshold振荡电阻 timing resistor线路,走线,引线 Trace传递函数Transfer function跳变点 Trip Point 跳变点匝数比(初级匝数/次级匝数)turns ratio(Np / Ns)欠压锁定 Under Voltage Lock Out (UVLO)电压参考 Voltage Reference伏秒积 voltage-second product零极点频率补偿 zero-pole frequencycompensation拍频 beat frequency单击电路 one shots缩放 scaling等效串联电阻 ESR地电位 Ground平衡带隙 trimmed bandgap压差 dropout voltage大容量电容 large bulk capacitance断路器 circuit breaker电荷泵 charge pump过冲 overshoot元件设备三绕组变压器:three-column transformerThrClnTrans双绕组变压器:double-columntransformer DblClmnTrans电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage 低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统 power transmission system输电线 transmission line固定串联电容补偿fixed series capacitorcompensation稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架 double-circuit lines onthe same tower变电站 transformer substation补偿度 degree of compensation高抗 high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障 three phase fault故障切除时间 fault clearing time极限切除时间 critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器 LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统 one machine - infinitybus system机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance电源专业词汇(二)coupling 耦合 intermittent 周期的 dislocation 错位propeller 螺旋桨 switchgear 配电装置 dispersion 差量flange 法兰盘 dielectric 介电的 binder 胶合剂alignment 定位 elastomer 合成橡胶 corollary 必然的结果rabbet 插槽 vent 通风孔 subtle 敏感的gearbox 变速箱 plate 电镀 crucial 决定性的flexible 柔性的 technics 工艺 ultimate 最终的resilience 弹性 vendor 自动售货机 partition 分类rigid 刚性的 prototype 样机 diagram 特性曲线interfere 干涉 compatible 兼容的 simulation 模拟clutch 离合器 refinement 精加工 fixture 夹具torque 扭矩 responsive 敏感的 tensile 拉伸cushion 减震器 rib肋 strength 强度packing 包装 metallized 金属化 stress 应力mitigate 减轻 trade off 折衷方案 yield 屈伸line shaft 中间轴 matrix 母体 inherent 固有的spindle 主轴 aperture 孔径 conformance 适应性axle 心轴 turbulence 扰动 specification 规范semipermanent 半永久性的 enclosure 机壳 specialization 规范化bolt 螺栓 oscillation 振幅 calling 职业nut 螺母 anneal 退火 vitalize 激发screw 螺丝 polymer 聚合体 revelation 揭示fastner 紧固件 bind 凝固 dissemination 分发rivit 铆钉 mount 支架 booster推进器hub 轴套 distortion 变形 contractual 契约的coaxial 同心的 module 模块 verdict 裁决crank 曲柄 slide 滑块 malfunction 故障inertia 惰性 medium 介质 allegedly 假定active 活性的 dissipation 损耗 controversy 辩论lubrication 润滑 assembly 总装 dictate 支配graphite 石墨 encapsulate 封装 incumbent 义不容辞的derivative 派生物 adhesive 粘合剂 validation 使生效contaminate 沾染 turbine 涡轮 procurement 收购asperity 粗糙 bearing 支撑架 mortality 失败率metalworking 金属加工 isostatic均衡的 shed light on 阐明viscous 粘稠的 osculate 接触 adversely 有害的grinding 研磨 i mperative 强制的 consistency 连续性corrosin 侵蚀 lattice 晶格 fitness 适应性flush 冲洗 fracture 断裂 warrant 保证inhibitor 防腐剂 diffusivity 扩散率 turning 车工dispersant 分散剂 vice versa 反之亦然 ways 导轨deteriorate 降低 tribological 摩擦的 hybrid 混合物neutralize 平衡 screen 屏蔽 ID=inside diameterpulley 滑轮 exclusion 隔绝 OD=outside diameterhydraulic 液压的 insulation 绝缘 reciprocate 往复运动delicate 精密的 elaborate 加工 dress 精整dampen 阻尼 incontrovertible 无可争议的 by and large 大体上pivotal 中枢的 luminous 发光的 plastic 塑胶utilitarian 功利主义 out of round失园 organic 有机的grass root 基层 premature 过早的 film 薄膜state-of-the -art 技术发展水平 guard 防护罩 polyester 聚酯blade 托板 permeate 渗入 epoxy 环氧的carrier 载体 spillage 溢出 polypropylene 聚丙烯chuck 卡盘 erosion 浸蚀 photoconductive 光敏的infeed 横向进给 routine 程序 miniaturization 小型化lapping 抛光 postprocess 后置处理 asynchronism 异步milling 洗削 solder-bump 焊点 synchronization 同步speciality 专业 grid 栅格 respond 响应stroke 行程 impedance 阻抗 feedback 反馈attachment 备件 approximately 大约 aberrance 畸变tapered 楔形的 purported 据说 steady 稳态的casting 铸件 consumable 消费品 dynamic 动态的index 换档 inductance 电感 transient 瞬态的stop 挡块 capacitance 电容 coordinate 坐标contour 轮廓 resistance 电容 curve 曲线machine center 加工中心 audion 三极管 diagram 特性曲线capitalize 投资 diode 二极管 history 关系曲线potentiometer 电位器 transistor 晶体管 gradient 斜率know-how 实践知识 choker 扼流圈 parabola 抛物线potted 封装的 filter 滤波器 root 根mechatronics 机电一体化 transformer 变压器 eigenvalue 特征值stem from 起源于 fuse 保险丝 function 函数rule-based 基于规则的 annular core 磁环 vector 向量consolidation 巩固 radiator 散热器 reciprocal 倒数energize 激发 regulator 稳压器 virtual value 有效值synchronous 同时发生 bobbin 骨架 square root 平方根socket 插孔 tape 胶带 cube 立方polarity 极性 ceramic capacitor 瓷片电容 integral 积分armature 电枢 electrolytic C 电解电容 differential 微分installment 分期付款 self-tapping screw 自攻螺丝 hisgram 直方图lobe 凸起 footprint 封装 ratio 比率plunge 钻入 resin 松香 grade down 成比例降低servo 伺服机构 solderability 可焊性 proportion 比例dedicated 专用的 shock 机械冲击 inverse ratio 反比interpolation 插补 endurance 耐久性 direct ratio 正比compensation 校正 initial value 初始值 plus 加upload 加载 flashing 飞弧 subtract 减overload 过载 canned 千篇一律的 multiply 乘lightload 轻载 lot 抽签 divide 除stagger 交错排列 parallel 并联 impedance 阻抗traverse 横向 in series 串联 damp 阻尼longitudinal 纵向的 equivalent 等效的 reactance 电抗latitudinal 横向的 terminal 终端 admittance 导纳restrain 约束 creep 蠕动 susceptance 电纳square 平方 Hyperlink 超级连接 spring 触发memo 备忘录 wastage 损耗presentation 陈述 principle 原理binder 打包 planer 刨床source program 源程序 Client-Server Model客户机server 服务器 table 表 query查询form 表单 report 报表 macro宏 module 模块field 字段 record 记录电源专业词汇(三)printed circuit 印制电路printed wiring 印制线路printed board 印制板printed circuit board 印制板电路printed wiring board 印制线路板printed component 印制元件printed contact 印制接点printed board assembly 印制板装配board 板rigid printed board 刚性印制板flexible printed circuit 挠性印制电路flexible printed wiring 挠性印制线路flush printed board 齐平印制板metal core printed board 金属芯印制板metal base printed board 金属基印制板mulit-wiring printed board 多重布线印制板molded circuit board 模塑电路板discrete wiring board 散线印制板micro wire board 微线印制板buile-up printed board 积层印制板surface laminar circuit 表面层合电路板B2it printed board 埋入凸块连印制板chip on board 载芯片板buried resistance board 埋电阻板mother board 母板daughter board 子板backplane 背板bare board 裸板copper-invar-copper board 键盘板夹心板dynamic flex board 动态挠性板static flex board 静态挠性板break-away planel 可断拼板cable 电缆flexible flat cable (FFC) 挠性扁平电缆membrane switch 薄膜开关hybrid circuit 混合电路thick film 厚膜thick film circuit 厚膜电路thin film 薄膜thin film hybrid circuit 薄膜混合电路interconnection 互连conductor trace line 导线flush conductor 齐平导线transmission line 传输线crossover 跨交edge-board contact 板边插头stiffener 增强板substrate 基底real estate 基板面conductor side 导线面component side 元件面solder side 焊接面printing 印制grid 网格pattern 图形conductive pattern 导电图形non-conductive pattern 非导电图形legend 字符mark 标志base material 基材laminate 层压板metal-clad bade material 覆金属箔基材copper-clad laminate (CCL) 覆铜箔层压板composite laminate 复合层压板thin laminate 薄层压板basis material 基体材料prepreg 预浸材料bonding sheet 粘结片preimpregnated bonding sheer 预浸粘结片epoxy glass substrate 环氧玻璃基板mass lamination panel 预制内层覆箔板core material 内层芯板bonding layer 粘结层film adhesive 粘结膜unsupported adhesive film 无支撑胶粘剂膜cover layer (cover lay) 覆盖层stiffener material 增强板材copper-clad surface 铜箔面foil removal surface 去铜箔面unclad laminate surface 层压板面base film surface 基膜面adhesive faec 胶粘剂面plate finish 原始光洁面matt finish 粗面length wise direction 纵向cross wise direction 模向cut to size panel 剪切板ultra thin laminate 超薄型层压板A-stage resin A阶树脂B-stage resin B阶树脂C-stage resin C阶树脂epoxy resin 环氧树脂phenolic resin 酚醛树脂polyester resin 聚酯树脂polyimide resin 聚酰亚胺树脂bismaleimide-triazine resin 双马来酰亚胺三嗪树脂acrylic resin 丙烯酸树脂melamine formaldehyde resin 三聚氰胺甲醛树脂polyfunctional epoxy resin 多官能环氧树脂brominated epoxy resin 溴化环氧树脂epoxy novolac 环氧酚醛fluroresin 氟树脂silicone resin 硅树脂silane 硅烷 polymer 聚合物amorphous polymer 无定形聚合物crystalline polamer 结晶现象dimorphism 双晶现象copolymer 共聚物synthetic 合成树脂thermosetting resin 热固性树脂thermoplastic resin 热塑性树脂photosensitive resin 感光性树脂epoxy value 环氧值dicyandiamide 双氰胺binder 粘结剂adesive 胶粘剂curing agent 固化剂flame retardant 阻燃剂opaquer 遮光剂plasticizers 增塑剂unsatuiated polyester 不饱和聚酯polyester 聚酯薄膜polyimide film (PI) 聚酰亚胺薄膜polytetrafluoetylene (PTFE) 聚四氟乙烯reinforcing material 增强材料glass fiber 玻璃纤维E-glass fibre E玻璃纤维D-glass fibre D玻璃纤维S-glass fibre S玻璃纤维glass fabric 玻璃布non-woven fabric 非织布glass mats 玻璃纤维垫yarn 纱线filament 单丝strand 绞股weft yarn 纬纱warp yarn 经纱denier 但尼尔warp-wise 经向thread count 织物经纬密度weave structure 织物组织plain structure 平纹组织grey fabric 坏布woven scrim 稀松织物bow of weave 弓纬end missing 断经mis-picks 缺纬bias 纬斜crease 折痕waviness 云织fish eye 鱼眼feather length 毛圈长mark 厚薄段split 裂缝twist of yarn 捻度size content 浸润剂含量size residue 浸润剂残留量finish level 处理剂含量size 浸润剂couplint agent 偶联剂finished fabric 处理织物polyarmide fiber 聚酰胺纤维aromatic polyamide paper 聚芳酰胺纤维纸breaking length 断裂长height of capillary rise 吸水高度wet strength retention 湿强度保留率whitenness 白度 ceramics 陶瓷conductive foil 导电箔copper foil 铜箔rolled copper foil 压延铜箔annealed copper foil 退火铜箔thin copper foil 薄铜箔adhesive coated foil 涂胶铜箔resin coated copper foil 涂胶脂铜箔composite metallic material 复合金属箔carrier foil 载体箔invar 殷瓦foil profile 箔(剖面)轮廓shiny side 光面matte side 粗糙面treated side 处理面stain proofing 防锈处理double treated foil 双面处理铜箔shematic diagram 原理图logic diagram 逻辑图printed wire layout 印制线路布设master drawing 布设总图computer aided drawing 计算机辅助制图computer controlled display 计算机控制显示placement 布局routing 布线layout 布图设计rerouting 重布simulation 模拟logic simulation 逻辑模拟circit simulation 电路模拟timing simulation 时序模拟modularization 模块化layout effeciency 布线完成率MDF databse 机器描述格式数据库design database 设计数据库design origin 设计原点optimization (design) 优化(设计) predominant axis 供设计优化坐标轴table origin 表格原点mirroring 镜像drive file 驱动文件intermediate file 中间文件manufacturing documentation 制造文件queue support database 队列支撑数据库component positioning 元件安置graphics dispaly 图形显示scaling factor 比例因子scan filling 扫描填充rectangle filling 矩形填充region filling 填充域physical design 实体设计logic design 逻辑设计logic circuit 逻辑电路hierarchical design 层次设计top-down design 自顶向下设计bottom-up design 自底向上设计net 线网digitzing 数字化design rule checking 设计规则检查router (CAD) 走(布)线器net list 网络表subnet 子线网objective function 目标函数post design processing (PDP) 设计后处理interactive drawing design 交互式制图设计cost metrix 费用矩阵engineering drawing 工程图block diagram 方块框图moze 迷宫component density 元件密度traveling salesman problem 回售货员问题degrees freedom 自由度out going degree 入度incoming degree 出度manhatton distance 曼哈顿距离euclidean distance 欧几里德距离network 网络array 阵列segment 段logic 逻辑logic design automation 逻辑设计自动化separated time 分线separated layer 分层definite sequence 定顺序conduction (track) 导线(通道)conductor width 导线(体)宽度conductor spacing 导线距离conductor layer 导线层conductor line/space 导线宽度/间距conductor layer No.1 第一导线层round pad 圆形盘square pad 方形盘diamond pad 菱形盘oblong pad 长方形焊盘bullet pad 子弹形盘teardrop pad 泪滴盘snowman pad 雪人盘V-shaped pad V形盘annular pad 环形盘non-circular pad 非圆形盘isolation pad 隔离盘monfunctional pad 非功能连接盘offset land 偏置连接盘back-bard land 腹(背)裸盘anchoring spaur 盘址land pattern 连接盘图形land grid array 连接盘网格阵列annular ring 孔环component hole 元件孔mounting hole 安装孔supported hole 支撑孔unsupported hole 非支撑孔via 导通孔plated through hole (PTH) 镀通孔access hole 余隙孔blind via (hole) 盲孔buried via hole 埋孔buried blind via 埋,盲孔any layer inner via hole 任意层内部导通孔all drilled hole 全部钻孔toaling hole 定位孔landless hole 无连接盘孔interstitial hole 中间孔landless via hole 无连接盘导通孔pilot hole 引导孔terminal clearomee hole 端接全隙孔dimensioned hole 准尺寸孔via-in-pad 在连接盘中导通孔hole location 孔位hole density 孔密度hole pattern 孔图drill drawing 钻孔图assembly drawing 装配图datum referan 参考基准。
1.1文献[1]文中以发电厂给煤机变频器为例,分析低电压穿越产生的原因和危害,并结合生产现场经验,从安全性、经济性分析防范措施,提出优化DCS控制逻辑和变频器控制电源是防止变频器低电压穿越事故的最佳解决方案。
方案 1,即参照《大型汽轮发电机组一类辅机变频器高、低电压穿越技术规范》要求,提高变频器自身躲过低电压穿越能力。
经投入运行的一类辅机变频器。
方案2,即一方面变频器控制电源采用UPS供电,保证控制电源不中断;另一方面优化DCS控制策略,并结合不同系统的设备允许电动机停运时间增加延时来躲过低电压穿越情况,当电源供电恢复时,及时实现变频器自启动。
[1]周道军.变频器防低电压穿越分析[J].江苏电机工程.2015.34(2):37-40.1.2文献[2]本文主要研究了在给煤机变频器交流电源输入部分加装抗低电压扰动设备的技术方案。
提出两种解决方案:方案一,在变频器中间直流环节加装 UPS(蓄电池)。
方案二,在辅机变频器前部加装抗低电压扰动设备。
并分析了电网故障情况下辅机安全运行问题,通过仿真验证了该技术方案在系统电压跌落至 20% 且持续 10 s 的情况下不灭火、不跳闸和其出力波动≤10% 的技术指标且必须保证各种运行方式下机组都具有足够的低电压穿越能力。
[2]张东明,姚秀萍,王维庆,常喜强,王海云.含低电压穿越电源的火电厂辅机变频器的研究[J].华东电力.2013.41.(6):1345-1347.1.3文献[3]本文主要阐述了高低压变频器结构,总结了各种低电压穿越改造方案,提出并联蓄电池,并联升压电路,并联升压电路加少量蓄电池,并联升压电路加厂内保安电源,串联UPS,串联升压电路等,并分析了各种方案的优缺点。
其中并联蓄电池和串联UPS取得了很好的效果。
国家电网对变频器低电压穿越的定义是:变频器及供电对象设备外部故障或扰动引起的暂态、动态或长时间电源进线电压降低到规定的低电压穿越区内时,能够可靠供电,保障供电对象的安全运行。
基于 VSD 变换理论的新型六相 SVPWM 算法袁雷;胡冰新;陈姝【摘要】For six-phase permanent magnet synchronous motor (PMSM)system supplied by two independ-ent voltage source inverters,which has two sets of Y-connected three-phase windings spatially phase shif-ted by 30°,a new six-phase space vector pluse-width modulation (SVPWM)algorithm based on vector spacedecomposition(VSD)transformation theory was presented.The relationship between the two kinds of commonly used modeling methods for six-phase PMSM was derived,such as double dq modeling and VSD method,and a new synchronous rotating coordinate transformation matrix was proposed based on VSD method.Moreover,the relationship between the proposed synchronous rotating coordinate transfor-mation matrix and double dq coordinate transformation matrix was derived in detail,and a novel six-phase SVPWM method designed to solve the limitation of the traditional six-phase SVPWM algorithm,i.e. two sets of windings reference voltage vector is always equal,and expand the application scope of the exist-ing PWM pared with the other commonly used six-phase SVPWM algorithms,simulation results verify the effectiveness of the proposed algorithm.%针对由2个独立电源供电的相移30°双Y联结的六相永磁同步电机系统,提出了一种基于矢量空间解耦变换理论的新型六相空间矢量脉宽调制(SVPWM)算法。
电力电子变压器原理现状应用场合介绍电力电子变压器(Power Electronics Transformer,PET)是一种结合了电力电子技术与变压器的新型电力转换装置。
它通过使用电力电子器件,能够实现高效率的电力转换,并具有可调性和可控性的特点,可以适用于多种电力系统应用场合。
电力电子变压器的原理是基于通过电力电子器件实现的电力转换原理。
它主要由直流侧和交流侧组成。
在直流侧,电力电子变压器通过电力电子器件(如IGBT、MOSFET等)实现可控的直流电压源。
在交流侧,电力电子变压器通过PWM(Pulse Width Modulation)调制技术,控制电力电子器件的开关周期和占空比,实现对输出交流电压波形和频率的调节。
通过这种方式,电力电子变压器能够实现对电压进行变换、调节和控制。
电力电子变压器的现状可以分为实验室研究和实际应用两个方面。
在实验室研究方面,科研人员进行了大量的理论分析和仿真研究,并取得了一定的成果。
目前已经研究出多种不同的拓扑结构和控制策略,如MMC (Modular Multilevel Converter)、HVDC(High Voltage Direct Current)、MC(Matrix Converter)等。
这些研究成果为电力电子变压器的实际应用提供了理论基础和实验验证。
在实际应用方面,电力电子变压器已经在一些特定的场合得到了应用。
例如,它可以用于电力系统中的电压和频率调整、电力质量改善等方面。
此外,电力电子变压器还可以用于电动汽车充电站、可再生能源发电系统等领域。
由于电力电子变压器具有高效能、小体积、可调性强等特点,它能够提高电能利用率,减小设备体积,提高工作效率,并且能够适应不同应用场合的电力转换需求。
电力电子变压器的应用场合可以分为传统电力系统和新能源系统两个方面。
在传统电力系统方面,电力电子变压器可以用于变频调速、无功补偿、过电压保护等方面。
例如,它可以用于电力系统中的HVDC输电、FACTS(Flexible Alternating Current Transmission System)等方面。
迫机>易校镂丿应用2021,48(3)控制与应用技术EMCA计算量,提高运算效率。
同时,能够对PMSM的转子位置和转速进行精准估算,消除了观测过程中存在的转子位置和转速抖振问题,提高了PMSM的控制性能。
【参考文献】[1]李自成,易亚文,王后能,等.基于有限集电流预测控制的永磁同步电机转矩脉动抑制[J].电机与控制应用,2020,47(8):13.[2]KHANDELWAL Y,ROUTRAY A,SINGH RK,etal.Reduced voltage stress hybrid multilevel inverterusing optimised predictive control[J].IET PowerElectronics,2020,13(14):2983.[3]MIR T N,SINGH B,BHAT A H.Improvised multiobjective model predictive control of matrix converterusing fuzzy logic and space vectors for switchingdecisionsf J].IET Power Electronics,2020,13(4):75& [4]徐静,杨淑英,郭磊磊,等•基于二阶滑模观测器的感应电机转子磁链观测[J].电工电能新技术,2016,35(12):32.[5]王君力,张安堂,张颖,等.基于二阶滑模算法的无刷宜流电机转速控制研究[J].电机与控制应用,2017,44(4):80.[6]何克胜,王英.基于分数阶滑模观测器的永磁同步电机无传感器矢量控制[J1-计算技术与自动化,2018,37(3):25.[7]管萍,和志伟,戈新生.基于模糊控制的高超声速飞行器二阶滑模姿态控制[J].控制与决策,2019,34(9):1901.[8]方星,刘飞,高翔.复合干扰下载人潜水器的全阶滑模控制[J].控制理论与应用,2018,35(11):1626.[9]CAO Z,NIU Y,ZHAO H,et al.Guaranteed costsliding mode control of Markovian jump Lur'e systemsunder Round-Robin protocol[ J].IET Control Theory&Applications,2020,14(18):2784.[10]李耀华,秦玉贵,赵承辉,等.自适应改进模糊调节电压矢量占空比永磁同步电机直接转矩控制[J].电机与控制应用,2020,47(11):25.[11]张其松,黄守道,罗德荣,等.基于滑模策略的对转电机宜接转矩控制[J].电力电子技术,2018,52(12):H.[12]周凯,石增.开关磁阻电机转矩脉动抑制技术[J].电机与控制学报,2019,23(12):85.[13]邱建琪,留若宸.永磁同步电机位置伺服系统改进自抗扰控制[J].电机与控制学报,2019,23(11):42.[14]刘向辰,张海燕,陈磊,等.基于改进型模糊自整定PI控制的无刷直流电机PLC调速系统[J].电机与控制应用,2020,47(6):12.中国电器工业协会中小型电机分会简介中国电器工业协会中小型电机分会的前身是中国电机工业协会中小型电机分会,成立于1989年,英文名称:Small&Medium Electric Machine Subassociation of China Electrical Equipment Industrial Association,英文缩写SMEMS O是由中小型电机及相关行业的制造、经营、科研、设计、院校和工程成套等单位,在平等、自愿的基础上组成的非盈利性的、不受地区、部门隶属关系和所有制限制的全国性行业组织。
Medium-V oltage Matrix Converter Design Using Cascaded Single-Phase Power Cell Modules Jun Kang,Member,IEEE,Eiji Yamamoto,Masaki Ikeda,and Eiji WatanabeAbstract—The matrix converter(MxC)is a bidirectional di-rect ac–ac power conversion topology that can generate variable voltage and variable frequency output.It has low harmonics in input current and power factor control capability.In this paper, MxC concept is extended to medium-voltage(MV)level to provide a high-power drive that has bidirectional powerflow capability and very low harmonics in input current and output voltage.MV MxC is implemented by connecting power cells in series which consist of three-phase input and single-phase output MxC.In this paper,detailed design of the MV MxC topology is described and the performance of the proposed topology is explained through experimental results.Index Terms—AC–AC conversion,bidirectional power,cas-caded,matrix converter,medium voltage,motor drives,power converter,regeneration.I.I NTRODUCTIONT HE matrix converter(MxC)is a bidirectional direct ac–ac power conversion topology that can generate variable voltage and variable frequency output[1]–[4].As shown in Fig.1,the typical MxC topology has following features.1)The main circuit of MxC consists of input LCfilter and nine bidirectional switches.2)It is fully regenerative and has sinusoidal input current with unity power factor control.3)The one of the big advantages is that there is no dc link capacitor which is normally bulky and has short lifetime.MxC is highly efficient and more compact than the voltage source converter-inverter system.The bidirectional switch typically consists of two anti-paralleled power devices such as reverse-blocking insulated-gate bipolar transistors(IGBTs)or series-connected IGBT-diode pair[5]–[8].By proper design of pulsewidth mod-ulation(PWM)control method,MxC can control output voltage as well as input currents with low current harmonics[9]–[13]. In this paper,medium-voltage(MV)MxC topology is proposed to extend the advantages of low-voltage MxC technol-ogy into medium-voltage level.The demand of MV variable-speed drives has increased along with the increasing requestManuscript received November19,2010;revised January19,2011, February27,2011,and March15,2011;accepted April2,2011.Date of publication May2,2011;date of current version September7,2011.J.Kang is with Yaskawa America Inc,Waukegan,IL60085USA (e-mail:jun_kang@).E.Yamamoto and M.Ikeda are with the System Engineering Division, Yaskawa Electric Corporation,Yukuhashi City824-0031,Japan(e-mail: yamamoto@yaskawa.co.jp;masaki@yaskawa.co.jp).E.Watanabe is with the Environmental Energy System Business Divi-sion,Yaskawa Electric Corporation,Yukuhashi City824-0031,Japan(e-mail: watana@yaskawa.co.jp).Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/TIE.2011.2148679on high-power high-performance drives and energy-saving fea-ture in industry and utility applications.Frequent acceleration/ deceleration and long regenerative operation requires a drive with regeneration capability.MC MxC provides an attractive solution to the market which needs high-power drives with regenerative power capability.It is compact in size and has low harmonics in input and output waveforms.Detailed design concept will be explained.II.P OWER C ELL FOR M ODULAR D ESIGN C ONCEPT A.Single-Phase Output Power CellThe cascaded H-bridge voltage source inverter topology and three-level inverter using high-voltage power switches are popular in MV drives[14]–[16]but they do not have regenera-tion capability.Therefore,back-to-back MV converter-inverter system should be used for the applications which require regen-erative powerflow.A multilevel MxC topology and its PWM method was in-troduced but it mainly focused on the improvement of voltage harmonics in low output voltage region[17].The proposed MV MxC employs a cascaded multilevel topology using single-phase output MxC shown in Fig.2as a power cell unit. The power cell consists of six bidirectional switches and ac capacitors.Basically,this circuit is a three-phase input single-phase output MxC as shown in Fig.3.It generates single-phase voltage controlling input current.Input current power factor is controlled by adjusting con-duction ratio of the each switch according to the input voltage magnitude.B.PWM Pattern of Power CellPower cell PWM pattern will be explained with line-to-line output voltage shown in Figs.3and4.Among input phase voltages,maximum,medium,and minimum are defined as Emax,Emid,and Emin,respectively,according to their magnitude[10],[11].1)If Emid>0:If Emid>0,PWM pattern in Fig.4(b)is applied and each period can be obtained from(1)–(6).V ref T S=2t2(E mid−E min)+t3(E max−E min)(1) where V ref is output voltage reference of the power cell. Let’s define conduction ratioαas follows:α=2t2t3(2)0278-0046/$26.00©2011IEEEFig.1.Main circuit of low-voltageMxC.Fig.2.MxC power cellconfiguration.Fig.3.Simplified single-phase MxC topology.From (1)and (2)t 3=V refα(E mid −E min )+(E max −E min )T S(3)t 2=αV ref2α(E mid −E min )+2(E max −E min )T S .(4)Fig. 4.PWM pattern of a power cell.(a)Power cell output voltage;(b)terminal–ground voltages VT1and VT2when Emid >0;and (c)terminal–ground voltages VT1and VT2when Emid <0.Zero vector t 1ist 1=12(T s −2t 2−t 3).(5)Since αis the current conducting duty ratio of two phases through the switches,αis set to (6)to get unity power factorα=E midE max.(6)KANG et al.:MV MATRIX CONVERTER DESIGN USING CASCADED SINGLE-PHASE POWER CELL MODULES5009 2)If Emid<0:If Emid<0,PWM pattern in Fig.4(c)isapplied and each period can be obtained from(7)–(11)V ref T S=2t2(E max−E mid)+t3(E max−E min).(7)From(2)and(7)t3=V refα(E max−E mid)+(E max−E min)T S(8)t2=αV ref2α(E max−E mid)+2(E max−E min)T S.(9)Zero vector t1ist1=12(T s−2t2−t3).(10)To get unity power factorα=E midE min.(11)Basic design concept of the power factor control is that if each individual power cell is controlled to follow unit power factor reference,resulting input current has unit power fac-tor.Actually,each power cell has non-fundamental frequency current components because it delivers power to single-phase output.But total sum of the power cell input current has sinusoidal waveform.αin(6)and(11)can be generalized for arbitrary power factor control by using leading or lagging reference waveforms instead of the grid voltage information.III.MV D RIVE C ONFIGURATIONMultiple power cells need to be cascaded to build each phase of MV drive.Fig.5shows the configuration of power cell connection for3.3-kV MV drive.1700-V class IGBTs are used for the power cell in Fig.2.The power cell rated input voltage is690V.Output voltage rating of each cell is635V,and three cells are connected in series to meet3.3-kV line-line voltage rating.PWM timing of the power cells are shifted by120◦with each other to get smooth output voltage step change.For6.6-kV line-line voltage drive,six power cells are connected in series. Fig.6shows overall configuration of the3.3-kV MV MxC including a multi-winding transformer which steps down from 3300to690V.Phase shift of+20,0,and−20◦in the sec-ondary windings improves input current harmonics with the same principle as widely known18-pulse rectifier[18],[19]. The phase shifting is also helpful to eliminate input voltage ripple in output voltage waveform.This characteristic also compensates the issue of relatively lower output voltage than inverter topology.Fig.7shows PWM waveforms of3.3-kV MxC.Three power cells U1,U2,and U3are connected in series.Phase output voltage has seven paring with Fig.7(a)and(b) shows that input voltage ripple is canceled in output voltage waveform due to the phase shift in secondary windings.In Fig.7,PWM carrier frequency is4kHz,sampling frequency is250μs,and LCfilter cutoff frequency is about800Hz.Fig.5.Series connection of power cell for MVdrive.Fig.6. 3.3-kV MV MxC.IV.V OLTAGE C OMMUTATIONThe current commutation in MxC is a process of changing current conducting power device from one to another during PWM operation,avoiding short and open circuit[20]–[23]. Fig.8shows typical four-step commutation between two bidi-rectional switches.There is voltage error between the command and the actual output voltage due to on-time delay which is similar to the dead time effect of inverter topology,and the voltage error depends on current direction and voltage polarity[20].In the proposed power cell,both input voltage and output currents are detected,and a digital logic circuit-based compensator determines turn-on and turn-off timing and sequence of each switch.Therefore,output voltage error due to the commutation sequence is minimized regardless of output current direction as shown in Fig.9.5010IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,VOL.58,NO.11,NOVEMBER2011Fig.7.Power cell and output voltages of 3.3-kV MV MxC.(a)U-phase voltage V u without phase shift in transformer secondary windings.(b)U-phase voltage V u with +20,0,−20◦phase shift in transformer secondary windings.(c)Line-line voltage with +20,0,−20◦phase shift in transformer secondarywindings.Fig.8.Typical four-step commutation and voltage error [20]–[23].V .S YSTEM S PECIFICATION AND A PPLICATIONSFig.10shows external view of the MV MxC.It consists of a control panel,a multi-winding transformer panel,and a main circuit panel.The power cells are stacked in the main circuit panel.It has 3.3-and 6.6-kV classes and the rated output power ranges from 200to 6000kV A.The same standard power cell is used for both 3.3-and 6.6-kV drives by cascading three cells and six cells,respectively.The MxC requires an input LCfilterFig.9.Four-step commutation with error compensation using voltage and currentdetection.Fig.10.External view of the MV MxC.to reduce PWM harmonic current components in the grid side.In the proposed MV MxC,the reactor is eliminated by using the leakage inductance of the multi-winding transformer.In general,the output voltage of MxC is limited to 0.87of the input voltage.But by adopting phase shift of +20,0,−20◦with each other in secondary windings,voltage utilization is improved to approximately 0.95.As shown in Fig.11,when one transformer U1reaches the virtual dc link minimum of 0.866,that is sin(60◦),other two transformers U2and U3that have phase shifting of ±20◦have virtual dc link of 0.985,that is sin(60◦+20◦)and sin(120◦−20◦),so average output becomes (U 1+U 2+U 3)/3=0.95.MV MxC has advantage for following applications:Heavy loads that require high regenerative energy such as steel manu-facturing process lines and cargo-handling machinery.Need ofKANG et al.:MV MATRIX CONVERTER DESIGN USING CASCADED SINGLE-PHASE POWER CELL MODULES5011Fig.11.Virtual dc link voltage of MxC and effect of ±20◦phase shift.TABLE I MV MxC SPECScontinuous power regeneration over a long time period such as winders for paper or film.Other applications are [24](Table I)–wind power generation;–blowers (dust blowers,incinerators,boilers induced draftfan,applications that require quick response to sudden changes in acceleration and deceleration);–pumps (descaling pumps,roll cooling water pumps,rainwater pumps,sewage pumps,water pumps);–extruders,mixers,kilns,Banbury mixers,and Dynamotesting devices.VI.E XPERIMENTAL R ESULTSDuring experiments,PWM carrier frequency is 4kHz and sampling frequency is 250μs,and LC filter cutoff frequency is about 800Hz.Four-step commutation method with error compensation method described in Section IV is used for experiments.Input voltage and output current information is used to minimize commutation error.Fig.12shows output voltage and current waveforms of 3.3-kV MxC during motoring with lightly loaded induction motor.V oltage waveform is close to sinusoidal waveform due to 13-level line-to-line output waveform.Fig.13shows volt-age and current waveforms of 6.6-kV 1.6-MV A MxC during regeneration operation.Output current is about 36%of the rated current.Ideally,input R-phase voltage and current have 180◦opposite phase during regeneration.But in real MxC system,ac filter capacitor current is added to the regenerative phase current.Thus,actual phase shift angle varies depending on the load condition.From top to bottom,input R-S voltage (12kV/div),R-phase current (100A/div),output U-V voltage (12kV/div),and U-phase current (100A/div).Six power cells at each phase generates 13-level phase voltage or 25-level line-line voltage.PT signal noise was picked up in the output voltage of the 6.6-kV drive in the experimental result.Fig.14shows speed,torque,power,input/output currents of 3.3-kV 800-kV AMxCFig.12. 3.3-kV MxC output voltage and current waveforms during motoring operation.(5ms/div).Output U–V voltage (2.5kV/div),U-phase current (200A/div).Fig.13. 6.6-kV MxC input and output waveforms during regeneration operation.(5ms/div).during four quadrant operations.600-kW 1200-r/min induction motor is used for testing.It shows smooth transition from motoring to regeneration.Torque and motor current are con-trolled well during acceleration and deceleration.Motor speed also follows the reference stably.Overall,efficiency of 3.3-kV system including the multi-output transformer is about 98%while typical back-to-back converter inverter system efficiency is about 97%.are described.Four-quadrant operation test result shows good performance both in motoring and regenerative region.The MV MxC has advantages in efficiency,sizing,and reliability over the back-to-back MV converter inverter system,and it has advantages for the applications that require high-power high regenerative energy and frequent acceleration and deceleration operation.VII.C ONCLUSIONIn this paper,MV MxC topology is introduced,which em-ploys MxC power cell unit as a basic module.The power cell input is three-phase 690V and output rating is single-phase 635V .Multiple power cells are connected in series to implement 3.3-and 6.6-kV drives.Actual power rating is determined by the current rating of IGBTs in the power cell.Power cell topology,power circuit configuration of the whole system,PWM control method,and switch commutation are explained.Experimental results of 3.3-kV 800-kV A and 6.6-kV 1.6-MV A MxC are described.Four-quadrant operation test5012IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,VOL.58,NO.11,NOVEMBER2011Fig.14.Experimental torque and speed waveforms during four-quadrant operation of3.3-kV800-kV A MxC.result shows good performance both in motoring and regenera-tive region.The MV MxC has advantages in efficiency,sizing, and reliability over the back-to-back MV converter-inverter system,and it has advantages for the applications that require high-power high regenerative energy and frequent acceleration and deceleration operation.R EFERENCES[1]P.W.Wheeler,J.Rodriguez,J.Clare,L.Empringham,and A.Weinstein,“Matrix converters:A technology review,”IEEE Trans.Ind.Electron., vol.49,no.2,pp.276–288,Apr.2002.[2]M.Venturini,“A new sine wave in sine wave out conversion techniquewhich eliminates reactive elements,”in Proc.Powercon,1980,vol.7, pp.E3-1–E3-15.[3]A.Alesina and M.Venturini,“Intrinsic amplitude limits and optimumdesign of9-switches direct PWM AC-AC converters,”in Conf.Rec.IEEE Power Electron.Spec.Conf.,1988,pp.1284–1291.[4]J.W.Kolar,F.Schafmeister,S.Round,and H.Ertl,“Novel three-phaseAC-AC sparse matrix converters,”IEEE Trans.Power Electron.,vol.22, no.5,pp.1649–1661,Sep.2007.[5]N.Naito,M.Takei,M.Nemoto,T.Hayashi,and K.Ueno,“1200V reverseblocking IGBT with low loss for matrix converter,”in Proc.ISPSD ICs, 2004,pp.125–128.[6]T.Friedli,M.L.Heldwein,F.Giezendanner,and J.W.Kolar,“A highefficiency indirect matrix converter utilizing RB-IGBTs,”in Proc.37th Power Electron.Spec.Conf.,2006,pp.1199–1205.[7]J.Itoh,I.Sato,A.Odaka,H.Ohguchi,H.Kodachi,and N.Eguchi,“Anovel approach to practical matrix converter motor drive system with reverse blocking IGBT,”IEEE Trans.Power Electron.,vol.20,no.6, pp.1356–1363,Nov.2005.[8]M.Hornkamp,M.Loddenkötter,M.Münzer,O.Simon,andM.Bruckmann,“EconoMAC thefirst all-in-one IGBT module for matrix converters,”in Proc.IPEC,Nuremberg,Germany,Jun.19–21,2001, pp.417–421.[9]L.Huber and D.Borojevic,“Space vector modulated three-phase to three-phase matrix converter with input power factor correctio,”IEEE Trans.Ind.Appl.,vol.IA-31,no.6,pp.1234–1246,Nov./Dec.1995.[10]J.Oyama,X.Xia,T.Higuchi,and E.Yamada,“Displacement anglecontrol for matrix converter,”in Conf.Rec.IEEE Power Electron.Spec.Conf.,Jun.1997,pp.1033–1039.[11]S.Ishii,E.Yamamoto,H.Hara,E.Watanabe,A.M.Hava,and X.Xia,“Avector controlled high performance matrix converter—Induction motor drive,”in Proc.IPEC-Tokyo,2000,pp.235–240.[12]C.Ortega,A.Arias,C.Caruana,J.Balcells,and G.M.Asher,“Improvedwaveform quality in the direct torque control of matrix-converter-fed PMSM drives,”IEEE Trans.Ind.Electron.,vol.57,no.6,pp.2101–2110, Jun.2010.[13]H.M.Nguyen,H.-H.Lee,and T.-W.Chun,“Input power factor compen-sation algorithms using a new direct-SVM method for matrix converter,”IEEE Trans.Ind.Electron.,vol.58,no.1,pp.232–243,Jan.2011.[14]J.Rodriguez,S.Bernet,B.Wu,J.O.Pontt,and S.Kouro,“Multi-level voltage-source-converter topologies for industrial medium-voltage drives,”IEEE Trans.Ind.Electron.,vol.54,no.6,pp.2930–2945, Oct.2007.[15]J.Rodríguez,i,and F.Z.Peng,“Multilevel inverters:A survey oftopologies,controls and applications,”IEEE Trans.Ind.Electron.,vol.49, no.4,pp.724–738,Aug.2002.[16]P.W.Hammond,“A new approach to enhance power quality for mediumvoltage AC drives,”IEEE Trans.Ind.Appl.,vol.33,no.1,pp.202–208, Jan.1997.[17]M.Y.Lee,P.Wheeler,and C.Klumpner,“Space-vector modulated mul-tilevel matrix converter,”IEEE Trans.Ind.Electron.,vol.57,no.10, pp.3385–3394,Oct.2010.[18]D.Paice,Power Electronic Converter Harmonics.Piscataway,NJ:IEEEPress,1995.[19]D.Paice,Clean Power Electronic Converters.Palm Harbor,FL:Paice&Assoc.Inc.,2005.[20]J.Kang,H.Hara,E.Yamamoto,M.Swamy,and T.J.Kume,“Outputvoltage distortion in matrix converter by commutation of bi-directional switches,”in Proc.IEEE IEMDC,2003,vol.1,pp.55–59.[21]P.Nielsen,F.Blaabjerg,and J.K.Pedersen,“New protection issues ofa matrix converter—Design considerations for adjustable speed drives,”IEEE Trans.Ind.Appl.,vol.35,no.5,pp.1150–1161,Sep./Oct.1999. [22]N.Burany,“Safe control of4quadrant switches,”in Proc.IEEE-Ind.Appl.Annu.Meeting,1989,pp.1190–1194.[23]L.Empringham,P.Wheeler,and J.Clare,“Intelligent commutation ofmatrix converter bi-directional switch cells using novel gate drive tech-niques,”in Proc.IEEE Power Electron.Spec.Conf.,Fukuoka,Japan, 1998,pp.707–713.[24]E.Yamamoto,H.Hara,T.Uchino,M.Kawaji,T.Kume,J.Kang,andH.Krug,“Development of MCs and its applications in industry,”IEEEInd.Electron.Mag.,vol.5,no.1,pp.4–12,Mar.2011.Jun Kang(M’93)received the B.S.,M.S.,and Ph.D.degrees,all in electrical engineering from SeoulNational University,Seoul,Korea.From1988to1997,he worked at R&D Centerof LG-Industrial Systems where he mainly got in-volved in the development of general-purpose drivesand gearless elevator drives.In1999,he joined theCorporate R&D Center of Yaskawa Electric Corpo-ration,Kitakyushu,Japan,where he was a Managerin Mechatronics R&D Department.He worked forthe development of the matrix converter and other industrial drives.Since2003,he has been working for Yaskawa America Inc.,Waukegan,IL.He is a Manager of R&D and Applications.His research interests include power electronics,induction and permanent-magnet machine drives,and power quality,and wind power applications.Dr.Kang is a member of the IEEE Power Electronics,IEEE Industry Appli-cations,IEEE Power and Energy,and IEEE Industrial ElectronicsSocieties.Eiji Yamamoto received the B.S.degree in mechan-ical engineering from Kyushu University,Fukuoka,Japan,in1991.He joined the Research Center,Yaskawa ElectricCorporation,Kitakyushu City,Japan,in1991.Heworked at the Development Center from1997to2002,the Inverter Drives Division from2002to2009,and is working at the System EngineeringDivision,Yaskawa Electric Corporation,YukuhashiCity,Japan,from2010.He developed thefirstcommercially produced general-purpose matrix con-verter in2005.His interests include ac motor drives and various power topologies for inverter applications.Mr.Yamamoto is a member of the Institute of Electrical Engineers(IEE) Japan.KANG et al.:MV MATRIX CONVERTER DESIGN USING CASCADED SINGLE-PHASE POWER CELL MODULES5013Masaki Ikeda received the bachelor’s degree inelectronics from Kyushu Institute of Technology,Fukuoka,Japan,in1979.He received the master’sdegree in Electronic Engineering from Tohoku Uni-versity,Miyagi,Japan,in1979.In1991,he joined Yaskawa Electric Corporation,Kitakyushu,Japan.He worked the development anddesign of PLC.He moved to the System EngineeringDivision,Yaskawa Electric Corporation,YukuhashiCity,Japan,from2001.He worked at the devel-opment and design of motor drive system and de-veloped thefirst commercially produced medium-voltage matrix converter in2006.Eiji Watanabe received the B.S.degree in com-puter science from Kyushu Institute of Technology,Fukuoka,Japan,in1981.In the same year,he joined Yaskawa ElectricCorporation,Kitakyushu,Japan.He worked the de-velopment and design of ac motor drives,he waswith the Development Center from1997to2002as aManager of Mechatronics R&D Department,Corpo-rate R&D Center,and moved to Corporate PlanningDivision and Technology&Development Division,Headquarters.He is currently General Manager of Environmental Energy System Business Division.His research interests include power electronics,motor drives,motion controls,and environmental energy system.Mr.Watanabe is member of the Institute of Electrical Engineers(IEE)Japan.。