22.2二次函数与一元二次方程
- 格式:doc
- 大小:717.50 KB
- 文档页数:8
22.2二次函数与一元二次方程问题:二次函数的223y x x =--的图象如图所示。
根据图象回答:⑴ x 为何值时, 0y =?⑵ 你能根据图象,求方程2230x x --=的根吗?⑶ 你认为二次函数223y x x =--与方程2230x x --=之间有何关系呢?请你谈一谈你的看法。
探究(一)二次函数与一元二次方程之间的关系如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线。
如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系:2205h t t =-。
考虑以下问题:⑴ 球的飞行高度能否达到15m ?如能,需要多少飞行时间? ⑵ 球的飞行高度能否达到20m ?如能,需要多少飞行时间? ⑶ 球的飞行高度能否达到20.5m ?为什么? ⑷ 球从飞出到落地需要多少时间?知识总结:一般地,已知二次函数y =ax 2+bx +c 的函数值为m,求自变量x 的值,可以看作解一元二次方程__________________.反之,解一元二次方程ax 2+bx +c =m 又可以看作已知二次函数_______________的值为______时自变量x 的值。
所以:⑴ 如果抛物线2y ax bx c =++与x 轴有公共点(x 0,0),那么 就是方程20ax bx c ++=的一个根。
⑵ 抛物线与x 轴的三种位置关系:相交,即有_____公共点;相切,即有______公共点;相离,即______公共点。
这对应着一元二次方程根的三种情况:有 实数根;有________ 的实数根; ______的实数根。
(3)二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)基础练习:1. 二次函数232+-=x x y ,当x =1时,y =______;当y =0时,x =______. 2.抛物线342+-=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 ; 3、二次函数642+-=x x y ,当x =________时,y =3.4、抛物线 y=2x 2-3x -5 与y 轴交于点 ,与x 轴交于点5、一元二次方程 3 x 2+x -10=0的两个根是x 1=-2 ,x 2=5/3,那么二次函数 y= 3 x 2+x -10与x 轴的交点坐标是4.利用抛物线图象求解一元二次方程及二次不等式 (1)方程ax 2+bx +c =0的根为___________; (2)方程ax 2+bx +c =-3的根为__________; (3)方程ax 2+bx +c =-4的根为__________;变式训练:1.不与x 轴相交的抛物线是( )A. y = 2x 2 – 3B. y=-2 x 2 + 3C. y= -x 2 – 3xD. y=-2(x+1)2 -3 2.若抛物线 y = ax 2+bx+c= 0,当 a>0,c<0时,图象与x 轴交点情况是( ) A. 无交点 B. 只有一个交点 C. 有两个交点 D. 不能确定3.已知抛物线y = ax 2+bx+c 的图象如图,则关于x 的方程ax 2 + bx + c -3 = 0根的情况是( ) A. 有两个不相等的实数根 B. 有两个异号的实数根 C. 有两个相等的实数根 D. 没有实数根4、已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根判断方程 ax 2+bx+c =0 (a ≠0,a,b,c 为常数)一个解x 的范围是( )A. 3< x < 3.23B. 3.23 < x < 3.24C. 3.24 <x< 3.25D. 3.25 <x< 3.26 6、关于x 的一元二次方程 x 2-2x+m=0有两个相等的实数根,则m=___,此时抛物线 y=x 2-2x+m 与x 轴有__个交点.7.已知抛物线 y=x 2 – 8x + c 的顶点在 x 轴上,则 c =__.8.若抛物线 y=x 2 + bx+ c 的顶点在第一象限,则方程 x 2 + bx+ c =0 的根的情况是 。
专题22.2二次函数与一元二次方程(讲练)一、知识点二、标准例题:例1:如图,已知二次函数2y ax bx c=++的部分图象,由图象可估计关于x的一元二次方程20ax bx c++=的两个根分别是1 1.6x=,2x=A.-1.6 B.3.2C.4.4 D.5.2【答案】C【解析】由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.故选C.总结:此题主要利用抛物线是轴对称图象的性质确定抛物线与x 轴交点坐标,是一道较为简单的试题.例2:如图,二次函数2y ax bx c =++(0a ≠)和一次函数1y x =-的图象交于(2,3)A --,(1,0)B 两点,则方程2(1)10ax b x c +-++=(0a ≠)的根为( )A .122,3x x =-=-B .121,0x x ==C .122,1x x =-=D .123,0x x =-=【答案】C【解析】解:∵2(1)10ax b x c +-++=,∴21ax bx c x ++=-. ∴方程2(1)10ax b x c +-++=的根即为二次函数2y ax bx c =++(0a ≠)与一次函数1y x =-的图象交点的横坐标,∵二次函数2y ax bx c =++(0a ≠)和一次函数1y x =-的图象交于(2,3)A --,(1,0)B 两点,∴方程2(1)10ax b x c +-++=(0a ≠)的根为122,1x x =-=.故选C.总结:本题考查了二次函数与一元二次方程的关系,解此题的关键是将方程2(1)10ax b x c +-++=变形为21ax bx c x ++=-,进一步将所求转化为求二次函数2y ax bx c =++(0a ≠)与一次函数1y x =-的图象交点的横坐标,这类题目的求解,重在理解与领悟.最后结合抛物线的增减性进行判断.例3:二次函数y =x 2+bx ﹣t 的对称轴为x =2.若关于x 的一元二次方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解,则t 的取值范围是( )A .﹣4≤t <5B .﹣4≤t <﹣3C .t≥﹣4D .﹣3<t <5【答案】A【解析】解:∵抛物线的对称轴x =2b -=2, ∴b =﹣4,则方程x 2+bx ﹣t =0,即x 2﹣4x ﹣t =0的解相当于y =x 2﹣4x 与直线y =t 的交点的横坐标,∵方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解, ∴当x =﹣1时,y =1+4=5,当x =3时,y =9﹣12=﹣3,又∵y =x 2﹣4x =(x ﹣2)2﹣4,∴当﹣4≤t <5时,在﹣1<x <3的范围内有解.∴t 的取值范围是﹣4≤t <5,故选:A .总结:本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程2ax bx c k ++=的解相当于2y ax bx c =++ 与直线y=k 的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.例4:.某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:其中,m =__________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象剩下的部分.(3)观察函数图象,写出一条性质__________.(4)进一步探究函数图象发现:①方程22||0x x -=有__________个实数根.②关于x 的方程22||x x a -=有4个实数根时,a 的取值范围是__________.【答案】(1)0 (2)(3)当1x >时,y 随x 的增大而增大(4)①3 ②10a -<<.【解析】(1)x=-2时,m=x 2-2l-2l=0;.(2)如图所示(3)由函数图象知:1x >时y 随x 的增大而增大;函数图像关于y 轴对称;(4)如图:①22||=0x x -时即0y =,∴令x 轴有3个交点,分别是2-、0、2;即答案为3;②由函数图象知:关于x 的方程22||x x a -=有4个交点,∴a 的取值范围是10a -<<.总结:本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.其中观察函数图像的能力是解答本题的关键.三、练习1.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤<【答案】D【解析】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点, 22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线 22a x a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值范围是12a -≤<,故选D .2.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】B【解析】∵抛物线开口向下,∴0a <, ∵抛物线的对称轴为直线12bx a =-=,∴20b a =->,∵抛物线与y 轴的交点在x 轴上方,∴0c >,∴0abc <,所以①正确;∵2b a =-, ∴102a b a a +=-=,∵0c >, ∴11024a b c ++>,所以②错误;∵(0,)C c ,OA OC =,∴(,0)A c -,把(,0)A c -代入2y ax bx c =++得20ac bc c -+=,∴10ac b -+=,所以③错误;∵(,0)A c -,对称轴为直线1x =,∴(2,0)B c +,∴2c +是关于x 的一元二次方程20ax bx c ++=的一个根,所以④正确;综上正确的有2个,故选B.3.已知0m >,关于x 的一元二次方程()()120x x m +--=的解为1212,()x x x x <,则下列结论正确的是( )A .1212x x <-<<B .1212x x -<<<C .1212x x -<<<D .1212x x <-<<【答案】A【解析】解:关于x 的一元二次方程()()120x x m +--=的解为12,x x ,可以看作二次函数()()12m x x =+-与x 轴交点的横坐标,∵二次函数()()12m x x =+-与x 轴交点坐标为()()1,0,2,0-,如图:当0m >时,就是抛物线位于x 轴上方的部分,此时1x <-,或2x >;又∵12x x <∴121,2x x =-=;∴1212x x <-<<,故选:A .4.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <1【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc-⎧⎨++⎩><,解得c<﹣2,故选B.5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点②方程ax2+bx+c=0(a≠0)的解为x=0或x=4,③a﹣b+c<0;④当0<x<4时,ax2﹣bx+c<0;⑤当x<2时,y随x增大而增大,其中结论正确的个数()A.1 B.2 C.3 D.4【答案】C【解析】①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线与x轴的交点坐标为:(0,0),(4,0),∴方程ax2+bx+c=0(a≠0)的解为x=0或x=4,正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当0<x<4时,ax2﹣bx+c<0,结论④正确;⑤观察函数图象可知:当x<2时,y随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选:C .6.抛物线23y x bx =++的对称轴为直线1x =.若关于x 的一元二次方程230x bx t ++-=(t 为实数)在14x -<<的范围内有实数根,则t 的取值范围是( )A .211t ≤<B .2t ≥C .611t <<D .26t ≤<【答案】D【解析】∵23y x bx =++的对称轴为直线1x =,∴2b =-,∴223y x x =-+,∴一元二次方程230x bx t ++-=的实数根可以看做223y x x =-+与函数y t =的有交点,∵方程在14x -<<的范围内有实数根,当1x =-时,6y =,当4x =时,11y =,函数223y x x =-+在1x =时有最小值2,∴26t ≤<,故选D .7.若函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,则m 的值为( )A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C【解析】解:当m =1时,函数解析式为:y =﹣6x + 是一次函数,图象与x 轴有且只有一个交点,当m ≠1时,函数为二次函数,∵函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,∴62﹣4×(m ﹣1)× m =0,解得,m =﹣2或3,故选:C .8.二次函数y =ax 2+bx +c (a ≠0)和正比例函数y =﹣13x 的图象如图所示,则方程ax 2+(b + 13)x +c =0(a ≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定【答案】C 【解析】解:设20(0)ax bx c a ++=≠的两根为x 1,x 2,∵由二次函数的图象可知12x x 0+<,a 0>, 0b a∴-<. 设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,则1133b b m n a a a++=-=-- 010300a a b am m >∴-<-<∴+< . 故选:C .9.如图,二次函数y =ax 2+bx+c 图象的对称轴是直线x =1,与x 轴一个交点A (3,0),则与x 轴的另一个交点坐标是( )A .(0,12-)B .(12-,0)C .(0,﹣1) D .(﹣1,0)【答案】D【解析】解:∵点A 的坐标为(3,0), ∴点A 关于x =1的对称点的坐标为(﹣1,0). 故选:D .10.已知二次函数226y x x m =-+的图象与x 轴没有交点,则m 的取值范围是_____. 【答案】92m >【解析】∵二次函数y=2x 2-6x+m 的图象与x 轴没有交点,∴△<0,∴(-6)2-4×2×m <0, 解得:92m >; 故答案为:92m >.11.抛物线2243y x x =--,当14x -≤≤时,y 的取值范围是__________. 【答案】513y -≤≤【解析】解:根据二次函数的解析式2243y x x =--可得 由a=2>0,可得抛物线的开口向上 对称轴为:41222b x a -=-=-=⨯ 所以可得在14x -≤≤范围内,二次函数在11x -≤≤ ,y 随x 的增大而减小,在14x <≤ 上y 随x 的增大而增大.所以当1x = 取得最小值,最小值为:2435y =--=- 当4x =取得最大值,最大值为:22444313y =⨯-⨯-= 所以513y -≤≤ 故答案为:513y -≤≤12.抛物线223y x x =--与x 轴的交点坐标是_____【答案】(10)-,,(3,0) 【解析】令y=0,则x 2-2x-3=0,解得x=3或x=-1.则抛物线y=x 2-2x-3与x 轴的交点坐标是(3,0),(-1,0).故答案为(3,0),(-1,0).13.已知函数 的图象如图所示,若直线 与该图象恰有两个不同的交点,则的取值范围为_____.【答案】【解析】解:直线 与该图象恰有三个不同的交点, 则直线与 有一个交点, ∴ ,∵与 有两个交点, ∴ , , ∴, ∴; 故答案为.14.抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx-+=-的解是___________ 【答案】12x =-,25x =.【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩,解得:12b a c a =-⎧⎨=-⎩,所以,关于x 的一元二次方程a(x -1)2+c =b -bx 为:2(1)12a x a a ax --=-+,即:2(1)121x x --=-+, 化为:23100x x --=, 解得:12x =-,25x =, 故答案为:12x =-,25x =.15.已知m ,n 是方程(x ﹣a )(x ﹣b )﹣1=0(其中a <b )的两根,且m <n ,则a ,b ,m ,n 的大小关系是_____. 【答案】m <a <b <n【解析】∵函数y =(x ﹣a )(x ﹣b )与x 轴的交点坐标的横坐标为a 与b , 二次函数y =(x ﹣a )(x ﹣b )﹣1相当于y =(x ﹣a )(x ﹣b )向下平移一个单位, 又∵二次项系数为1,开口向上,如图所示:∴由图可得:m <a <b <n . 故答案为:m <a <b <n .16.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是_____.【答案】3x <-或1x >.【解析】解:∵抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,∴m n p -+=,3m n q +=,∴抛物线2y ax c =+与直线y mx n =-+交于()1,P p ,()3,Q q -两点,观察函数图象可知:当3x <-或1x >时,直线y mx n =-+在抛物线2y ax bx c =++的下方,∴不等式2ax mx c n ++>的解集为3x <-或1x >. 故答案为:3x <-或1x >.17.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A (﹣1,p ),B (4,q )两点,则关于x 的不等式mx +n <ax 2+bx +c 的解集是____.【答案】﹣1<x <4.【解析】观察函数图象可知:当﹣1<x <4时,直线y =mx+n 在抛物线y =ax 2+bx+c 的下方, ∴不等式mx+n <ax 2+bx+c 的解集为﹣1<x <4.故答案为:﹣1<x <4.18.已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标. 【答案】(1)k =-3;(2)点P 的坐标为(2,-5)或(-2,-5).【解析】(1)∵抛物线y=x 2+(k 2+k -6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=,即k 2+k -6=0,解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意, ∴k=-3;(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为-2或2, 当x=2时,y=-5; 当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).19.在画二次函数()20y ax bx c a =++≠的图象时,甲写错了一次项的系数,列表如下乙写错了常数项,列表如下:通过上述信息,解决以下问题:(1)求原二次函数()20y ax bx c a =++≠的表达式;(2)对于二次函数()20y ax bx c a =++≠,当x _____时,y 的值随x 的值增大而增大;(3)若关于x 的方程()20ax bx c k a ++=≠有两个不相等的实数根,求k 的取值范围.【答案】(1)2323y x x =-++;(2)13≤;(3)103k <. 【解析】解:(1)由甲同学的错误可知c=3, 由甲同学提供的数据选x=-1,y=6;x=1,y=2,有6323a b a b =-+⎧⎨=++⎩,∴12a b =⎧⎨=-⎩,∴a=1,由甲同学给的数据a=1,c=3是正确的;由乙同学提供的数据,可知c=-1,选x=-1,y=-2;x=1,y=2,有2121a b a b -=--⎧⎨=+-⎩, ∴12a b =⎧⎨=⎩, ∴a=1,b=2,∴y=x 2+2x+3;(2)y=x 2+2x+3的对称轴为直线x=-1,抛物线开口向上,∴当-1x ≥时,y 的值随x 的值增大而增大; 故答案为-1≥;(3)方程()20ax bx c k a ++=≠有两个不相等的实数根,即x 2+2x+3-k=0有两个不相等的实数根,∴()4-430k ∆=->, ∴2k >;20.已知抛物线232y ax bx c =++.(1)若1a b ==,1c =-,求该抛物线与x 轴公共点的坐标;(2)若1a b ==,且当11x -<<时,抛物线与x 轴有且只有一个公共点,求c 的取值范围. 【答案】(1)()1,0-和1,03⎛⎫ ⎪⎝⎭.(2)13c =或51c -<≤- 【解析】(1)当1a b ==,1c =-时,抛物线为2321y x x =+-,方程23210x x +-=的两个根为11x =-,213x =.所以该抛物线与x 轴公共点的坐标是()1,0-和1,03⎛⎫⎪⎝⎭.(2)当1a b ==时,抛物线为232y x x c =++,且与x 轴有公共点.对于方程2320x x c ++=,判别式4120c ∆=-≥,有13c ≤.①当13c =时,由方程213203x x ++=,解得1213x x ==-,此时抛物线为21323y x x =++与x 轴只有一个公共点1,03⎛⎫- ⎪⎝⎭; ②当13c <时,11x =-时,1321y c c =-+=+,21x =时,2325y c c =++=+.由已知11x -<<时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为13x =-,应有1200y y ≤⎧⎨>⎩,即1050c c +≤⎧⎨+>⎩,解得51c -<≤-.综上,13c =或51c -<≤-. 21.已知函数()21y x m x m =-+-+(m 为常数). (1)该函数的图象与x 轴公共点的个数是( ). A .0 B .1 C .2 D .1或2(2)求证:不论m 为何值,该函数的图象的顶点都在函数()21y x =+的图象上. (3)当23m -≤≤时,求该函数的图象的顶点纵坐标的取值范围.【答案】(1)D (2)详见解析;(3)当23m -≤≤时,该函数的图象的顶点纵坐标z 的取值范围是04z ≤≤. 【解析】(1)因为()()()2214110m m m ∆=--⋅-⋅=+≥,故选D.(2)配方得()2221(1)124m m y x m x m x -+⎛⎫=-+-+=--+⎪⎝⎭, 所以该函数的图象的顶点坐标为()211,24m m ⎛⎫+- ⎪ ⎪⎝⎭. 把12m x -=代入()21y x =+,得221(1)124m m y -+⎛⎫=+=⎪⎝⎭. 因此,不论m 为何值,该函数的图象的顶点都在函数()21y x =+的图象上.(3)设函数的图象的顶点纵坐标()214m z +=.当1m =-时,z 有最小值0.当1m <-时,z 随m 的增大而减小;当1m >-时,z 随m 的增大而增大.又当2m =-时,()221144z -+==;当3m =时,()23144z +==.因此,当23m -≤≤时,该函数的图象的顶点纵坐标z 的取值范围是04z ≤≤.。
22.2二次函数与一元二次方程一、教学内容二次函数与一元二次方程的关系二、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
三、学情分析学生学习本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。
四、教学目标1.知识与技能了解二次函数转化为一元二次方程的背景和转化的条件,能初步用函数值的观点看方程,掌握利用二次函数求一元二次方程的近似解的方法。
理解二次函数和一元二次方程、不等式的联系和相互转化,掌握转化的条件和方法,初步了解函数与方程的思想与方法。
2.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.3.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.五、教学重难点重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题。
难点:进一步培养学生综合解题能力,渗透数形结合的思想。
六、教学方法和手段讲授法、练习法七、学法指导讲授指导八、教学过程(一)引导学生看书43页导入新课像书中这样的问题,我们常常会遇到,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。
本节课,我和同学们共同研究,尝试解决以下几个问题。
(二)探索问题,学习新知1、问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。
连喷头在内,柱高为0.8m。
22.2 二次函数与一元二次方程一、教学目标(一)学习目标1.了解一元二次方程的根的几何意义,知道抛物线与x 轴的三种位置关系对应 着一元二次方程的根的三种情况.2. 会利用二次函数的图象求一元二次方程的近似解.(二)学习重点:1. 二次函数与一元二次方程之间的联系.2. 用图象法求一元二次方程的近似根并且估算.(三)学习难点:1. 理解一元二次方程的根在二次函数中的意义.2.用函数观点看一元二次方程,二次函数与一元二次方程的区别与联系.3. 体会数形结合解决问题的思想方法.二、教学设计(一)课前设计1. 预习任务: 二次函数2y ax bx c =++的图象与x 轴的交点有三种情况:①有两个交点,②有一个交点,③没有交点.这对应着一元二次方程20ax bx c ++=的根的三种情况:①有两个不相等的实数根,②有两个相等的实数根,③没有实数根(二)课堂设计1. 知识回顾(1)二次函数的定义:形如20y ax bx c a b c a =++?(、、为常数,)的函数,叫做二次函数. (2)二次函数的图象和性质:二次函数2y ax bx c =++的图象是一条抛物线, 当0a >时,当2b x a <-时,y 随着x 的增大而减小,当2b x a >-时,y 随着x 的增大而增大; 当0a <时,当2b x a <-时,y 随着x 的增大而增大,当2b x a>-时,y 随着x 的增大而减小. (3)一元二次方程的一般形式:02=++c bx ax (a 、b 、c 为常数,a ≠0)(4)一元二次方程20ax bx c ++=的根的情况怎样判定:用根的判别式:ac b d 42-= ①当d >0时,方程20ax bx c ++=有两个不相等的实数根;②当d=0时,方程20ax bx c ++=有两个相等的实数根;③当d<0时,方程20ax bx c ++=没有实数根.2. 问题探究探究一 二次函数与一元二次方程之间的联系 ●活动① 通过实际问题,研究二次函数与一元二次方程之间的联系问题 如图,以40m s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位: m )与飞行时间t (单位: s )之间具有函数关系2205h t t =-.师问:考虑以下问题:(1)小球的飞行高度能否达到15m ?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m ?如果能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m ?为什么?(4)小球从飞出到落地要用多少时间?一般地,我们可以利用二次函数2y ax bx c =++深入讨论一元二次方程20ax bx c ++=. 师问:二次函数223y x x =--,221y x x =-+,222y x x =-+的图象如下图所示,每个图象与x 轴有几个交点?223y x x =--的图象 221y x x =-+的图象 222y x x =-+的图象师问:一元二次方程2230x x +-=,2210x x -+=有几个实数根?用判别式验证一下. 一元二次方程2220x x -+=有实数根吗?.师问:二次函数2y ax bx c =++的图象与x 轴交点的坐标和一元二次方程20ax bx c ++=的根有什么关系?总结:一般地,从二次函数2y ax bx c =++的图象可得如下结论:(1)抛物线2y ax bx c =++与x 轴的交点有三种情况:有两个交点,有一个交点,没有交点.这对应着一元二次方程20ax bx c ++=的根的三种情况:有两个不相等的实数根,有两个相等的实数根,没有实数根.反之亦然.(即:由一元二次方程的根的情况,也可以确定相应的二次函数的图象与x 轴的位置关系)(2)如果抛物线2y ax bx c =++与x 轴有交点,交点的横坐标是0x ,那么当0x x =时,函数值是0,因此0x x =是一元二次方程20ax bx c ++=的一个根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.探究二 利用二次函数的图象求一元二次方程的根●活动② 通过例子,解决问题例 利用函数图象求方程2220x x --=的实数根(结果保留小数点后一位).解:画出函数222y x x =--的图象(图22.2-3),它与x 轴的公共点的横坐标大约是7.0-、2.7,所以方程2220x x --=的实数根为7.01-≈x ,7.22≈x(图22.2-3)我们还可以通过不断缩小根所在的范围估计一元二次方程的根.观察函数222y x x =--的图象,可以发现,当自变量为2时函数值小于0(点(2,2)-在x 轴的下方),当自变量是3时函数值大于0,(点(3,1)在x 轴的上方).所以抛物线222y x x =--在23x <<这一段经过x 轴.(抛物线没有间断点,因而抛物线从x 轴下方通过x 轴上方时一定经过x 轴.)也就是说,当自变量取2,3之间的某个值时,函数值为0,即方程2220x x 在--=23,之间有根. 我们可以通过取平均数的方法不断缩小根所在的范围.(每次可以将根所在的范围缩小到原来的一半.)例如,取2,3的平均数2.5,用计算器算得自变量为2.5时的函数值为0.75-,与自变量为3时的函数值异号,所以这个根在2.5,3之间.再取2.5,3的平均数2.75,用计算器算得自变量为2.75时的函数值为0,0625,与自变量为2.5时的函数值异号,所以这个根在2.5,2.75之间.重复上述步骤,我们逐步得到:这个根在2.5625,2.75之间,在2.6875,2.75之间……可以看到:根所在的范围越来越小,根所在的范围的两端的值越来越接近根的值,因而可以作为根的近似值.例如,当要求根的近似值与根的准确值的差的绝对值小于0.1时,由于2.6875 2.750.06250.1-=<,我们可以将2.6875作为根的近似值.你能用这种方法得出方程2220x x --=的另一个根的近似值吗(要求根的近似值与根的准确值的差的绝对值小于0.1)?这种求根的近似值的方法也适用于更高的一元方程.【总结】利用二次函数的图象求一元二次方程的根的一般步骤:(1) 画出函数的图象(可用计算机画);(2)根据图象确定抛物线与x 轴的交点分别在哪两个相邻的整数之间;可以通过取平均数的方法不断缩小根所在的范围. (可以利用计算器计算).(3)确定方程的近似根.探究三 例题讲解 学以致用●活动① 基础性例题例1:抢答:判断下列抛物线与x 轴的交点个数.(1)2242y x x =++ (2)2621y x x =++ (3) 2324y xx =-- 【答案】一个交点,没有交点,两个交点.练习:二次函数2340y x x =+-的图象与x 轴交于A 、B 两点,则线段AB 长为 .【答案】13例2 (1)已知二次函数277y kx x =--的图象和x 轴有交点,则k 的取值范围为( )A .74k >-B .047≠-≥k k 且C .74k <-D .704k k -≠>且 【答案】B(2)若二次函数23y x x m =-++的图象全部在x 轴的下方,则m 的取值范围为 . 【答案】94m <-. 练习:抛物线2y x x b =++的图象全部在x 轴的上方,则b 的取值范围为 .【知识点】抛物线与x 轴的交点问题 【答案】14b >●活动② 提升型例题例3 下表是一组二次函数235y x x =+-的自变量x 与函数值y 的对应值:那么方程2350x x +-=的一个近似根是( )A .1B .1.1C .1.2D .1.3【答案】C练习:在平面直角坐标系中,抛物线20y ax bx c a ()=++>的部分图象如图所示,直线1x =是它的对称轴.若一元二次方程20ax bx c ++=的一个根1x 的取值范围是123x <<,则它的另一个根2x 的取值范围是 .【答案】210x -<<●活动③ 探究型例题例4 如图,在平面直角坐标系中,抛物线224233y x x =--+与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A ,抛物线的顶点为D .(1)填空:点A 的坐标为( , ),点B 的坐标为( , ),点C 的坐标为( , ),点D 的坐标为( , );(2)点P 是线段BC 上的动点(点P 不与点B 、C 重合)①过点P 作x 轴的垂线交抛物线于点E ,若PE =PC ,求点E 的坐标;②在①的条件下,点F 是坐标轴上的点,且点F 到EA 和ED 的距离相等,请直接写出线段EF 的长;【答案】(1) 0、2,﹣3、0,1、0,﹣1、83;(2)①35(,)22E-,②3522EF=或;练习:如图,抛物线2y ax bx=+过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标.【答案】24y x x=-+,3, (5,﹣5)3. 课堂总结【知识梳理】(1)填表:二次函数2y ax bx c=++与一元二次方程20ax bx c++=的关系:(2)一般地:已知二次函数2y ax bx c =++的函数值为m ,求自变量x 的值,可以看作解一元二次方程2ax bx c m ++=.反之,解一元二次方程2ax bx c m ++=又可以看作已知二次函数2y ax bx c =++的值为m 的自变量x 的值.(3)利用二次函数的图象求一元二次方程的根的一般步骤:①画出函数的图象(可用计算机画);②根据图象确定抛物线与x 轴的交点分别在哪两个相邻的整数之间;③可以通过取平均数的方法不断缩小根所在的范围. (可以利用计算器计算).④确定方程的近似根.【重难点归纳】1. 注意抛物线与x 轴的交点与抛物线的对称轴之间的关系:当已知方程20ax bx c ++=的两个根为1x 、2x 时,那么抛物线2y ax bx c =++的对称轴为122x x x +=. 2. 注意四个“二次”之间的区别与联系,即二次函数,一元二次方程,一元二次不等式,二次三项式;利用他们之间的转化解决问题.(1)二次三项式2ax bx c ++恒正⇔抛物线2y ax bx c =++全在x 轴上方0a ⇔>且0∆<;(2)二次三项式2ax bx c ++恒负⇔抛物线2y ax bx c =++全在x 轴下方0a ⇔<且0∆<.3. 利用二次函数图象求不等式解集的方法:“一元二次不等式”实际上是指二次函数的函数值“0,0y y ><或0,0y y ≥≤”,从图象看是指曲线在x 轴上方或x 轴下方时的x 值(对应的自变量x 的取值范围)。