编号61:反比例函数图像与性质(3)
- 格式:doc
- 大小:188.50 KB
- 文档页数:3
反比例函数的图像和性质反比例函数是数学中的一种基本函数类型,其图像和性质具有一定的特点。
本文将从图像和性质两个方面进行论述。
一、图像反比例函数的基本形式为y=k/x,其中k为常数,且k不等于0。
根据函数的定义域和值域,可得反比例函数的图像具有如下特点:1. 对称轴:对于反比例函数y=k/x来说,其对称轴为y轴和x 轴,即函数图像关于y轴和x轴对称。
2. 渐近线:反比例函数的图像会与y轴、x轴以及非对称轴(y=k/x中对称轴为y轴和x轴)形成三条渐近线。
当x趋近于正无穷大或负无穷大时,函数值趋近于0;当y趋近于正无穷大或负无穷大时,函数值趋近于0。
3. 图像形状:反比例函数的图像呈现双曲线的形状,即左右两侧趋近于无穷大而且不相交。
二、性质除了图像特点外,反比例函数还具有以下性质:1. 变化趋势:反比例函数的特殊之处在于当自变量x增大时,因为分母逐渐增大,所以函数值y会逐渐减小;反之,当x减小时,函数值y会逐渐增大。
2. 强调比值关系:反比例函数中,自变量和因变量之间存在着比值关系。
当自变量增大或减小时,因变量的大小相应呈现相反的变化。
3. 零点和定义域:反比例函数在定义域内除了零点x=0外,它的函数值不为零。
定义域一般为除零点的所有实数。
4. 单调性:反比例函数在定义域内通常是单调的,当自变量增大时,因变量会单调减小;当自变量减小时,因变量会单调增大。
5. 特殊情况:当反比例函数中的常数k为正数时,其图像位于第一象限和第三象限;当k为负数时,图像位于第二象限和第四象限。
这决定了函数图像关于原点的对称性。
综上所述,反比例函数的图像呈现双曲线的形状,具有对称轴、渐近线等特点。
同时,反比例函数的性质包括变化趋势、比值关系、零点和定义域、单调性以及特殊情况等。
在实际问题中,反比例函数具有广泛的应用,比如经济学中的供需关系、物理学中的电阻和电流关系等。
通过研究反比例函数的图像和性质,可以更好地理解和应用数学知识。
反比例函数的图像与性质反比例函数是一种常见的数学函数类型,其图像非常有特点,具有一些独特的性质。
本文将介绍反比例函数的图像及其性质,以帮助读者更好地理解和应用这一函数类型。
一、反比例函数的图像反比例函数的一般形式可以表示为 y = k/x,其中 k 为非零常数。
根据这个函数形式,我们可以研究其图像及其性质。
1. 关于 y 轴和 x 轴的对称性:我们可以观察到反比例函数的图像关于 y 轴和 x 轴均具有对称性。
也就是说,如果一个点 (x, y) 在反比例函数的图像上,那么点 (-x, y)、(x, -y)、(-x, -y) 也会在图像上。
2. 渐近线:对于反比例函数 y = k/x,当 x 趋近于 0 时,y 趋于正无穷大或负无穷大。
也就是说,反比例函数的图像会有两个垂直于 x 轴的渐近线,分别位于第一象限和第三象限。
这两条渐近线可以用方程 x = 0 和 y =0 来表示。
3. 变化趋势:反比例函数的图像随着 x 的增大而逐渐趋向于 x 轴正半轴,随着 x的减小而逐渐趋向于x 轴负半轴。
换句话说,当x 趋近于正无穷大时,y 趋于 0;当 x 趋近于负无穷大时,y 也趋于 0。
这一性质可以通过直观的图像来观察和理解。
二、反比例函数的性质除了图像特点外,反比例函数还具有一些性质,对于解题和实际应用有重要意义。
下面我们将介绍一些常见的性质。
1. 定义域和值域:反比例函数 y = k/x 的定义域为除了 x=0 外的所有实数,值域也为除了 y=0 外的所有实数。
这是因为 0 不能作为分母。
2. 增减性:当 x1<x2 时,对于反比例函数,由于 x1 和 x2 在同一侧相对于 0,所以可以推出 y1 和 y2 在同一侧相对于 0。
也就是说,反比例函数在定义域内的不同点上具有相同的增减性。
3. 零点:反比例函数的零点为x=0,即在坐标系的原点处。
当x 不等于零时,反比例函数的值不会等于零,因此没有其他零点。
反比例函数的图像和性质反比例函数是一种常见的数学函数,它的图像和性质在数学学科中扮演着重要的角色。
本文将介绍反比例函数的图像和性质,以帮助读者更好地理解和应用这种函数。
一、反比例函数的定义和表示形式反比例函数是指一个变量的值与另一个变量的值之间存在反比关系的函数。
一般而言,反比例函数可以表示为y = k/x,其中k是一个常数。
这里的x、y分别表示两个变量,k表示比例常数。
二、反比例函数的图像特点反比例函数的图像具有一些明显的特点。
首先,图像始终通过第一象限的原点(0,0),这是因为当x等于0时,无论k的值为何,y都等于0。
其次,当x趋近于正无穷大时,函数的图像趋近于x轴,当x趋近于负无穷大时,函数的图像也趋近于x轴。
这是因为当x趋近于无穷大或负无穷大时,1/x的值趋近于0。
三、反比例函数的图像形状反比例函数的图像呈现出特殊的形状,即一条通过原点的拋物线。
随着x的增大,y的值逐渐减小,而且曲线逐渐接近x轴。
同样地,随着x的减小,y的值逐渐增大。
这种特殊的图像形状可以帮助我们更好地理解反比例函数的性质。
四、反比例函数的性质反比例函数具有一些重要的性质,这些性质对于进行数学分析和解决实际问题非常有用。
以下是一些常见的反比例函数性质:1. 零点:反比例函数的图像通过原点(0,0),也就是说,当x等于0时,y等于0。
2. 定义域和值域:反比例函数的定义域为除了零以外的所有实数,值域也是除了零以外的所有实数。
3. 单调性:反比例函数在其定义域上是单调递减或单调递增的。
随着x的增大,y的值逐渐减小,反之亦然。
4. 渐近线:反比例函数的图像有两条渐近线,分别是x轴和y轴。
当x趋近于正无穷大或负无穷大时,函数的图像将趋近于x轴。
当y趋近于正无穷大或负无穷大时,函数的图像将趋近于y轴。
5. 对称性:反比例函数具有以下对称性:当x1和x2满足x1*x2 = k 时,有f(x1)*f(x2) = k。
6. 变化率:反比例函数的变化率是一个负数。
反比例函数的图像和性质是什么
反比例的图像和性质
当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;
当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
反比例函数定义
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图象中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。
因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。
而y=k/x有时也被写成xy=k或y=k·x-1。
反比例函数的应用举例
反比例函数的图象上有一点P(m,n)其坐标是关于t的一元二次方程t²-3t+k=0的两根,且P到原点的距离为根号13,求该反比例函数的解析式。
分析:
要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程。
解:∵m,n是关于t的方程t²-3t+k=0的两根,
∴m+n=3,
mn=k,
又∵PO=根号13,
∴m²+n²=13,
∴(m+n)²-2mn=13,
∴9-2k=13.
∴k=-2
当k=-2时,
△=9+8>0,
∴k=-2符合条件。
课题:6.2.2反比例函数的图象与性质课型:新授课年级:九年级教学目标:1.会画出反比例函数的图象,能根据图象探索并理解反比例函数的主要性质.2.提高观察和归纳分析能力,体验数形结合和分类讨论的数学思想.会运用数形结合的思想方法解决反比例函数的有关问题.教学重点与难点:重点:探索反比例函数的主要性质.难点:理解反比例函数性质的探索过程,从“数”和“形”两方面综合考虑问题.课前准备:多媒体课件、三角板.教学过程:一、感悟导入活动内容:回答下列问题.问题3. 你知道反比例函数的图象还有哪些特点吗?反比例函数还有其它的性质吗?3引入本节课的内容.设计意图:反比例函数的定义以及函数图象的特点,是继续进行本节内容学习的重要知识储备.本环节避免单纯的复习定义以及对知识的简单复述,力图通过具体问题,让学生在解决问题的过程中加深对知识本身的理解,培养学生的空间想象能力和对知识的实际运用能力.二、自主探究活动内容1:探究反比例函数图像的增减性(k>0)观察反比例函数2yx=,4yx=,6yx=的图象,你能发现它们的共同特征吗?(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?处理方式:让学生课前预习并画好函数图像,课上由教师展示,让学生自主观察所画图像,并结合问题探究得出反比例函数性质.学生有可能总结为:当k>0时, y的值随x值的增大而减小.这时教师可以提示:这样不够严谨,应强调“在每一个象限内”这个前提条件.然后动画演示几何画板课件,并总结结论: 当k>0时,图象的两个分支分别在第一、三象限内,在每一象限内,y的值随x的增大而减小.(借助于下图进行说明)设计意图: 学生通过观察比较,总结出三个反比例函数图象的共同特征,在活动中放手让学生去观察,去类比,去感受,去总结,实现学生主动参与,探究新知的目的,培养学生“以图识性、以性画图”的能力;及时的小结有助于理清思路,培养学生的归纳能力和语言表达能力.活动内容2:探究反比例函数图像的增减性(k<0)k>时,反比例函数图象的特征进行了分析,此处可以完全处理方式:前面已经对0k<放手给学生,让学生观察课前预习时画好的函数图像,通过类比,分析、归纳、概括出0时图象的共同特征,教师只需进行适时的点拨.由于上面在总结k>0时的性质时,强调了“在每一象限内”,所以在总结k<0的性质时,学生比较容易想到“在每一象限内”.k<时反比例函数图像特征的探究,培养学生利用数形结合探究问设计意图:通过对0题的意识,发展学生类比分析问题的能力,使学生在知识上更加完善,在能力上逐步提高.<0时,在每一象限内,y的值随x值的增大而增大.设计意图:本环节主要是将知识进行系统的归纳、概括,通过讨论、交流,形成完整、规范的结论,可以培养学生的语言表达能力和对知识的归纳、概括能力.三、巩固新知设计意图:通过几个小题目的练习,及时运用、巩固所学的知识,使学生加深对反比例函数性质的理解.问题3是一道易错题,不仅考察了性质中的“在每一象限内”这一条件,并且还蕴含着分类讨论思想,可以拓展学生思维的广度和深度.课堂上以小组合作讲解的形式,让每个学生都融入到表达与倾听中,可以调动每个学生的主观能动性.四、合作竞学活动内容:探究k的几何意义 (课件展示问题)问题1. 如图1,在反比例函数xy 2=的图象上任取一点P ,过点P 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为多少?图1 图2 问题2. 如图2, 在反比例函数xky =的图象上任取一点P ,过点P 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为多少?图3 图4问题3. 如图3,在反比例函数xky =图象上任取两点P 、Q ,过点P 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为1S ;过点Q 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为2S ,1S 与2S 有什么关系? 为什么?问题4. 如图4,在反比例函数xky =的图象上任取点P ,过点P 作PF ⊥x 轴于F ,△OPF 的面积又是多少呢? 为什么?处理方式:(1)鼓励学生先独立思考,然后以小组为单位,讨论分析,动手计算,总结小组成果.教师一边巡视,一边加入到各个小组的学生讨论中. 四个问题层层推进,让不同层次的学生都有事可干.(2)充分讨论后可由学生讲解,教师进行方法的总结和点拨.在探究的基础上,对于一般的反比例函数xky =,充分利用小组成员间的合作,探究、归纳出一般性的结论——矩形面积总等于k ,三角形的面积总等于k 21.(3)利用几何画板软件通过拖动改变P 点位置(如下图),直观感受所得结论的正确性.可以发现矩形与三角形的面积是一个定值,加深学生对所得规律的理解.设计意图: 课本中只给出了问题3. 考虑到如果直接探究函数xky =,对于有些学生来说有一定的困难,所以为了突破这一难点,我先给出简单的反比例函数xy 2=,在探究了这个具体函数的基础上,再由特殊到一般,进一步探究xky =,符合学生的认知规律.最后通过几何画板的动画演示,让学生更直观地理解矩形和三角形的面积与比例系数K 的对应关系,向学生渗透数形结合的思想方法.五、反思总结 活动内容:本节课你学到了反比例函数的哪些新知识? 你有哪些感悟和收获? 你还有什么困惑?处理方式:先由学生自由发言,畅谈收获.师引导学生对自己的学习过程进行提炼、反思,从知识上和方法上进行总结.最后课件展示以下表格,通过对比形式,引导学生小结正比例函数、反比例函数的性质.设计意图:小结能使学生养成反思与总结的习惯,培养自我反馈,自主发展的意识.小结还能引导学生关注数学的学习过程,通过交流、反思,倾听其他同学的感悟和收获,可以取长补短,共同提高.六、测试评价师:通过本节课的学习,同学们的收获如何呢?请完成达标检测题.(课件出示) A 组:1.(2014 随州)关于反比例函数xy 4=的图象,下列说法正确的是( ) A .图象经过点(1,1)B . 两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D . 当x <0时,y 随x 的增大而减小2.(2014 宁夏)已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在函数xy 5=的图象上,当x 1>x 2>0时,下列结论正确的是( )A .0<y 1<y 2B . 0<y 2<y 1C . y 1<y 2<0D . y 2<y 1<03.(2014▪哈尔滨)在反比例函数xk y 1-=的图象的每一条曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A . k >1 B . k >0C . k ≥1D . k <14.(2014 天津 )已知反比例函数xky =(k 为常数,k ≠0)的图象位于第一、第三象限,写出一个符合条件的k 的值为 .5.(2014•新疆)若点A (1,y 1)和点B (2,y 2)在反比例函数xy 1=图象上,则y 1与y 2的大小关系是:y 1 y 2(填“>”、“<”或“=”).B 组:(学有余力的同学选做)6.(2014▪牡丹江)在同一直角坐标系中,函数y =kx +1与xky -=(k ≠0)的图象大致是( )7.(2014•滨州)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C ,则k 的值为 .设计意图:通过几道练习题进一步加深函数性质的理解和灵活应用,巩固本节课的知识点.深刻体会数学思想的多样性和灵活性.设置选做题,贯彻分层教学的理念,让学生在思维最活跃的时候,最大化地提高学生能力.七、布置作业必做题:课本157页,习题6.3第1题、第2题、第3题. 选做题:课本157页,习题6.3第4题.八、课外延伸你知道反比例函数还有其它性质吗?请同学们课下继续探究.可以观看微课《反比例函数的图象与性质》(在我们班级的公共邮箱中下载).结束语努力向前,默默耕耘,机会和成功必属于最坚韧的奋斗者.祝愿同学们:信心百倍,走好九年级的每一步,成就不凡的自己.板书设计:6. 2. 2反比例函数的图象与性质1.图像(k>0)图像(k<0)2. 性质(增减性)当k>0时,在每一象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大.3.探究4.k的几何意义。
反比函数的图象和性质是什么?
反比函数的图象是什么?反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性,以上就是反比函数的图象和性质。
接下来详细的看一下其中的内容吧!
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y 是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。
当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。
在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。
②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。
而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x 轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。
③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K 越大的话,反比例函数距离坐标轴就会越来越远。
④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。
常州市中天实验学校八年级数学学案 NO . 61
11.2反比例函数图像与性质(3)
班级: 姓名:
一. 学习目标:
1. 反比例函数关系系中比例系数k 的几何意义;
2. 利用反比例函数图象的性质解决问题.
二.自学指导:
(1)如下图,反比例函数2y x
=第一象限图像上有一点B ,横坐标为1,过点B 作BA ⊥x 轴与点A ,作BC ⊥y 轴与点C ,①点B 的坐标为 ;②四边形ABCO 为 形;③四边形ABCO 的面积为 ;④若点B 在此函数图像上随意滑动,过点B 作BA ⊥x 轴与点A ,作BC ⊥y 轴与点C ,则四边形ABCO 的面积为 ;⑤若点B 在此函数另一象限图像上随意滑动,过点B 作BA ⊥x 轴与点A ,作BC ⊥y 轴与点C ,则四边形ABCO 的面积为 ;
思考:反比例函数()0k y k x
=≠图像上有一点B 在此函数图像上随意滑动,过点B 作BA ⊥x 轴与点A ,作BC ⊥y 轴与点C ,四边形ABCO 的面积为 ;
(2)思考:如上图,反比例函数()0k y k x
=≠图像上有一点A 在此函数图像上随意滑动,过点A 作AB ⊥y 轴与点B ,连接AO ,则△ABO 的面积为 ;
三.自学检测:
1.如图是三个反比例函数312,,k k k y y y x x x =
==在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为( )
A .k 1>k 2>k 3
B .k 3>k 2>k 1
C .k 2>k 3>k 1
D .k 3>k 1>k 2 2.如图,P 是双曲线上一点,图中的阴影部分的面积为3,则此反比例函数的解析式为 .
第1题
3.如图,A 、B 两点在4y x =
图像上,分别过A 、B 两点向轴作垂线段,S 阴影=1,则S 1+S 2= . 4.已知反比例函数6y x
=在第一象限的图象如图,点A 在其图象上,点B 为x 轴正半轴上一点,连接AO 、AB ,且AO =AB ,则S △AOB = .
5.如图,A ,B 是函数1y x
=的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC 平行 于x 轴,△ABC 的面积为S ,则S = .
8.已知反比例函数与矩形ABCD 交于点M 、N ,连接OM ,ON ,M (3,2),S 四边形OMBN =6,求反比例函数的解析式及B 点、N 点的坐标.
编号:61 11.2反比例函数图像与性质(3)当堂训练 2017. 5.22
班级: 姓名:
1.如图2,在函数()10y x x
=>的图象上有三点A 、B 、C .过这三点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线与x 轴、y 轴围成的矩形的面积分别为A B C S S S 、、,则( )
A .A
B
C S S S >> B .A B C S S S << C .A C B S S S <<
D .A B C S S S ==
4.如图,反比例函数y x =-的图象与直线3
y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则△ABC 的面积为 . 5.如图,函数与函数1y =的图象交于A 、C 两点,AB ⊥x 轴于B ,则△ABC 的面积6. 如图,在Rt △AOB 中,∠ABO =90°,OB =4,AB =8,且反比例函数()0y k x
=≠在第一象限内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若S △BOD =4,(1)求反比例函数解析式;(2)求C 点坐标.。