液液萃取液液相平衡
- 格式:pptx
- 大小:1.06 MB
- 文档页数:28
绪论4.1 液液萃取过程4.2 液液相平衡4.3 萃取过程计算4.4 萃取设备4.5 萃取过程的新进展基本概念利用组分在两个互不相溶的液相中的溶解度差而将其从一个液相转移。
到另一个液相的分离过程称为液液萃取,也叫溶剂萃取,简称萃取。
待分离的一相称为被萃相,萃取后成为萃余相,用做分离剂的相称为萃取相。
萃取相中起萃取作用的组分称为萃取剂,起溶剂作用的组分称为稀释剂或溶剂。
具有处理量大、分离效果好、回收率高、可连续操作以及自动控制等特点,因此得到了广泛的应用。
1. 液液萃取过程的特点(1)萃取过程的传质前提是两个液相之间的相互接触;(2)两相的传质过程是分散相液滴和连续相之间相际传质过程。
(3)两相间的有效分散是提高萃取效率的有效手段。
(4)两相的分离需借助两相的密度差来实现。
(5)液液萃取过程可以在多种形式的装置中通过连续或间歇的方式实现。
2. 液液萃取的主要研究内容(1)确定萃取体系包括被萃相体系和萃取相体系的构成,如被萃相的酸碱度、萃取相的稀释剂等。
(2)测定相平衡数据分配系数和分离系数。
(3)确定工艺和操作条件相比、萃取剂和稀释剂用量、被萃物浓度、萃取温度等。
(4)萃取流程的建立完整的萃取和反萃流程。
(5)设备的确定设备形式和结构。
1. 萃取剂的选择(1) 萃取剂应具备的特点①萃取剂中至少要有一个能与被萃物形成萃合物的官能团。
常见的萃取官能团通常是一些包含N、O、P、S的基团。
②萃取剂中还应包含具有较强亲油能力结构或基团,如长链烃、芳烃等,以利于萃取剂在稀释剂中的溶解,并防止被萃相对它的溶解夹带损失。
1. 分配比达到萃取平衡时,被萃物在两相中的浓度比称为被萃物的分配比,也称为分配系数。
D=其中,为被萃物A在萃取相(有机相)中的浓度;为被萃物A在被萃相(水相)中的浓度。
分配比D的值越大,被萃物越容易进入萃取相。
D通常不是常数,要受萃取体系和萃取条件的影响,应根据实验来测定;D=0,表示待萃取物完全不被萃取,D=∞,表示完全被萃取。
三元液液平衡数据的测定引言液液平衡数据是化工及环保行业中重要的参数。
本文将介绍三元液液平衡数据的测定方法。
三元液液平衡数据三元液液平衡数据是指在三组分体系中,三个相互溶解的液体之间平衡的数据。
三元液液平衡数据可以用来确定分离和萃取的操作条件。
三元液液平衡数据的测定方法包括静态法和动态法。
静态法静态法是一种简单的三元液液平衡数据测定方法。
其实验步骤如下:1.将已知质量的固体电解质溶解在水中,加入待测液体A,搅拌均匀。
2.将待测液体B加入混合物中,搅拌10~30min后静置。
3.取上清液,用气相色谱对液相中组分浓度进行分析,得到平衡数据。
使用静态法测定三元液液平衡数据的优点是实验简单,操作方便,缺点是很难测定三个液体系统中所有可能的平衡点,只能测定有限的几个点。
动态法动态法是一种综合测定三元液液平衡数据的方法,通过不断地向一体系中加入两种液体,使体系达到平衡,然后对液相进行组分分析,确定平衡数据。
其实验步骤如下:1.将一个液体加入板式萃取器底部的液相中,上层液体为待测液体A。
2.连续加入待测液体B,加入速度控制在0.1~3.0ml/min之间,收集出口液A与出口液B,以气相色谱法对液相中组分进行分析,获得三元液液平衡数据。
动态法可以获得三元液液平衡数据内各相变的平衡点,但需要操作单位时间较多,且需要设备较为复杂。
三元液液平衡数据的测定方法包括静态法和动态法。
静态法测定简单,操作方便;动态法测定精度更高,可测定所有可能的平衡点。
正确选择三元液液平衡数据的测定方法,对提高化工及环保行业生产效率具有重要意义。
三元物系液液相平衡测定实验装置实验指导书三元物系液液相平衡测定液液萃取是化工过程中一种重要的分离方法,它在节能上的优越性尤其显著。
液液相平衡数据是萃取过程设计及操作的主要依据。
平衡数据的获得主要依赖于实验测定。
一、实验目的本实验采用所谓浊点—物性联环合法,测定25℃下,乙醇—环已烷—水三元物系的液液平衡双结点曲线(又称溶解度曲线)和平衡结线。
通过实验要求同学们了解测定方法,熟悉实验技能。
学会三角形相图的绘制,以及分配系数K、选择性系数β的计算。
使同学们掌握该实验所依据的基本原理。
二、实验原理1、溶解度测定的原理乙醇和环已烷。
乙醇和水均为互溶体系。
但水在环已烷中溶解度很小。
在定温下,向乙醇—环已烷溶液中加入水,当水达到一定数量时,原来均匀清晰的溶液开始分裂成水相和油相二相混合物,此时体系不再是均匀的了。
当物系发生相变时,液体由清变浊。
使体系变浊所需的加水量取决于乙醇和环已烷的起始浓度和给定温度。
利用体系在相变时的浑浊和清亮现象可以测定体系中各组分之间的互溶度。
一般,液体由清变浊肉眼易于分辨。
所以本实验采用先配制乙醇—环已烷溶液,然后加入第三组分水,直到溶液出现混浊,通过逐一称量各组分来确定平衡组成即溶解度。
2、平衡结线测定的原理由相律知,定温、定压下,三元液液平衡体系的自由度f=1。
这就是说在溶解度曲线上只要确定一个特性值就能确定三元物系的性质。
通过测定在平衡时上层(油相)、下层(水相)的折光指数,并在预先测制的浓度—折光指数关系曲线上查得相应组成,便获得平衡结线。
三、实验仪器及试料1、仪器液液平衡釜、电磁搅拌器、阿贝折光仪、恒温水槽、电光分析天平,A级温度传感器、医用注射器、量筒烧杯等。
2、试剂分析纯乙醇、分析纯环已烷及去离子水。
四、操作步骤1、打开恒温水槽的电源开关、加热开关。
2、注意观察平衡釜温度计的变化,使之稳定在25℃(可调节恒温水槽的温度表)。
3、将5~6毫升环已烷倒入三角烧瓶,在天平上称重(记下重量G2),然后将环已烷倒入平衡釜,再将三角烧瓶称重(记下重量G1)。
间苯二酚溶剂萃取液液相平衡数据的关联间苯二酚(C6H4(OH)2)溶剂萃取是一种常用的分离、提纯和纯化技术,常用的溶剂为二丙酮、苯、环已酮等。
了解液相平衡数据对于实现高
效和经济的溶剂萃取过程至关重要。
液相平衡数据关联的目的是通过建立数学模型来预测液相平衡数据,
从而加速工艺设计,提高生产效率和质量。
在间苯二酚的溶剂萃取过程中,通常需要测定液-液相平衡数据,即在不同温度下间苯二酚在水相和有机
相之间的分配比例。
然后,液相平衡数据可以用于优化操作条件、调整溶
剂组成和确定最佳工艺参数。
实验测量液相平衡数据可以使用珀金方程、二元系统模型、Langmuir
模型等模型进行拟合分析。
此外,还可以通过计算机模拟方法,如分子模拟、分子动力学模拟等手段,建立分子模型来预测液相平衡数据和评估分
子间相互作用。
在此过程中,需要注意的是,液相平衡数据的建模和预测需要精确和
可靠的实验数据作为基础,同时需要充分考虑溶剂体系的复杂性和液相平
衡数据的局限性。
只有深入理解溶剂体系的性质和相互作用,进行科学合
理的实验设计和数学建模,才能实现经济高效的间苯二酚溶剂萃取过程。
11 液液萃取(溶剂萃取)Liquid-liquid extraction(Solventextraction)11.1 概述一、液液萃取过程:1、液液萃取原理:根据液体混合物中各组分在某溶剂中溶解度的差异,而对液体混合物实施分离的方法,也是重要的单元操作之一。
溶质 A + 萃取剂 S——————〉S+A (B) 萃取相 Extract分层稀释剂 B B + A (S…少量) 萃余相 Raffinate(残液)一般伴随搅拌过程 => 形成两相系统,并造成溶质在两相间的不平衡则萃取的本质:液液两相间的传质过程,即萃取过程是溶质在两个液相之间重新分配的过程,即通过相际传质来达到分离和提纯。
溶剂 extractant(solvent)S 的基本条件:a、S 不能与被分离混合物完全互溶,只能部分互溶;b、溶剂具有选择性,即溶剂对A、B两组分具有不同溶解能力。
即(萃取相内)(萃余相内)最理想情况: B 与 S 完全不互溶 => 如同吸收过程: B 为惰性组分相同:数学描述和计算实际情况:三组分分别出现于两液相内,情况变复杂2 、工业萃取过程:萃取不能完全分离液体混合物,往往须精馏或反萃取对萃取相和萃余相进行分离,而溶剂可循环使用。
实质:将一个难于分离的混合物转变为两个易于分离的混合物举例:稀醋酸水溶液的分离:萃取剂:醋酸乙酯3 、萃取过程的经济性:取决于后继的两个分离过程是否较原液体混合物的直接分离更容易实现( 1 )萃取过程的优势:(与精馏的关系)a、可分离相对挥发度小或形成恒沸物的液体混合物;b、无相变:液体混合物的浓度很低时,精馏过于耗能(须将大量 B 汽化);c、常温操作:当液体混合物中含有热敏性物质时,萃取可避免受热;d、两相流体:与吸附离子交换相比,操作方便。
( 2 )萃取剂的选择——萃取过程的经济性a、分子中至少有一个功能基,可以与被萃取物质结合成萃合物;b、分子中必须有相当长的烃链或芳香环,可使萃取剂和萃合物容易溶解于有机相,一般认为萃取剂的分子量在350-500之间较为合适。
实验十二液液萃取实验液液萃取实验是一种常用的分离与提取技术,通常用于分离混合溶液中的目标物质。
本实验旨在通过液液萃取的方法,将苯酚从废水中提取出来,以体验并理解这一分离技术的原理与应用。
实验目的:1. 理解液液萃取的原理与操作方法;2. 掌握液液萃取实验的步骤与注意事项;3. 实验中学会运用适当的仪器与试剂,完成液液萃取的操作。
实验原理:液液萃取是一种基于分配平衡原理的分离方法,它依靠不同物质在两种不相溶的溶剂中的分配差异,从而使目标物质从一相转移到另一相。
通常,选择一个合适的溶剂对目标物质进行提取,即在两相中形成溶质的分配平衡,然后通过分离两相,获得目标物质。
实验步骤:1. 准备工作:a. 配置提取溶剂:选择一个适合的提取溶剂,以便提取目标物质。
比如,在这个实验中,我们选择二甲苯作为提取溶剂。
b. 准备混合溶液:将含有苯酚的废水倒入分液漏斗中,并加入适量的二甲苯作为提取溶剂。
2. 萃取操作:a. 摇匀混合溶液:轻轻摇匀分液漏斗,使废水与提取溶剂充分混合。
b. 放置分液漏斗:将分液漏斗放置在合适的支架上,使两相分离。
c. 分离两相:打开分液龙头,控制滴液速度,将废水和提取溶剂分离。
注意,不要将下层的溶剂倒入废水层。
d. 分离废水层:将提取溶剂完全分离出来后,将废水层倒入废液容器中。
这样,我们就获得了含有苯酚的提取溶剂层。
3. 后续处理:a. 蒸干溶剂:将得到的含有苯酚的提取溶剂转移至蒸馏烧瓶中,并蒸干提取溶剂,以得到苯酚。
b. 收集苯酚:使用适当的工具或方法,将蒸馏烧瓶中的苯酚收集起来。
实验注意事项:1. 实验中应当佩戴实验手套、眼镜等个人防护装备,避免对人体造成伤害。
2. 实验操作过程中要小心谨慎,避免溶剂的飞溅和接触火源等危险情况。
3. 注意分离两相时的操作技巧,以免混合两相造成结果的偏差。
4. 尽量减小溶剂的损失,并确保实验室环境健康与安全。
实验结果与讨论:通过本实验,我们成功地使用液液萃取的方法,将废水中的苯酚提取出来。