2015届高考数学第一轮知识点总复习配套教案26.doc
- 格式:doc
- 大小:548.12 KB
- 文档页数:20
【金版学案】2015届高考数学总复习基础知识名师讲义第六章第一节不等关系与不等式文近三年广东高考中对本章考点考查的情况(续上表)本章内容主要包括两个内容:不等式、推理与证明.不等式主要包括:不等式的基本性质、一元二次不等式的解法、基本不等式的应用、简单的线性规划问题、不等式简单应用.推理与证明主要包括:合情推理和演绎推理、直接证明与间接证明,其中合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,选择题、填空题、解答题都可能涉及,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透,但单独出题的可能性较小.广东高考在这一章的命题上呈现以下特点:1.考查题型以选择题、填空题为主,偶以解答题形式出现,但多数是解答题中的一部分,如与数列、函数、解析几何等结合考查,分值约占10%左右,既有中、低档题,也会有高档题出现.2.重点考查不等式解法、不等式应用、线性规划以及不等式与其他知识的结合,另在推理与证明中将会重点考查.3.对合情推理与演绎推理及证明方法的考查,主要放在解答题中,注重知识交汇处的命题.预计高考中对本章内容的考查仍将以不等式的解法、基本不等式应用、线性规划为重点,将推理与证明和其他知识相融合,更加注重应用与能力的考查.本章内容理论性强,知识覆盖面广,因此在复习过程中应注意:1.复习不等式的性质时,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据.2.不等式的证明方法除比较法、分析法、综合法外,还有反证法、换元法、判别式法、构造法、几何法,这些方法可作适当了解,但要控制量和度.3.解(证)某些不等式时,要把函数的定义域、值域和单调性结合起来.4.注意重要不等式和常用思想方法在解题、证题中的作用.在复习不等式的解法时,加强等价转化思想的训练与复习.解不等式的过程是一个等价转化的过程,通过等价转化可简化不等式(组),以快速、准确求解.加强分类讨论思想的复习.在解不等式或证不等式的过程中,如含参数等问题,一般要对参数进行分类讨论.复习时,学生要学会分析引起分类讨论的原因,合理地分类,做到不重不漏.加强函数与方程思想在不等式中的应用训练.不等式、函数、方程三者密不可分,相互联系、互相转化.如求参数的取值范围问题,函数与方程思想是解决这类问题的重要方法.在不等式的证明中,加强化归思想的复习,证不等式的过程是一个已知条件向要证结论转化的过程,既可考查学生的基础知识,又可考查学生分析问题和解决问题的能力,正因为证不等式是高考考查学生代数推理能力的重要素材,复习时应引起我们的足够重视.5.强化不等式的应用.高考中除单独考查不等式的试题外,常在一些函数、数列、立体几何、解析几何和实际应用问题的试题中涉及不等式的知识,加强不等式应用能力,是提高解综合题能力的关键.因此,在复习时应加强这方面的训练,提高应用意识,总结不等式的应用规律,才能提高解决问题的能力.如在实际问题应用中,主要有构造不等式求解或构造函数求函数的最值等方法,求最值时要注意等号成立的条件,避免不必要的错误.6.利用平均值定理解决问题时,要注意满足定理成立的三个条件:“一正、二定、三相等”.7.要强化不等式的应用意识,同时要注意到不等式与函数、方程的区别与联系.对于类比型问题可以说是创新要求的体现,最常见的是二维问题与三维问题的类比,同结构问题的类比(比如圆锥曲线内的类比问题、数列内的类比问题等),较少对照不同结构的类比问题.关于归纳、猜想、证明是考得比较多、比较成熟的题型了,在复习备考中要把握考试的特点,注重落实.归纳、演绎和类比推理在数学思维中所占的分量非常重,事实上,在高考中归纳、猜想、证明以及类比、证明这一类题目是常考常新的.推理与证明问题综合了函数、方程、不等式、解析几何与立体几何等多个知识点,需要采用多种数学方法才能解决问题,如:函数与方程思想、化归思想、分类讨论思想等,对学生的知识与能力要求较高,是对学生思维品质和逻辑推理能力、表述能力的全面考查,可以弥补选择题与填空题等客观题的不足,是提高区分度、增强选拔功能的重要题型,因此在最近几年的高考试题中,推理与证明问题正在成为一个热点题型,并且经常作为压轴题出现.第一节 不等关系与不等式了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.知识梳理 一、不等式的概念在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号“<”,“>”,“≤”,“≥”,“≠”连接两个数式或代数式以表示它们之间的不等的关系的式子,叫做不等式.二、实数运算性质与大小顺序关系1.a >b ⇔a -b >0.2.a =b ⇔a -b =0.3.a <b ⇔a -b <0. 它是比较两实数大小的依据,也是作差比较法的依据. 三、不等式的基本性质 双向性:1.定理1(对称性):a >b ⇔b <a . 单向性:2.定理2(传递性):a >b ,b >c ⇒a >c .3.定理3(同加性):a >b ,c 为整式或实数⇔a +c >b +c . 4.定理3推论(叠加性):⎭⎬⎫a >bc >d ⇒a +c >b +d . 5.定理4(可乘性): ⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc . 6.定理4推论1(叠乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd . 7.定理4推论2(可乘方性):a >b >0⇒a n >b n (n ∈N *且n >1).8.定理5(可开方性):a >b >0⇒n a >nb (n ∈N *且n >1). 四、不等式性质成立的条件例如,重要结论:a >b ,ab >0⇒1a <1b ,不能弱化条件得a >b ⇒1a <1b .五、正确处理带等号的情况如由a >b ,b ≥c 或a ≥b ,b >c 均可得出a >c ;而由a ≥b ,b ≥c 可能有a >c ,也可能有a ≥c ,当且仅当a =b 且b =c 时,才会有a =c .注意:不等式的性质从形式上可分两类:一类是“⇒”型;另一类是“⇔”型.要注意二者的区别.基础自测1.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >ab 2B.a b 2>a b >aC.a b >ab 2>a D.a b >a >a b 2解析:特殊值法,取a =-1,b =-2,验证知a b >ab 2>a 成立.也可用作差比较法.答案:C2.(2012·广东两校联考)若0<a <b ,且a +b =1,则下列各式中最大的是( ) A .-1 B .log 2bC .log 2a +log 2b +1D .log 2(a 3+a 2b +ab 2+b 3)解析:特殊值法.取a =13,b =23,则log 2b =log 223=1-log 23>1-log 24=-1;log 2b -(log 2a +log 2b +1)=-1-log 213=-1+log 23>0;计算可知,b >a 3+a 2b +ab 2+b 3,∴log 2b >log 2(a 3+a 2b +ab 2+b 3).故选B. 答案:B3.已知a ,b ∈R 且a >b ,则下列不等式中一定成立的是________. ①ab>1 ②a 2>b 2 ③lg(a -b )>0 ④⎝⎛⎭⎫12a <⎝⎛⎭⎫12 b解析:令a =2,b =-1,则a >b ,a b =-2,故ab>1不成立;令a =1,b =-2,则a 2=1,b 2=4,故a 2>b 2不成立;当a -b 在区间(0,1)内时,lg(a -b )<0;f (x )=⎝⎛⎭⎫12x在R 上是减函数,∵a >b ,∴f (a )<f (b ),即⎝⎛⎭⎫12a <⎝⎛⎭⎫12b.故④正确.答案:④4.a >b >0,m >0,n >0,则b a ,a b ,b +m a +m ,a +nb +n 由大到小的顺序是____________.解析:取特殊值.如a =2,b =1,m =n =1,则b a =12,ab =2,b +m a +m =23,a +n b +n=32.∴a b >a +n b +n >b +m a +m >b a. 答案:a b >a +n b +n >b +m a +m >b a1.(2013·北京卷)设a ,b ,c ∈R ,且a >b ,则( ) A .ac >bc B.1a <1b C .a 2>b 2D .a 3>b 3解析:当a >b 时,a 3>b 3成立.A 项中对c =0不成立.B 项取a =1,b =-1,则1a <1b不成立;C 项取a =1,b =-2,则a 2>b 2不成立.答案:D2.(2012·大纲全国卷)已知x =ln π,y =log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x解析:x=ln π>ln e =1,y=log 52<log 55=12,z =e -12=1e >14=12,1e<1.综上可得,y<z <x .故选D.答案:D1.(2013·江门一模)若x >0,y >0,则x +y >1是x 2+y 2>1的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:先看充分性,可取x =y =23,使x +y >1成立,而x 2+y 2>1不能成立,故充分性不能成立;若x 2+y 2>1,因为x >0,y >0, 所以(x +y )2=x 2+y 2+2xy >x 2+y 2>1, ∴x +y >1成立,故必要性成立.综上所述,x+y>1是x2+y2>1的必要不充分条件.答案:B2.(2013·北京西城区期末)已知a>b>0,给出下列四个不等式:①a2>b2②2a>2b-1③a-b>a-b④a3+b3>2a2b.其中一定成立的不等式为________.解析:由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数;∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.答案:①②③。
数学高考一轮总复习1、培养优良的学习习惯,牢固掌握基础知识点,多动脑,多动手做原知识题型,尽量不做或少做较难的综合套题。
2、带着问题去听课,边听边动脑筋,随时准备着回答老师的问题,会让自己精力非常集中。
3、建立错题记录本,把自己的错误记录在案,便于各个击破,查补漏洞。
4、制定学习的短期计划和长期计划,最好有周计划和日计划,按计划将知识连成网络。
多做历届高考真题,强化做题意识。
制订计划要结合自己的实际,不能将目标定得过高或过低。
5、重视课本,夯实基础。
切实抓好"三基'基础知识、基本技能、基本方法。
最基础的知识是最有用的知识,最基本的方法是最有用的方法。
2高考数学复习方法适度学习,但不搞题海战术。
基础题、中档题不必须要题海,高档题题海也是不能解决的。
切忌"高起点、高强度、高要求',投入很大,收效甚微,甚至丧失学习数学的兴趣和信心。
重视课本,夯实基础。
切实抓好"三基'基础知识、基本技能、基本方法。
最基础的知识是最有用的知识,最基本的方法是最有用的方法。
构建立体化的知识体系,在复习过程中自觉地将新知识及时纳进已有的知识系统中去,融代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。
建立优良知识结构和认知结构体系,课本是考试内容的载体,是高考命题的依据,也是同学智能的生长点,是最有参照价值的资料。
只有吃透课本上的例题、习题,才干全面、系统地掌握基础知识、基本技能和基本方法,构建数学的知识网络,以不变应万变。
高考试题无论怎样变化、革新,都是基本数学问题的组合。
提升能力,适度革新,考查能力是高考的重点和永恒主题。
高考遵循"以能力立意命题'。
复习中数学能力的培养是关键,思维能力、运算能力、空间想象能力以及施行能力和革新意识,以及提出问题、分析问题和解决问题的能力,数学探究能力、数学建模能力、数学交流能力、数学施行能力、直觉猜测、归纳抽象、符号表示、运算求解、演绎证实、体系构建等诸多方面,都是高考考查的重点。
第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC的 倍.2.如图,已知直线a b ∥,135=∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =∠,图中等于60的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条 5.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)E A B(第3题)1 2 (第2题)(第4题)图70°31°例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】1.(08永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2.(08义乌) 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 . 3.(08河南) 如图, 已知直线25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.70 B. 80 C. 90 D. 100( 第1题) ( 第2题) (第3题) 4.(08益阳) 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.21D CBAl 2l 1ABCD E5. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.﹡6. (08东莞) 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.课时27.三角形的有关概念【课前热身】1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC△中,D E ,分别是AB AC ,的 中点,当10cm BC =时,DE = cm . (第1题) 3. 如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.(1) ∠ADC = =90°; (2) ∠CAE = =12 ;(3) CF = =12; (4) S △ABC = .C DB7060A A B CE DC BAF(第3题) (第4题)4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 5. 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.4321D CB A例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.【中考演练】1.在△ABC 中,若∠A =∠C=13∠B ,则∠A=,∠B = ,这个三角形是 .2. (07深圳)已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个 3.(07济南)已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°, 求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°,EDCBAAB CD E求∠DAC,∠BOA的度数.课时28.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD. 则∠A等于()A.30° B.36° C.45° D.72°(第2题)(第3题)(第4题)4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD 将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”. 一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”, 测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.【中考演练】1.(08湖州)已知等腰三角形的一个底角为70,则它的顶角为____________.度.2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. (08武汉) 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.(第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(08义乌) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)P D C B AA O B东北课时29.全等三角形【课前热身】1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____.ACFEDB(第1题)(第2题)(第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE BC.求证:(1) AEF BCD;(2)EF CD.【中考演练】1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .302. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __________度.4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)F E DC B AEDO E AB D CA B C D F﹡6. (08东莞) 如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.课时30.相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.C B ODA E3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A.AD AE AB AC = B .AE ADBC BD =C .DE AE BC AB =D .DE ADBC AC=4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC 和△DEF 中,已知∠A=∠D ,AB=4,AC=3,DE=1,当DF 等于多少时,这两个三角形相似.E A D CBEADCBA D CB例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm , 要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上, 这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.(08大连)如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. (08杭州) 在中, 为直角, 于点,,写出其中的一对相似三角形是 _ 和 _;并写出它的面积比_____.(第1题) (第2题) (第3题) 3.( 08常州) 如图,在△ABC 中,若DE ∥BC,=,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cmRt ABC ∆C ∠AB CD ⊥D 5,3==AB BC AD DB 12B(0,-4)A(3,0)xy4. (08无锡) 如图,已知是矩形的边上一点,于,试证明.课时31.锐角三角函数【课前热身】1.(06黑龙江)在△ABC 中,∠C =90°,BC =2,sinA =23,则AC 的长是( ) A .5 B .3 C .45D .13 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .13.如图,在平面直角坐标系中,已知点A (3,0), 点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值E ABCD CD BF AE ⊥F ABF EAD △∽△α bc【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2 计算:4sin 302cos 453tan 60︒-︒+︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1.(08威海) 在△ABC 中,∠C = 90°,tan A =13,则sin B =( ) A .10 B .23 C .34D .310 2.若3cos 4A =,则下列结论正确的为( ) 30° 45° 60° sin α cos α tan αA . 0°< ∠A < 30°B .30°< ∠A < 45°C . 45°< ∠A < 60°D .60°< ∠A < 90° 3. (08连云港) 在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = .4.(07济宁) 计算45tan 30cos 60sin -的值是 . 5. 已知3tan 30 A -=∠A =则 .6.△ABC 中,若(sinA -12)2+|32-cosB|=0,求∠C 的大小.﹡7.(07长春)图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC 是等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE ._ E_ A_ F_ D_ C _ B_ O _ H_ G FA BC DE课时32.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)(第1题) 2. 某坡面的坡度为1:3,则坡角是_______度.3.(07山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)αA C B45︒南北西东60︒A D C B 70︒O O A B Cc ba A C B【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.例3(07辽宁)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.(07乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面 1.2m,则旗杆高度约为_______.(取 ,结果精确到0.1m)3 1.733.(07云南)已知:如图,在△ABC中,∠B = 45°,∠C = 60°,AB = 6.求BC的长. (结果保留根号)﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。
课时作业(二)[第2讲命题及其关系、充分条件与必要条件](时间:30分钟分值:80分)1.有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中为真命题的是()A.①②B.②③C.④D.①②③2.[2013·某某卷]“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.[2013·某某卷] 设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“a=1”是“复数a2-1+(a+1)i(a∈R,i为虚数单位)是纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.[2013·某某五校协作体一联] 命题“∃x0∈R,x20+ax0-4a<0”为假命题,是“-16≤a≤0”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.已知a,b,c都是实数,则命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.4 B.2 C.1 D.07.已知a,b∈R,则“a=b”是“a2+b2≥-2ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.[2013·乌鲁木齐三模] 设全集U=R+,集合A={x|log0.5x≥-1},B={x||x|>1},则“x∈A”是“x∈∁U B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“sinα≠sin β”是“α≠β”的________条件.10.已知命题p:若x>0,y>0,则xy>0,则p的否命题是________________________.11.在空间中,①“若四点不共面,则这四点中任何三点都不共线”;②“若两条直线没有公共点,则这两条直线是异面直线”.以上两个命题中,逆命题为真命题的是________.12.(13分)已知关于x 的方程x 2+(2k -1)x +k 2=0,求使该方程有两个大于1的实数根的充要条件.13.(1)(6分)设x =a +2b 3,y =2a +b 3.条件p :a ≠b ;条件q :ab <xy ,则条件p 是条件q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(6分)若非空集合A ,B ,C 满足A ∪B =C ,且B 不是A 的子集,则( )A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B .“x ∈C ”是“x ∈A ”的必要条件但不是充分条件C .“x ∈C ”是“x ∈A ”的充要条件D .“x ∈C ”既不是“x ∈A ”的充分条件也不是“x ∈A ”的必要条件课时作业(二)1.D 2.B 3.A 4.C 5.A 6.B 7.A 8.B9.充分不必要 10.若x ,y 至少有一个小于或等于0,则xy ≤011.② 12.k <-2 13.(1)C (2)B。
2015届高考数学一轮总复习 2-1函数及其表示基础巩固强化一、选择题1.(文)若函数f (x )的定义域是[0,4],则函数g (x )=f (2x )x 的定义域是( )A .[0,2]B .(0,2)C .(0,2]D .[0,2)[答案] C[解析] ∵⎩⎪⎨⎪⎧0≤2x ≤4,x ≠0.∴0<x ≤2,故选C.(理)(2013·湖北荆门期末)函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4]∪(2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1) [答案] D[解析] 要使函数f (x )有意义,必须且只需⎩⎨⎧x≠0,x 2-3x +2≥0,x 2-3x +2+-x 2-3x +4>0,解得-4≤x <0或0<x <1.故选D.2.(文)(2012·江西文,3)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1.则f (f (3))=( )A.15 B .3 C.23 D.139[答案] D[解析] 本题考查分段函数求值问题, 由条件知f (3)=23,f (f (3))=f (23)=(23)2+1=139.(理)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,f (x -3),x >0,则f (2014)等于( )A .-1B .1C .-3D .3[答案] C[解析] f (2014)=f (2011)=f (2008)=……=f (1)=f (-2)=2×(-2)+1=-3.3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12 B.45 C .2 D .9[答案] C[解析] ∵f (0)=20+1=2,f (f (0))=4a , ∴22+2a =4a ,∴a =2.4.(2013·银川模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) [答案] A[解析] 由题意知f (1)=3,故原不等式可化为⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3,或⎩⎪⎨⎪⎧x <0,x +6>3,解之得-3<x <1或x >3, ∴原不等式的解集为(-3,1)∪(3,+∞),故选A. 5.(文)函数f (x )=22x -2的值域是( )A .(-∞,-1)B .(-1,0)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(0,+∞)[答案] D [解析]1f (x )=2x -1-1>-1,结合反比例函数的图象可知f (x )∈(-∞,-1)∪(0,+∞). (理)若函数y =f (x )的值域是[12,3],则函数F (x )=f (x )+1f (x )的值域是( )A .[12,3]B .[2,103]C .[52,103]D .[3,103][答案] B[解析] 令t =f (x ),则12≤t ≤3,由函数g (t )=t +1t 在区间[12,1]上是减函数,在[1,3]上是增函数,且g (12)=52,g (1)=2,g (3)=103,可得值域为[2,103],选B.6.a 、b 为实数,集合M ={ba ,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1 [答案] C[解析] ∵f (x )=x ,∴f (1)=1=a ,若f (b a )=1,则有ba =1,与集合元素的互异性矛盾,∴f (ba )=0,∴b =0,∴a +b =1.二、填空题 7.(文)函数y =16-x -x 2的定义域是________.[答案] (-3,2)[解析] 由6-x -x 2>0,得x 2+x -6<0, 即{x |-3<x <2}.(理)(2013·福州模拟)函数f (x )=(x +1)2x +1-1-x 的定义域为________.[答案] (-∞,-1)∪(-1,1][解析] ∵要使函数f (x )=(x +1)2x +1-1-x 有意义,∴⎩⎪⎨⎪⎧ 1-x ≥0,x +1≠0,∴⎩⎪⎨⎪⎧x ≤1,x ≠-1,∴函数f (x )的定义域为{x |x ≤1,且x ≠-1}.[失误与防范] 本题若将函数f (x )的解析式化简为f (x )=(x +1)-1-x 后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x 的取值范围.防范错误的有效方法是每一步变形时观察一下是否为等价变换,否则应附加限制条件保持等价. 8.(文)如果函数f (x )=1-x 21+x 2,那么f (1)+f (2)+…f (2012)+f (12)+f (13)+…+f (12012)的值为________.[答案] 0[解析] 由于f (x )+f (1x )=1-x21+x 2+1-(1x )21+(1x)2=1-x 21+x 2+x 2-1x 2+1=0,f (1)=0,故该式值为0.(理)规定记号“⊕”表示一种运算,且a ⊕b =ab +a +b +1,其中a 、b 是正实数,已知1⊕k =4,则函数f (x )=k ⊕x 的值域是________.[答案] (2,+∞)[解析] 1⊕k =k +k +2=4,解之得k =1,∴f (x )=x +x +2,由于“⊕”的运算对象是正实数,故x >0,∴f (x )>2.9.(2012·辽宁辽南协作体期中)已知f (x -2)=⎩⎪⎨⎪⎧1+x 2, x >2,2-x , x ≤2,则f (1)=________.[答案] 10[解析] f (1)=f (3-2)=1+32=10. 三、解答题10.(2012·北京海淀期中)某工厂生产某种产品,每日的成本C (单位:元)与日产量x (单位:t)满足函数关系式C =10 000+20x ,每日的销售额R (单位:元)与日产量x 的函数关系式为R =⎩⎪⎨⎪⎧-130x 3+ax 2+290x ,0<x <120,20 400,x ≥120.已知每日的利润y =R -C ,且当x =30时,y =-100. (1)求a 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. [解析] (1)∵当x =30时,y =-100,∴-100=-130×303+a ×302+270×30-10 000,∴a =3.(2)当0<x <120时,y =-130x 3+3x 2+270x -10 000.令y ′=-110x 2+6x +270=0,可得:x 1=90,x 2=-30(舍去),所以当x ∈(0,90)时,原函数是增函数,当x ∈(90,120)时,原函数是减函数. ∴当x =90时,y 取得极大值14 300. 当x ≥120时,y =10 400-20x ≤8 000.所以当日产量为90t 时,每日的利润可以达到最大值14 300元.能力拓展提升一、选择题11.(文)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (1)+f (a )=2,则a 的值为( )A .1B .2C .4D .4或1 [答案] C[解析] ∵f (1)=0,∴f (a )=2,∴log 2a =2(a >0)或2a =2(a ≤0),解得a =4或a =1(舍),故选C.(理)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2) (-1<x <0),e x -1 (x ≥0).若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .1,-22C .-22D .1,22[答案] B [解析] f (1)=1,当a ≥0时,f (a )=e a -1,∴1+e a -1=2,∴a =1,当-1<a <0时,f (a )=sin(πa 2), ∴1+sin(πa 2)=2, ∴πa 2=π2+2k π(k ∈Z ),∵-1<a <0,∴a =-22,故选B. 12.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a (x <1),log a x (x ≥1).是(-∞,+∞)上的增函数,那么a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .[35,3)D .(1,3)[答案] D[解析] 解法1:由f (x )在R 上是增函数,∴f (x )在[1,+∞)上单增,由对数函数单调性知a >1,① 又由f (x )在(-∞,1)上单增,∴3-a >0,∴a <3,②又由于f (x )在R 上是增函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最大值3-5a 要小于等于f (x )在[1,+∞)上的最小值0,才能保证单调区间的要求,∴3-5a ≤0,即a ≥35,③由①②③可得1<a <3.解法2:令a 分别等于35、0、1,即可排除A 、B 、C ,故选D.[点评] f (x )在R 上是增函数,a 的取值不仅要保证f (x )在(-∞,1)上和[1,+∞)上都是增函数,还要保证x 1<1,x 2≥1时,有f (x 1)<f (x 2).二、填空题[答案] -1或1[解析]14.(2013·四川省内江市第一次模拟)设函数f (x )=|x |x +bx +c ,则下列命题中正确命题的序号有________.①函数f (x )在R 上有最小值;②当b >0时,函数在R 上是单调增函数; ③函数f (x )的图象关于点(0,c )对称;④当b <0时,方程f (x )=0有三个不同实数根的充要重要条件是b 2>4|c |; ⑤方程f (x )=0可能有四个不同实数根. [答案] ②③④[解析] f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≥0)-x 2+bx +c (x <0)取b =0知,①⑤错; 容易判断②,③正确;b <0时,方程f (x )=0有三个不同实数根,等价于c -b 24<0且c +b 24>0,∴b 2>4c 且b 2>-4c ,∴b 2>4|c |,故填②、③、④.三、解答题15.(文)函数f (x )=x 2+x -14.(1)若定义域为[0,3],求f (x )的值域;(2)若f (x )的值域为[-12,116],且定义域为[a ,b ],求b -a 的最大值.[解析] ∵f (x )=(x +12)2-12,∴对称轴为x =-12.(1)∵3≥x ≥0>-12,∴f (x )的值域为[f (0),f (3)], 即[-14,474];(2)∵x =-12时,f (x )=-12是f (x )的最小值,∴x =-12∈[a ,b ],令x 2+x -14=116,得x 1=-54,x 2=14,根据f (x )的图象知当a =-54,b =14时,b -a 取最大值14-(-54)=32.(理)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1. (1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. [解析] (1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,∴c =0,即f (x )=ax 2+bx . 又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得⎩⎨⎧a =12,b =12.∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12(x 2-32)2-18, 当x 2=32时,y 取最小值-18.∴函数y =f (x 2-2)的值域为[-18,+∞).16.(文)某地区预计2014年的前x 个月内对某种商品的需求总量f (x )(万件)与月份x 的近似关系式是f (x )=175x (x +1)(19-x ),x ∈N *,1≤x ≤12,求:(1)2014年的第x 月的需求量g (x )(万件)与月份x 的函数关系式. (2)求第几个月需求量g (x )最大.[解析](1)第x月的需求量为g(x)=f(x)-f(x-1)=175x(x+1)(19-x)-175(x-1)x(20-x)=125x(13-x).(2)g(x)=125(-x 2+13x)=-125[42.25-(x-6.5)2],因此当x=6或7时g(x)最大.第6、7月需求量最大.(理)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系如图所示:该商品在30天内日销售量Q(件)与时间t(天)之间的关系如表所示:(1)根据提供的图象,写出该商品每件的销售价格P与时间t的函数关系式;(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t,Q)的对应点,并确定日销售量Q 与时间t的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *),-t +100 (25≤t ≤30,t ∈N *). (2)图略,Q =40-t (t ∈N *). (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *),t 2-140t +4000 (25≤t ≤30,t ∈N *). 即y =⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *),(t -70)2-900 (25≤t ≤30,t ∈N *). 若0<t <25(t ∈N *), 则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125. 由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大.考纲要求1.了解构成函数的要素;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 3.了解简单的分段函数,并能简单地应用. 4.会求一些简单函数的定义域.5.了解求函数值域的方法,会求一些简单函数的值域. 6.会求一些简单函数的解析式. 补充说明1.掌握几类题型:求定义域,分段函数求值、解不等式,已知分段函数值求自变量的值及函数的图象变换.2.函数的定义域是一个集合,应该用集合或区间表示,有几段时,要用“∪”连接,函数解析式是几个代数式的和时,定义域是使各部分有意义的x 的集合的交集.3.了解求函数解析式的常见类型及方法 (1)配凑法当已知函数表达式比较简单时,可直接应用此法.即根据具体解析式凑出复合变量的形式,从而求出解析式.(2)换元法已知f [g (x )]是关于x 的函数,即f [g (x )]=F (x ),求f (x )的解析式,通常令g (x )=t ,由此能解出x =φ(t ).将x =φ(t )代入f [g (x )]=F (x )中,求得f (t )的解析式,再用x 替换t ,便得f (x )的解析式.注意,换元后要确定新元t 的取值范围.[例1] 已知f (2x +1)=lg x ,求f (x )的解析式.[解析] 令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)待定系数法若已知函数的结构形式,则可用此法.[例2] (2012·德州模拟)设二次函数f (x )满足f (x -2)=f (-x -2)且图象在y 轴上的截距为1,在x 轴上截得的线段长为22,求f (x )的解析式.[解析] ∵二次函数f (x )满足f (x -2)=f (-x -2), ∴f (x )的图象关于直线x =-2对称, 故可设f (x )=a (x +2)2+c , ∵f (x )的图象在y 轴上的截距为1, ∴f (0)=1,∴4a +c =1,①又f (x )的图象在x 轴上截得线段长为22,∴-2+2与-2-2是方程a (x +2)2+c =0的两根, ∴2a +c =0②由①、②解得,a =12,c =-1,∴f (x )=12(x +2)2-1,即f (x )=12x 2+2x +1.(4)消元法已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其它未知量,如f (-x )、f ⎝⎛⎭⎫1x 等,必须根据已知等式再构造其它等式组成方程组,通过解方程组求出f (x ).[例3] 已知函数f (x )满足条件:f (x )+2f (-x )=x ,则f (x )=________.[分析] 由于难以判断f (x )是何种类型的函数,故不可能先设出f (x )的表达式,但如果把条件中的x 换成-x ,即得f (-x )+2f (x )=-x ,把f (x )、f (-x )作为一个整体量,实际上得到了这两个量的方程组.[解析] 用-x 代换条件方程中的x 得f (-x )+2f (x )=-x ,把它与原条件式联立.⎩⎪⎨⎪⎧f (x )+2f (-x )=x , ①f (-x )+2f (x )=-x . ② ②×2-①得,f (x )=-x . [答案] -x[点评] 充分抓住已知条件式的结构特征,运用x 取值的任意性获得②式是解决此题的关键.若已知2f (x )-f (-1x )=2x -1,你会求f (x )吗?(5)赋值法此类解法的依据是:如果一个函数关系式中的变量对某个范围内的一切值都成立,则对该范围内的某些特殊值必成立,结合题设条件的结构特点,给变量适当取值,从而使问题简单化、具体化,进而获解.[例4] 已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). [解析] 令a =0,则f (-b )=f (0)-b (-b +1)=1+b (b -1)=b 2-b +1 再令-b =x 得:f (x )=x 2+x +1.[点评] 赋值法的关键环节是“赋值”,赋值的方法灵活多样,既要照顾到已知条件的运用和待求结论的产生,又要考虑所给关系式的结构特点.如本题另解:令b =a ,则1=f (0)=f (a )-a (2a -a +1) =f (a )-a (a +1)=f (a )-a 2-a , ∴f (a )=a 2+a +1,∴f (x )=x 2+x +1. (6)转化法已知f (x )在某个区间上的表达式及f (x )具有某种性质(如奇偶性、对称性等),求f (x )在另一个区间上的表达式,常用转化法求解.[例5] 已知函数f (x )对任意实数x 均有f (x )=kf (x +2),其中常数k 为负数,且f (x )在区间[0,2]上有表达式f (x )=x (x -2).(1)求f (-1),f (2.5)的值;(2)写出f (x )在[-3,3]上的表达式,并讨论函数f (x )在[-3,3]上的单调性.[解析] (1)由f (-1)=kf (1),f (2.5)=1k f (12)知需求f (12)和f (1),f (1)=-1,f (12)=12×(12-2)=-34,∴f (-1)=-k ,f (2.5)=-34k(2)∵0≤x ≤2时,f (x )=x (x -2), 设-2≤x <0,则0≤x +2<2, ∴f (x )=kf (x +2)=k (x +2)x ; 设-3≤x <-2,则-1≤x +2<0, ∴f (x )=kf (x +2)=k 2(x +4)(x +2); 设2<x ≤3,则0<x -2≤1, ∵f (x )=kf (x +2),∴f (x -2)=kf (x ), ∴f (x )=1k f (x -2)=1k(x -2)(x -4).综上可知,f (x )=⎩⎪⎨⎪⎧k 2(x +2)(x +4) -3≤x <-2,kx (x +2) -2≤x <0,x (x -2) 0≤x ≤2,1k (x -2)(x -4) 2<x ≤3.∵k <0,∴由二次函数的知识知:f (x )在[-3,-2)上是增函数,在[-2,-1)上是增函数,在[-1,0)上是减函数,在[0,1)上是减函数,在[1,2]上是增函数,在(2,3]上是增函数,又各区间都可以是闭区间,∴f (x )在[-3,-1]上是增函数,在[-1,1]上是减函数,在[1,3]上是增函数.[点评] 可用导数讨论单调性. 备选习题1.值域为{2,5,10},对应关系为y =x 2+1的函数个数为( ) A .1 B .8 C .27 D .39[答案] C[解析] 本题的关键是寻找满足条件的定义域有多少种情况.当y =2,即x 2=1时,x =1,-1或±1有三种情况,同理当y =5,10时,x 的值各有三种情况,由分步乘法计数原理知,共有3×3×3=27种可能.故选C.2.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下图所示,则函数g (x )=a x +b 的图象是()[答案] A[解析] ∵f (x )=(x -a )(x -b )的两个零点为a 和b 且a >b ,由图象知0<a <1,b <-1,∴g (x )=a x+b 单调减,且g (0)=1+b <0,故选A.3.函数f (x )=|log 12 x |的定义域是[a ,b ],值域为[0,2],对于区间[m ,n ],称n -m 为区间[m ,n ]的长度,则[a ,b ]长度的最小值为( )A.154 B .3 C .4 D.34[答案] D[解析] 令f (x )=0得,x =1,令f (x )=2得,log 12 x =±2,∴x =14或4,∴当a =14,b =1时满足值域为[0,2],故选D.4.设函数f (x )=⎩⎪⎨⎪⎧21-x -1 (x <1),lg x (x ≥1).若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由条件知,⎩⎪⎨⎪⎧ x 0<1,21-x 0-1>1,或⎩⎪⎨⎪⎧x 0≥1,lg x 0>1.∴x 0<0或x 0>10.5.(2012·东北三校二模)函数y =x ln(-x )与y =x ln x 的图象关于( ) A .直线y =x 对称 B .x 轴对称 C .y 轴对称 D .原点对称[答案] D[解析] 若点(m ,n )在函数y =x ln x 的图象上,则n =m ln m ,所以-n =-m ln[-(-m )],可知点(-m ,-n )在函数y =x ln(-x )的图象上,反之亦然,而点(m ,n )与点(-m ,-n )关于原点对称,所以函数y =x ln x 与y =x ln(-x )的图象关于原点对称,故选D.6.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面相交于M 、N .设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] B[解析] 解法1:取AA 1、CC 1的中点E 、F ,EF 交BD 1于O ,则EF ∥AC ,∵AC ⊥BD ,AC ⊥BB 1, ∴AC ⊥平面BDD 1B 1,∴EF ⊥平面BDD 1B 1, ∴平面BED 1F ⊥平面BDD 1B 1,过点P 作MN ∥EF ,则MN ⊥平面BDD 1B 1, MN 交BE 、BF 于M 、N ,则BP BO =MN EF ,∴MN =EF BO·BP ,不难看出当P 在BO 上时,y 是x 的一次增函数, 当P 在OD 1上时,y 是x 的一次减函数,故选B.解法2:连接AC ,A 1C 1,则MN ∥AC ∥A 1C 1,当且仅当P 为BD 1的中点O 时,MN =AC 取得最大值,故答案A ,C 错,又当P 为BO 中点时,MN =12AC ,故答案D 错,所以选B.7.已知函数f (x )的值域为[0,4],(x ∈[-2,2]),函数g (x )=ax -1,x ∈[-2,2],∀x 1∈[-2,2],总∃x 0∈[-2,2],使得g (x 0)=f (x 1)成立,则实数a 的取值范围是______.[答案] ⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫52,+∞ [解析] 只需要函数f (x )的值域是函数g (x )值域的子集即可. (1)当a >0时,g (x )=ax -1单调递增,∵x ∈[-2,2],∴-2a -1≤g (x )≤2a -1,要使条件成立,只需⎩⎪⎨⎪⎧-2a -1≤02a -1≥4,∴a ≥52.(2)当a <0时,g (x )=ax -1单调递减.∵x ∈[-2,2],∴2a -1≤g (x )≤-2a -1,要使条件成立,只需⎩⎪⎨⎪⎧2a -1≤0-2a -1≥4,∴⎩⎨⎧a ≤12a ≤-52,∴a ≤-52.综上,a 的取值范围是⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫52,+∞. 8.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x 元(7≤x ≤10)时,一年的产量为(11-x )2万件,若该企业所生产的产品全部售出,则称该企业正常生产,但为了保护环境,用于治理污染的费用与产量成正比,比例系数为常数a (1≤a ≤3).(1)求该企业正常生产一年的利润L (x )与出厂价x 的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润. [解析] (1)依题意,L (x )=(x -3)(11-x )2-a (11-x )2=(x -3-a )(11-x )2,x ∈[7,10].(2)因为L ′(x )=(11-x )2-2(x -3-a )·(11-x )=(11-x )(11-x -2x +6+2a )=(11-x )(17+2a -3x ).由L ′(x )=0,得x =11∉[7,10]或x =17+2a3.因为1≤a ≤3, 所以193≤17+2a 3≤233.①当193≤17+2a 3≤7,即1≤a ≤2时,L ′(x )在[7,10]上恒为负,则L (x )在[7,10]上为减函数,所以L (x )max =L (7)=16(4-a ).②当7<17+2a 3≤233,即2<a ≤3时,L (x )max =L (17+2a 3)=427(8-a )3. 当1≤a ≤2时,在每件产品出厂价为7元时,年利润最大,为16(4-a )万元.当2<a ≤3时,在每件产品出厂价为17+2a 3元时,年利润最大,为427(8-a )3万元.。
普通高中课程标准理科数学2015届高考总复习第一轮复习计划书(征求意见稿)东莞市东华高级中学高三理科数学组(2014.8)一、背景分析最近3年广东高考数学命题很平稳,坚持了稳中求改、稳中创新的原则。
充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。
做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用、运算和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现新课标的特色。
二. 教学指导原则1、高度重视基础知识,基本技能和基本方法的复习。
“基础知识,基本技能和基本方法”是高考复习的重点。
在复习课中要认真落实双基,并注意蕴涵在基础知识中的能力因素,注意基本问题中的能力培养. 特别是要学会把基础知识放在新情景中去分析,应用。
2、高中的“重点知识”复习中要保持较大的比重和必要的深度。
重点内容函数、三角、不等式、数列、立体几何,向量、概率及解析几何中的综合问题等。
在教学中,要避免重复及简单的操练。
总之高三的数学复习课要以培养逻辑思维能力为核心,加强运算能力为主体进行复习。
3、重视“通性、通法”的落实。
要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。
4、渗透数学思想方法, 培养数学学科能力。
《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。
我们在复习中要加强数学思想方法的复习, 如转化与化归的思想、函数与方程的思想、分类讨论的思想、数形结合的思想. 以及换元法、待定系数法、反证法、数学归纳法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。
5、结合实际,了解学生,分类指导。
重点打造尖子生同时全力进行辅弱工作,对临界生进行辅导,根据学校的具体安排,作出全面的落实,三、教学参考进度:第一轮的复习要以基础知识、基本技能、基本方法为主,为以后的模拟考试做好准备。
第四节 函数y =A sin(ωx +φ)的图象及简单应用考试要求:1.结合具体实例,了解函数y =A sin(ωx +φ)的实际意义.2.能借助图象理解参数A ,ω,φ的意义,了解参数的变化对函数图象的影响.3.会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型.一、教材概念·结论·性质重现1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0,x ≥0)振幅周期频率相位初相A T =f ==ωx + φ φ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )在一个周期内的简图时,要找五个特征点,如下表所示:ωx +φ0π2πxy =A sin(ωx+φ)0A 0-A 01.五点法作简图要取好五个关键点,注意曲线凹凸方向.3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径:由函数y =sin x 的图象经过变换得到y =sin(ωx +φ)的图象,如先伸缩,再平移时,要平移个单位长度,而不是|φ|个单位长度.二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( × )(2)函数f(x)=A sin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( × )(3)若函数y=A sin(ωx+φ)(A≠0)为偶函数,则φ=kπ+(k∈Z).( √ )(4)函数y=A cos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( √ ) 2.(2021·常州一模)已知函数f(x)=2sin x,为了得到函数g(x)=2sin的图象,只需( )A.先将函数f(x)图象上所有点的横坐标变为原来的2倍,再向右平移个单位长度B.先将函数f(x)图象上所有点的横坐标变为原来的,再向右平移个单位长度C.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的D.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的2倍B 解析:将f(x)=2sin x的图象上各点的横坐标缩短到原来的,纵坐标不变,得到的函数解析式为f(x)=2sin 2x;再将函数f(x)=2sin 2x图象上所有的点向右平移个单位长度,得到函数f(x)=2sin.3.函数f(x)=cos(ω>0)的最小正周期是π,则其图象向右平移个单位长度后得到的图象对应函数的单调递减区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)B 解析:由题意知ω==2,将函数f(x)的图象向右平移个单位长度后得到函数g(x)=cos=cos=sin 2x的图象,由2kπ+≤2x≤2kπ+(k∈Z),解得函数的单调递减区间为(k∈Z).4.(2021·东城区一模)已知函数f(x)=A sin(2x+φ),其中x和f(x)部分对应值如表所示:x-0f(x)-2-2-222那么A=________.4 解析:由题意得f(0)=A sin φ=-2,f=-A cos φ=-2,所以A2(sin2φ+cos2φ)=16,因为A>0,所以A=4.5.函数y=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω= .3 解析:观察函数图象可得周期T=,故T==,所以ω=3.考点1 由图象确定y=A sin ωx+φ 的解析式——基础性1.(2022·银川模拟)已知函数y=sin(ωx+φ)的图象如图所示,则此函数的解析式可以是( )A.y=sinB.y=sinC.y=sinD.y=sinC 解析:由函数y=sin(ωx+φ)的图象知,T=2×=π,ω==2,由五点法画图知,是函数图象的第三个关键点,即2×+φ=π,解得φ=,所以此函数的解析式是y=sin.2.若函数f(x)=sin(ωx+φ)满足f=f(x),且f(x)的图象如图所示,则φ=( )A. B.-C. D.-D 解析:因为函数f(x)=sin(ωx+φ)满足f=f(x),所以函数f(x)的图象关于直线x=对称,结合图象,-=×,所以ω=2.结合五点法作图可得,2×+φ=,所以φ=-.3.(2021·全国甲卷)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则f =________.- 解析:由题意可得T=-=,所以T=π,ω==2,当x=时,ωx+φ=2×+φ=2kπ,所以φ=2kπ-π(k∈Z),令k=1可得φ=-,据此有f(x)=2cos,f =2cos=2cos=-.4.如图,某地一天6~14时的温度变化曲线近似满足函数T=A sin(ωt+φ)+b,则这段曲线对应的函数解析式为____________.y=10sin+20,x∈[6,14] 解析:从题图中可以看出,6~14时是函数y=A sin(ωx+φ)+b的半个周期,所以A=×(30-10)=10,b=×(30+10)=20.又×=14-6,所以ω=.又×10+φ=2π+2kπ,k∈Z,取φ=,所以y=10sin+20,x∈[6,14].1.由图象求解析式问题,求①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ=+kπ,k∈Z;“最小值点”(即图象的“谷点”)时ωx+φ=+kπ,k∈Z.考点2 函数y=A sin ωx+φ 的图象变换——综合性(1)(2021 ·全国乙卷)把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin的图象,则f(x)=( )A.sin B.sinC.sin D.sinB 解析:由已知的函数y=sin逆向变换,第一步:向左平移个单位长度,得到y=sin=sin的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象,即为y=f(x)的图象,所以f(x)=sin.(2)(2021·山西二模)将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度得到y =cos 2x的图象,则φ的值可能为( )A. B.C. D.A 解析:将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度,得到y=sin=sin=cos=cos=cos.若要得到y=cos 2x的图象,则-2φ-=2kπ,即φ=-kπ-,k∈Z.因为φ>0,所以当k=-1时,φ=.本例(1)若改为:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度得到函数y=f(x)的图象,则f(x)=________.sin 解析:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin,向右平移个单位长度得到函数f(x)=sin=sin.1.由函数y移后伸缩”与“先伸缩后平移”.要特别注意这两种情况下平移的单位长度.2.当变换前后解析式三角函数名称不同时,要注意利用诱导公式转化.1.(2022·泰安模拟)已知函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C上所有点的( )A.横坐标伸长到原来的2倍,纵坐标不变B.纵坐标缩短到原来的倍,横坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.横坐标缩短到原来的倍,纵坐标不变D 解析:函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C 上所有点横坐标缩短到原来的倍,纵坐标不变,即可.2.已知函数f(x)=cos是偶函数,要得到函数g(x)=sin 2x的图象,只需将函数f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度C 解析:因为函数f(x)=cos是偶函数,所以φ-=kπ(k∈Z).因为|φ|<,所以φ=,所以f(x)=cos 2x,要得到函数g(x)=sin 2x=cos的图象,只需将函数f(x)=cos 2x的图象向右平移个单位长度.考点3 三角函数模型及其应用——应用性(2021·上海模拟)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到点A的距离与点P的高度之和为( )A.5米B.(4+)米C.(4+)米D.(4+)米D 解析:以圆心O1为原点,以水平方向为x轴正方向,以竖直方向为y轴正方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O离地面1米,12秒转动一圈.设∠OO1P=θ,运动t(秒)后与地面的距离为f(t).又T=12,所以θ=t,所以f(t)=3-2cos t,t≥0;风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达点P,θ=6π+,P(,1),所以点P的高度为3-2×=4(米).因为A(0,-3),所以AP==,所以点P到点A的距离与点P的高度之和为(4+)米.三角函数模型的应用体现在两方面:一是已知函数模型求解数模型,再利用三角函数的有关知1.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中使用.假设在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O的半径为4 m,P0在水平面上,盛水筒M 从点P0处开始运动,OP0与水平面所成角为30°,且2分钟恰好转动1圈,则盛水筒M距离水面的高度H(单位:m)与时间t(单位:s)之间的函数关系式是( )A.H=4sin+2B.H=4sin+2C.H=4sin+2D.H=4sin+2A 解析:以O为原点,过点O的水平直线为x轴,建立如图所示平面直角坐标系,因为∠xOP0=30°=,所以OM在 t(s) 内转过的角度为t=t,所以以x轴为始边,以OM为终边的角为t-,则点M的纵坐标为4sin,所以点M距水面的高度H(m)表示为时间 t(s) 的函数是H=4sin+2.2.据市场调查,某种商品一年内每件出厂价在7 000元的基础上,按月呈f(x)=A sin(ωx+φ)+B的模型波动(x为月份).已知3月份达到最高价9 000元,9月份价格最低,为5 000元,则7月份的出厂价格为________元.6 000 解析:作出函数简图如图:三角函数模型为y=A sin(ωx+φ)+B,由题意知A=(9 000-5 000)=2 000,B=7 000,T=2×(9-3)=12,所以ω==.将(3,9 000)看成函数图象的第二个特殊点,则有×3+φ=,所以φ=0,故f(x)=2 000sin x+7 000(1≤x≤12,x∈N*).所以f(7)=2 000×sin+7 000=6 000(元).故7月份的出厂价格为6 000元.考点4 三角函数图象与性质的综合问题——综合性(1)(多选题)将函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x),则下列结论正确的是( )A.函数g(x)的图象关于直线x=对称B.函数g(x)的图象关于点对称C.函数g(x)在上单调递减D.函数g(x)在[0,2π]上恰有4个极值点AD 解析:函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x)=2sin的图象,对于A:当x=时,g=2,故A正确.对于B:当x=时,g=2sin=,故B错误.对于C:当x∈时,2x-∈,故函数在该区间上单调递增,故C错误.对于D:令2x-=kπ+(k∈Z),解得x=+(k∈Z),当k=0,1,2,3时,x=,,,,正好有4个极值点,故D正确.(2)已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是( )A. B.(-2,2)C.(-2,-) D.(-2,-1)D 解析:方程2sin2x-sin 2x+m-1=0可转化为m=1-2sin2x+sin 2x=cos 2x+sin 2x=2sin,x∈.设2x+=t,则t∈,题目条件可转化为=sin t,t∈,有两个不同的实数根.所以y=和y=sin t,t∈的图象有两个不同交点,如图:由图象观察知,的范围为,故m的取值范围是(-2,-1).已知关于x的方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则实数m的取值范围是________.1≤m<2 解析:2sin2x-sin 2x+m-1=-cos 2x-sin 2x+m=-2sin+m.因为x∈,所以2x+∈.要使方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则2x+∈且2x +≠,此时2sin∈[1,2),所以1≤m<2.1.研究y=1.(2021·运城模拟)函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则下列结论错误的是( )A.f(x)=2sinB.若把f(x)的横坐标缩短为原来的,纵坐标不变,则得到的函数在[-π,π]上是增函数C.若把函数f(x)的图象向左平移个单位长度,则所得图象对应的函数是奇函数D.函数y=f(x)的图象关于直线x=-4π对称B 解析:由图象可得T=-2π=,所以T=6π,所以ω==.因为f(2π)=2,所以f(2π)=2sin=2,即sin=1,所以+φ=2kπ+(k∈Z),所以φ=2kπ-(k∈Z).因为|φ|<π,所以φ=-.所以f(x)=2sin,故A正确.把f(x)的横坐标缩短为原来的,纵坐标不变,得到的函数为y=2sin.因为x∈[-π,π],所以-≤x-≤,所以y=2sin在[-π,π]上不单调递增,故B错误.把函数f(x)的图象向左平移个单位长度,得到的函数为y=2sin=2sin x,是奇函数,故C正确.f(-4π)=2sin=2,是最值,故x=-4π是f(x)的对称轴,故D正确.2.若将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后得到的图象关于y轴对称,则函数f(x)在上的最大值为( )A.2 B.C.1 D.A 解析:将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后,得到的y=2sin的图象关于y轴对称,所以φ=,函数f(x)=2sin.因为x∈,所以2x+∈,则当2x+=时,函数f(x)在上的最大值为2.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .B .C .D .[四字程序]思路参考:构造正弦型函数的解析式.B 解析:y =cos x +sin x =2sin ,函数的图象向左平移m (m >0)个单位长度,得y =2sin 的图象.由x +m +=k π+(k ∈Z ),得函数y =2sin 的图象的对称轴为x =-m +k π(k ∈Z ).因为所得的图象关于y 轴对称,所以-m +k π=0(k ∈Z ),即m =k π+(k ∈Z ),则m 的最小值为.思路参考:构造余弦型函数的解析式.B 解析:函数y =cos x +sin x =2cos 的图象向左平移m (m >0)个单位长度得到y =2cos 的图象.因为此函数图象关于y 轴对称,所以y =2cos 为偶函数,易知m 的最小值为.思路参考:根据图象对称轴与函数最值的关系.B 解析:由解法1,得y =2sin .因为所得的图象关于y 轴对称,可得当x =0时,y =±2,进而sin =±1,易知m 的最小值为.思路参考:利用函数图象.B 解析:y=cos x+sin x=2sin,可得此函数图象的对称轴为x=kπ+(k∈Z),可知离y轴最近的对称轴为x=和x=-.由图象向左平移m(m>0)个单位长度后关于y轴对称,易知m的最小值为.1.基于课程标准,解答本题一般需要提升运算求解能力、逻辑推理能力,体现逻辑推理、数学运算的核心素养.2.基于高考数学评价体系,本题涉及三角恒等变换、三角函数的图象与性质等知识,渗透了转化与化归思想方法,有一定的综合性,属于中低档难度题.将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在上的最大值为( )A.0 B.C. D.1D 解析:将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,可得函数g(x)=sin的图象.根据所得图象关于原点对称,可得+φ=kπ.因为|φ|<,所以φ=,f(x)=sin.在上,2x+∈,故当2x+=时,f(x)取得最大值为1.。
第十章计数原理、概率、随机变量及其分布近三年广东高考中对本章考点考查的情况1.排列与组合是中学数学中相对独立性较强的一部分,也是密切联系实际较强的一部分,一直是高考必考内容.高考对排列组合的考查会以现实生活为背景.2.对二项式定理的考查,主要是求多项式系数和、求某项系数、求二项式中的参数值、求常数项、有理项系数最大项、求整余数、求近似值等.3.古典概型与几何概型是两种最基本的概率问题,是高考重点关注的内容,但深度有限.几何概型只要求会解决与长度、面积、体积相关的概率问题,重点是理解概率、学会转化、计算准确快捷,不宜过于深化与拓展.预计高考对以上内容的考查,仍会以客观题的形式出现,试题难度为“较易”到“中等”,分值为5分.4.随机变量及其分布在高考中多以解答题的形式出现,常与排列组合、统计等内容相结合,综合考查学生的数据处理能力.分值一般在13分左右,属中、低档题.重点考查离散型随机变量的分布列,以及由此分布列求随机变量的均值、方差,特别是二项分布.1.(1)分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于本章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决或分步解决,是本章复习的重点.(2)正确区分使用两个原理是学好本章的关键.区分“分类”与“分步”的依据在于能否“一次性”完成.若能“一次性”完成,则不需“分步”,只需分类;否则,就分步处理.2.二项式定理是一个恒等式,对待恒等式通常有两种思路:一是利用恒等定理(两个多项式恒等,则对应项系数相等);二是赋值.这两种思路相结合可以使很多二项式展开式的系数问题迎刃而解(要注意二项式系数与二项式展开式的系数之间的区别).3.(1)概率问题应用广泛,贴近生活,本部分知识既有必修内容,也有选修内容.随着高考改革的不断深入,概率问题正逐步成为高考的热点内容.(2)解决概率应用问题时,首先熟悉几种常见的概率类型,熟练掌握其计算公式;其次还要弄清问题所涉及的事件有什么特点,事件之间有什么联系.4.求随机变量的分布列,重要的基础是概率的计算,如古典概率、互斥事件概率、相互独立事件同时发生的概率,n 次独立重复试验有k 次发生的概率等.5.对离散型随机变量的方差应注意:(1)D (X )表示随机变量X 对E (X )的平均偏离程度,D (X )越大,表明平均偏离程度越大,说明X 的取值越分散,反之D (X )越小,X 的取值越集中,在E (X )附近,统计中常用来描述X 的分散程度;(2)D(X)与E(X)一样也是一个实数,由X 的分布列唯一确定.第一节 分类计数与分步计数原理知识梳理1.分类加法计数原理:做一件事,完成它可以有两类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,那么完成这件事共有N =m 1+m 2种不同的办法.定义拓展:做一件事,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N =m 1+m 2+…+m n 种不同的办法.2.分步乘法计数原理:做一件事,完成它需要分成两个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,那么完成这件事共有N =m 1·m 2种不同的方法.定义拓展:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同方法,那么完成这件事共有N =m 1·m 2·…·m n 种不同的方法.基础自测1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )A .21种B .315种C .143种D .153种解析:分三类,每类分两步:选语文、数学各1本,有9×7=63种选法,选语文、英语各1本,有9×5=45种选法,选数学、英语各1本,有5×7=35种选法.所以共有63+45+35=143种选法.故选C.答案:C1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.2.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A .85B .56C .49D .28解析:甲、乙至少有1个入选而丙没有入选的不同选法为C 27+C 27+C 17=49(种).答案:C3.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有______种.解析:分5步完成,每一步有两种不同的方法,故不同的报名方法有25=32(种).答案:324.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆有________个.解析:由题知m <n ,根据m 的取值分为5类:m =1时,有6个椭圆;m =2时,有5个椭圆;m =3时,有4个椭圆;m =4时,有3个椭圆;m =5时,有2个椭圆.共有6+5+4+3+2=20个.答案:201.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A .4种B .10种C .18种D .20种解析:若取出1本画册,3本集邮册,有C14种赠送方法;若取出2本画册,2本集邮册,有C24种赠送方法,则不同的赠送方法有C14+C24=10种.故选B.答案:B2.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279解析:不重复的三位数字有:A 39+A 12A 29=648个.则有重复数字的三位数有:A 19A 110A 110-648=252个.答案:B1.将5名学生分配到甲、乙2个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为( )A .10B .20C .30D .40解析:安排方法可分为两类:甲宿舍3名,乙宿舍2名,方法数为C 35C 22=10(种);乙宿舍3名,甲宿舍2名,方法数为C 25C 33=10(种).所以总共有C 35C 22+C 25C 33=20种安排方法.故选B.答案:B2.(2013·深圳一模)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A.18种 B.15种 C.12种 D.9种解析:设满足题意的“六合数”为2abc,则a+b+c=4,于是满足条件的a,b,c可分以下四种情形:(1)一个为4,两个为0,共有3种;(2)一个为3,一个为1,一个为0,共有A33=6种;(3)两个为2,一个为0,共有3种;(4)一个为2,两个为1,共有3种.则“六合数”中首位为2的“六合数”共有15种.故选B.答案:B。
高考数学一轮总复习重点知识点梳理高考是人生的一次重要考验,对于学生来说,备考高考数学是一项重要任务。
为了帮助大家更好地备考数学,下面将对高考数学一轮总复习的重点知识点进行梳理。
本文将分为四个部分,分别是代数与函数、几何与向量、概率与统计以及解题方法与技巧。
一、代数与函数1. 四则运算与整式的基本操作2. 二次函数与一次函数的性质及其图像3. 幂函数与反比例函数的性质及其图像4. 复数的运算及其性质5. 等差数列与等比数列的性质及其应用6. 二项式与多项式的展开及其应用7. 三角函数的性质与应用二、几何与向量1. 平面几何基本概念与性质2. 相似三角形与勾股定理的应用3. 圆的基本性质与圆的应用4. 向量的定义、运算与性质5. 空间几何基本概念与性质6. 空间中直线与平面的位置关系及其应用7. 空间向量的定义及其应用三、概率与统计1. 随机事件与概率的基本概念2. 随机事件的运算及其概率性质3. 事件的独立性与计算4. 排列与组合的基本概念及其计算5. 随机变量与概率分布的基本概念6. 正态分布与二项分布的概念及其应用7. 抽样与统计的基本概念及其应用四、解题方法与技巧1. 解方程与解不等式的基本方法及应用2. 解析几何的基本方法及应用3. 函数的性质与应用4. 统计图的分析与应用5. 考点梳理与答题技巧通过对以上知识点的梳理,可以发现高考数学的重点主要集中在代数与函数、几何与向量、概率与统计以及解题方法与技巧等方面。
在备考过程中,同学们应该加强对这些知识点的理解与掌握,注重解题方法与技巧的培养,提高解题效率。
总的来说,高考数学一轮总复习的重点知识点梳理旨在帮助同学们合理安排学习时间,重点攻克难点知识,提高数学成绩。
希望同学们能够认真备考,保持良好的心态,相信自己的实力,顺利迎接高考的到来。
祝愿大家取得优异的成绩!。
【金版学案】2015届高考数学总复习 基础知识名师讲义 第五章 第一节数列的概念与简单表示法年份 题号 分值所考查的知识点 11 5等差数列的前n 项和及项数问题及数列的综合应用.1.在复习数列的概念时,应注意:(1)数列是以正整数为自变量的一类特殊函数;(2)并不是所有的数列都能用通项公式表示,有的数列的通项公式不是唯一的;(3)运用递推关系求数列通项公式时,可用特殊到一般的方法找出规律,也可将数列转化为等差或等比数列求解;(4)在an =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2中,要特别注意n =1的情况.2.在复习等差数列、等比数列时,应注意:(1)等差、等比数列的定义在解题中的应用;(2)等差、等比数列的中项公式、通项公式和求和公式的使用方法;(3)灵活处理数列与不等式、函数相结合的综合问题.这些是广东高考要考查的重点和热点.预计2014年高考对该部分内容的考查,会以两种形式出现,一种以小题考查通项公式、递推关系、数列求和等问题,属中等题;一种是在大题中将数列问题与函数、不等式结合在一起进行综合考查,属难题.第五章数列根据上述分析、预测,复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决,如通项公式、前n 项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1,d (或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等.4.等价转化是数学复习中常常运用的,数列也不例外.如an与S n的转化,将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.切实抓好两个“特殊数列”的通项公式和前n项和公式的推导过程及方法.6.解题要善于总结基本数学方法.如迭代法、逐差(积)求和(商)法、裂项相消法、观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法等,养成良好的学习习惯,定能达到事半功倍的效果.第一节数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.一、数列的定义按照一定顺序排列着的一列数称为数列,数列中的每个数叫做这个数列的项.项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.二、通项公式如果数列{an}的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,即an=f(n).数列的实质是定义域为正整数集N*(或N*的有限子集{1,2,3,…,n})的函数.通项公式an=f(n)即为函数的解析式.其中项数n相当于自变量,项an相当于函数值.三、递推公式如果已知数列{an}的第一项(或前几项),且任何一项an与它的前一项an-1(或前几项)间的关系可以用一个式子来表示,即an=f(an-1)或an=f(an-1,an-2,…),那么这个式子就叫做数列{an}的递推公式.如数列{an}中,a1=1,an=1+2an-1,其中式子an=1+2an-1就是数列{an}的递推公式.四、数列的表示1.列举法:如1,3,5,7,9,…2.图解法:由(n,an)点构成.3.解析法:用通项公式an=f(n)表示,如an=2n+1.4.递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an -1.五、数列分类有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.六、数列{an }的前n 项和S n S n =a 1+a 2+…+an .注:前n 项和S n =a 1+a 2+a 3+…+an -1+an =g (n )也为n 的函数. 七、数列{an }的前n 项和S n 与通项an 的关系an =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.注:如果求出的a 1也满足n ≥2时的an ,则可统一写成同一个关系式,否则分段书写. 八、数列中最大、最小项的求法若an 最大,则⎩⎪⎨⎪⎧ an ≥an +1,an ≥an -1;若an 最小,则⎩⎪⎨⎪⎧an ≤an +1,an ≤an -1,考虑数列的单调性.1.(2012·江门市一模)已知数列{}an 的前n 项和S n =n 2-3n ,若它的第k 项满足2<ak <5,则k =( )A .2B .3C .4D .5解析:ak =S k -S k -1=k 2-3k -[(k -1)2-3(k -1)]=2k -4,依题意有2<2k -4<5,得k =4.故选C.答案:C2.(2012·天津一中月考)已知数列a 1=1,a 2=5,an +2=an +1-an (n ∈N *),则a 2 014=( )A .1B .-4C .4D .-1解析:逐项计算可知,{an }是周期为6的周期数列,前6项分别是1,5,4,-1,-5,-4,所以a 2 014=a 2 010+4=a 4=-1.故选D.答案:D3.(2012·温州中学月考)已知数列{}an 中,a 1=4,an =4n -1an -1(n >1,n ∈N ),则通项公式为________.解析:由an =4n -1an -1可得a 2=4a 1,a 3=42a 2,a 4=43a 3,…,an =4n -1an -1,上述n -1个等式相乘,得an =41+2+…+(n -1)a 1=2n 2-n +2. 答案:2n 2-n +24.(2012·浙江高考参考样卷)设S n 是数列{an }的前n 项和,已知a 1=1,a n =-S n S n -1(n ≥2),则S n =________.解析:由an =S n -S n -1(n ≥2),得S n -S n -1=-S n S n -1,即1S n -1S n -1=1,又∵1S 1=1a 1=1,∴⎩⎨⎧⎭⎬⎫1S 是以1S 1=1为首项,公差d =1的等差数列.∴1S n =1S 1+(n -1)×1=n .∴S n =1n .答案:1n►品味高考1.(2012·浙江卷)设公比为q (q >0)的等比数列{an }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:将S 4=3a 4+2,S 2=3a 2+2两个相减,得a 4+a 3=3a 4-3a 2,即2a 4-a 3-3a 2=0,根据等比数列的通项公式化简得,2q 2-q -3=0,解之得:q =32(舍去q =-1).答案:322.(2011·浙江卷)若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =________.解析:最大项为第k 项,则有⎩⎨⎧k (k +4)⎝⎛⎭⎫23k≥(k +1)(k +5)⎝⎛⎭⎫23k +1,k (k +4)⎝⎛⎭⎫23k≥(k -1)(k +3)⎝⎛⎭⎫23k -1,∴⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0.∴⎩⎨⎧k 2≥10,1-10≤k ≤1+10.又∵k ∈N *,∴k =4. 答案:4►高考预测1.(2012·济南市月考) 已知数列{an }满足a 1=36,an +1=an +2n, 则ann的最小值为( )A .10B .11C .12D .13解析:∵ an +1-an =2n ,∴an =(an -an -1)+(an -1-an -2)+…+(a 2-a 1)+a 1=2(n -1)+2(n -2)+…+2+36=n (n -1)+36,∴an n =n 2-n +36n =n +36n -1≥2n ·36n -1=11.故选B. 答案:B2.(2012·粤西北九校联考改编)在数列{an }中,a 1=13,S n 为数列{an }的前n 项和且S n=n (2n -1)an ,则an =________.解析:∵S n =n (2n -1)an ,S n -1=(n -1)(2n -3)an -1(n ≥2),两式相减得(2n +1)an =(2n-3)an -1(n ≥2),由累乘方可得an =14n 2-1,而a 1=13也满足上式.答案:14n 2-1。
2015届高考数学一轮总复习 4-6正弦定理和余弦定理基础巩固强化一、选择题1.(文)已知△ABC 中,a =2、b =3、B =60°,那么角A 等于( ) A .135° B .90° C .45° D .30°[答案] C[解析] 由正弦定理得,a sin A =b sin B ,sin A =a sin B b =2sin60°3=22,又∵a <b ,∴A <B ,故A =45°,选C.(理)在△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c ,已知A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 [答案] B[解析] 解法1:由正弦定理a sin A =b sin B 得,3sin π3=1sin B, ∴sin B =12,故B =30°或150°.由a >b 得A >B ,∴B =30°.故C =90°,由勾股定理得c =2,选B. 解法2:由余弦定理知,3=c 2+1-2c cos π3,即c 2-c -2=0,∴c =2或-1(舍去).2.(文)(2014·莲塘一中质检)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =42,B =45°,则sin C 等于( )A.441B.45 C.425 D.44141[答案] B[解析] 依题意得b =a 2+c 2-2ac cos B =5, 又c sin C =b sin B ,所以sin C =c sin B b =42sin45°5=45,选B. (理)在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,且sin 2A -sin 2C =(sin A -sin B )sin B ,则角C 等于( )A.π6B.π3C.5π6D.2π3[答案] B[解析] 由正弦定理得a 2-c 2=(a -b )·b =ab -b 2, 由余弦定理得cos C =a 2+b 2-c 22ab =12,∵0<C <π,∴C =π3.3.(文)(2013·浙江调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若sin 2B +sin 2C -sin 2A +sin B sin C =0,则tan A 的值是( )A.33B .-33 C. 3 D .- 3[答案] D[解析] 依题意及正弦定理可得,b 2+c 2-a 2=-bc ,则由余弦定理得cos A =b 2+c 2-a 22bc =-bc2bc=-12,又0<A <π,所以A =2π3,tan A =tan 2π3=-3,选D. (理)(2013·浙江宁波十校联考)在△ABC 中,a 2tan B =b 2tan A ,则角A 与角B 的关系是( ) A .A =BB .A +B =90°C .A =B 或A +B =90°D .A =B 且A +B =90°[答案] C[解析] 由已知条件a 2tan B =b 2tan A ⇒sin2A =sin2B ,因为A ,B 为三角形内角,所以有2A =2B 或2A +2B =180°,即A =B 或A +B =90°.学生容易错选D ,即A =B 且A +B =90°.4.(2013·合肥二检)△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若c b <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形[答案] A[解析] 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A-sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形,选A.5.(文)(2013·浙江五校第二次联考)若△ABC 的内角A ,B ,C 对边分别为a ,b ,c ,且a =1,∠B =45°,S △ABC =2,则b =( )A .5B .25C.41 D .5 2[答案] A[解析] 解法1:由S △ABC =12ac sin45°=2⇒c =42,再由余弦定理可得b =5.解法2:作三角形ABC 中AB 边上的高CD , 在Rt △BDC 中求得高CD =22,结合面积求得 AB =42,AD =722,从而b =AD 2+CD 2=5.(理)(2013·呼和浩特第一次统考)在△ABC 中,如果sin A =3sin C ,B =30°,角B 所对的边长b =2,则△ABC 的面积为( )A .4B .1 C.3 D .2 [答案] C[解析] 据正弦定理将角化边得a =3c ,再由余弦定理得c 2+(3c )2-23c 2cos30°=4,解得c =2,故S △ABC =12×2×23×sin30°= 3.6.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 3[答案] C[解析] 12ac sin B =12,∴ac =2,又2b =a +c ,∴a 2+c 2=4b 2-4,由余弦定理b 2=a 2+c 2-2ac cos B 得,b =3+33.二、填空题7.(2014·弋阳一中月考)在直角坐标系xOy 中,已知△ABC 的顶点A (-1,0),C (1,0),顶点B 在椭圆x 24+y 23=1上,则sin A +sin C sin B的值为________.[答案] 2[解析] 由题意知△ABC 中,AC =2,BA +BC =4, 由正弦定理得sin A +sin C sin B =BC +BA AC=2.8.(2014·江西四校联考)△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π3,a =2b ,则b 的值为________.[答案] 3[解析] 依题意及余弦定理得c 2=a 2+b 2-2ab cos C ,即9=(2b )2+b 2-2×2b ×b cos π3,解得b 2=3,∴b = 3.9.(文)(2012·石家庄质检)在△ABC 中,∠A =60°,BC =2,AC =263,则∠B =________.[答案] 45°[解析] 利用正弦定理可知:BC sin A =ACsin B, 即2sin60°=263sin B ,∴sin B =22, ∵2>263,∴BC >AC ,∴∠A >∠B ,∴∠B =45°.(理)(2012·北京西城区期末)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c .若b =5,B =π4,tan C =2,则c =________. [答案] 2 2[解析]⎭⎪⎬⎪⎫sin 2C +cos 2C =1tan C =2⇒sin C cos C =2⇒sin 2C =45⇒sin C =255.由正弦定理,得b sin B =c sin C ,∴c =sin C sin B ×b =2 2.三、解答题10.(文)(2012·浙江文,18)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a 、c 的值. [解析] (1)由b sin A =3a cos B 及a sin A =bsin B 得,sin B =3cos B ,所以tan B =3,因为0<B <π,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C 得,c =2a .①由b =3及余弦定理b 2=a 2+c 2-2ac cos B 得, 9=a 2+c 2-ac .②由①、②得a =3,c =2 3.[点评] 本题主要考查正、余弦定理及三角运算等基础知识,同时考查运算求解能力. (理)(2013·浙江省名校联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos Ccos B=3c -a b.(1)求sin Csin A的值; (2)若B 为钝角,b =10,求a 的取值范围. [解析] (1)由正弦定理,设a sin A =b sin B =c sin C=k , 则3c -a b =3k sin C -k sin A k sin B =3sin C -sin A sin B ,所以cos A -3cos C cos B =3sin C -sin A sin B,即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ).又A +B +C =π,所以sin C =3sin A ,因此sin Csin A =3.(2)由sin Csin A=3得c =3a . 由题意知⎩⎪⎨⎪⎧a +c >b a 2+c 2<b2,又b =10,所以52<a <10.能力拓展提升一、选择题11.(文)(2013·东北三省四市二联)若满足条件AB =3,C =π3的三角形ABC 有两个,则边长BC的取值范围是( )A .(1,2)B .(2,3)C .(3,2)D .(2,2)[答案] C[解析] 解法一:若满足条件的三角形有两个,则32=sin C <sin A <1,又因为BC sin A =ABsin C =2,故BC =2sin A ,所以3<BC <2,故选C.解法二:由条件知,BC sin π3<3<BC ,∴3<BC <2.(理)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( )A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2C.⎝⎛⎭⎫π4,3π4D.⎝⎛⎭⎫π4,π3[答案] A[解析] 由条件知b sin A <a ,即22sin A <2, ∴sin A <22, ∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4.12.(文)(2013·浙江金丽衢十二校二联)在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 所对的边,且b 2+c 2=a 2+3bc ,则2sin B cos C -sin(B -C )的值为( )A.33 B.32C.22D.12[答案] D[解析] 利用余弦定理,得cos A =b 2+c 2-a 22bc =3bc 2bc =32,又A ∈(0,π),所以A =π6,B +C =5π6,所以2sin B cos C -sin(B -C )=sin B cos C +cos B sin C =sin(B +C )=12.(理)(2013·浙江稽阳联谊学校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc 且b =3a ,则△ABC 不可能...是( ) A .等腰三角形 B .钝角三角形 C .直角三角形 D .锐角三角形[答案] D[解析] 由cos A =b 2+c 2-a 22bc =32,可得A =π6,又由b =3a 可得b a =sin B sin A =2sin B =3,可得sin B=32,得B =π3或B =2π3,若B =π3,则△ABC 为直角三角形;若B =2π3,C =π6=A ,则△ABC 为钝角三角形且为等腰三角形,由此可知△ABC 不可能为锐角三角形,故应选D.13.(2014·大城一中月考)在△ABC 中,AC →·AB →=|AC →-AB →|=3,则△ABC 面积的最大值为( ) A.21 B.3214C.212D .321[答案] B[解析] 设角A 、B 、C 所对的边分别为a 、b 、c ,∵AC →·AB →=|AC →-AB →|=3,∴bc cos A =a =3.又cos A =b 2+c 2-a 22bc ≥1-92bc =1-3cos A 2,∴cos A ≥25,∴0<sin A ≤215,∴△ABC 的面积S =12bc sin A =32tan A ≤32×212=3214,故△ABC 面积的最大值为3214. 二、填空题14.(文)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,b =2,sin B +cos B =2,则∠A 的大小为________.[答案] π6[解析] ∵sin B +cos B =2sin(B +π4)=2,∴sin(B +π4)=1,∵0<B <π,∴B =π4,∵b sin B =a sin A ,∴sin A =a sin B b=2×222=12, ∵a <b ,∴A <B ,∴A =π6.(理)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3,则△ABC 的面积为________.[答案] 2[解析] 依题意得cos A =2cos 2A 2-1=35,∴sin A =1-cos 2A =45,∵AB →·AC →=AB ·AC ·cos A =3,∴AB ·AC =5,∴△ABC 的面积S =12AB ·AC ·sin A =2.15.在△ABC 中,C =60°,a 、b 、c 分别为A 、B 、C 的对边,则a b +c +bc +a =________.[答案] 1[解析] ∵C =60°,∴a 2+b 2-c 2=ab , ∴(a 2+ac )+(b 2+bc )=(b +c )(a +c ), ∴a b +c +ba +c=1. 三、解答题16.(文)已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin2C .(1)求角C 的大小;(2)若sin A 、sin C 、sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长. [解析] (1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ). 在△ABC 中,由于sin(A +B )=sin C . ∴m ·n =sin C . 又∵m ·n =sin2C ,∴sin2C =sin C ,∴2sin C cos C =sin C .又sin C ≠0,所以cos C =12.而0<C <π,因此C =π3.(2)由sin A ,sin C ,sin B 成等差数列得, 2sin C =sin A +sin B , 由正弦定理得,2c =a +b . ∵CA →·(AB →-AC →)=18,∴CA →·CB →=18.即ab cos C =18,由(1)知,cos C =12,所以ab =36.由余弦定理得,c 2=a 2+b 2-2ab cos C =(a +b )2-3ab .∴c 2=4c 2-3×36,∴c 2=36.∴c =6.(理)(2013·江西省七校联考)已知在△ABC 中,C =2A ,cos A =34,且2BA →·CB →=-27.(1)求cos B 的值; (2)求AC 的长度.[解析] (1)∵C =2A ,∴cos C =cos2A =2cos 2A -1=18,∴sin C =378,sin A =74.∴cos B =-cos(A +C )=sin A sin C -cos A cos C =74×378-34×18=916. (2)∵AB sin C =BC sin A ,∴AB =32BC . ∵2BA →·CB →=-27,cos B =916,∴|BA →||CB →|=24, ∴BC 2=16,AB =6,∴AC =BC 2+AB 2-2BC ·AB ·cos B=16+36-2×4×6×916=5.考纲要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 补充说明1.求解三角形中的三角函数问题的技巧解三角形问题的两重性:①作为三角形问题,它必须要用到三角形的内角和定理,正弦、余弦定理及其有关三角形的性质,及时进行边角转化,有利于发现解题的思路:②它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”(即“统一角、统一函数、统一结构”)是使问题获得解决的突破口.2.在解斜三角形的问题中,有时所给问题在一个多边形中,需将多边形分割成三角形,有时在同一个图形中有几个三角形,解题时要先分析条件,将已知和待求量归结到一个可解的三角形中,如果不能归到同一个三角形中,则应看待求量需要在哪个三角形中解决,这个三角形中的哪个量与已知条件所在的三角形共用,先解可解的三角形求出这个量或建立方程求解.备选习题1.(2013·杭州第二次质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为1534,b +c =8,A =120°,则a =( )A .7B .3 3C .5D .3[答案] A[解析] 由已知条件可得S △ABC =12bc sin A =12bc ×32=34bc =1534,得bc =15,又由b +c =8可得a =b 2+c 2-2bc cos A =(b +c )2-2bc +bc =64-15=7,故应选A.2.(2013·沈阳二中四模)在△ABC 中,A =120°,b =1,面积为3,则b -c -asin B -sin C -sin A =( )A.2393B.393 C .27 D .47[答案] C[解析] ∵S =12bc sin A =12c sin120°=3,∴c =4,∴a =b 2+c 2-2bc cos A =17+8×12=21,∴b -c -a sin B -sin C -sin A =a sin A =2132=27,故应选C. 3.在△ABC 中,sin A =513,cos B =45,则cos C =________.[答案] -3365[解析] 由cos B =45得,sin B =35>513=sin A ,∴b >a ,即B >A ,∴A 为锐角,∴cos A =1213,∴cos C =-cos(A +B )=sin A sin B -cos A cos B =513×35-1213×45=-3365. 4.(2012·天津文,16)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a =2,c =2,cos A =-24. (1)求sin C 和b 的值; (2)求cos(2A +π3)的值.[分析] (1)由cos A =-24及0<A <π,sin 2A +cos 2A =1可求sin A ,再由正弦定理求sin C ,由余弦定理a 2=b 2+c 2-2bc cos A ,可求b 的值.(2)由(1)知道sin A ,cos A ,用正弦、余弦二倍角公式求sin2A ,cos2A ,展开cos(2A +π3)代入即可.[解析] (1)在△ABC 中, 由cos A =-24,可得sin A =144. 又由a sin A =c sin C 及a =2,c =2,可得sin C =74.由a 2=b 2+c 2-2bc cos A ,得b 2+b -2=0, 因为b >0,故解得b =1. 所以sin C =74,b =1. (2)由cos A =-24,sin A =144得, cos2A =2cos 2A -1=-34,sin2A =2sin A cos A =-74.11 所以,cos(2A +π3)=cos2A cos π3-sin2A sin π3=-3+218. 5.(2012·新课标全国文)已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b 、c .[分析] (1)已知c =3a sin C -c cos A ,求角A ,注意到等式中的三项都含有c 或sin C ,故可用正弦定理化边为角,约去sin C (sin C ≠0)得到角A 的关系式,再结合0<A <π,求出角A .(2)可结合角A 的值,选择合适的△ABC 的面积公式,建立关于b 、c 的方程组,解得b 、c 的值.已知a 和S △ABC 及角A ,可选择面积公式S △ABC =12bc sin A ,再结合余弦定理a 2=b 2+c 2-2bc cos A ,建立b 与c 的方程组解之.[解析] (1)由c =3a sin C -c cos A 及正弦定理得,3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.[点评] 本题考查解三角形的有关知识,该类问题在已知条件中如果涉及到边角关系时,经常考虑边角互化,另外还要注意三角形面积公式的合理选择.。
第三章三角函数、三角恒等变换及解三角形第3课时三角函数的图象和性质(对应学生用书(文)、(理)44~46页)1. (必修4P 25练习2改编)函数f(x)=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为________.答案:4π解析:函数f(x)=3sin ⎝ ⎛⎭⎪⎫x 2-π4的最小正周期为T =2π12=4π.2. (必修4P 39第2题改编)将函数y =sinx 的图象上所有的点向右平行移动 π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是____________________.答案:y =sin ⎝ ⎛⎭⎪⎫12x -π10 解析:∵ 向右平移π10个单位,∴ 用x -π10代替y =sinx 中的x ;∵ 各点横坐标伸长到原来的2倍,∴ 用12x 代替y =sin ⎝ ⎛⎭⎪⎫x -π10中的x ,∴ y =sin ⎝ ⎛⎭⎪⎫12x -π10.3. (必修4P 45第9题改编)如图,它表示电流I =Asin (ωt +φ)(A>0,ω>0)在一个周期内的图象,则I =Asin (ωt +φ)的解析式为________________.答案:I =3sin ⎝ ⎛⎭⎪⎫100π3t +π3解析:由图可知A =3,ω=100π3.代入⎝ ⎛⎭⎪⎫150,0和⎝ ⎛⎭⎪⎫120,0,解得φ=π3,于是I =3sin ⎝ ⎛⎭⎪⎫100π3t +π3. 4. (必修4P 32练习6改编)函数y =cos ⎝⎛⎭⎪⎫2x -π4的单调递增区间是________.答案:⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z )解析:-π+2k π≤2x -π4≤2k π,即-3π8+k π≤x ≤π8+k π(k ∈Z ),所求单调递增区间是⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ).5. (必修4P 32第5题改编)函数y =2sinx ⎝ ⎛⎭⎪⎫π6≤x ≤2π3的值域是________.答案:[1,2]解析:根据正弦函数图象,可知x =π6时,函数取到最小值1;x =π2时,函数取到最大值2.1. 周期函数的定义周期函数的概念:对于函数y =f(x),如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,f(x +T)=f(x)都成立,则称y=f(x)为周期函数;函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的周期均为T=2π|ω|;函数y=Atan(ωx+φ)的周期为T=π|ω|.2. 三角函数的图象和性质3. “五点法”作图“五点法”作图原理:在确定正弦函数y =sinx 在[0,2π]上的图象形状时,起关键作用的五个点是(0,0)、⎝ ⎛⎭⎪⎫π2,1、(π,0)、⎝ ⎛⎭⎪⎫3π2,-1、 (2π,0).余弦函数呢?4. 函数 y =Asin (ωx +φ)的特征若函数y =Asin (ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T 叫做频率,ωx +φ叫做相位,φ叫做初相.[备课札记]题型1 依据三角函数的图象求解析式例1 (2013·南京三模)已知函数f(x)=2sin (ωx +φ)(ω>0)的部分图象如图所示,则ω=________.答案:23解析:由图象可知函数的四分之三周期为15π8-⎝ ⎛⎭⎪⎫-3π8=34T ,T=3π,ω=2π3π=23.变式训练已知函数y =Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则ω=________.答案:3解析:由图知,A =2,将(0,2)、⎝ ⎛⎭⎪⎫π12,2代入函数,得⎩⎪⎨⎪⎧2sin ⎝⎛⎭⎪⎫π12w +φ=2,2sin φ=2,∴ ⎩⎨⎧φ=π4,ω=3.题型2 三角函数的图象变换例2 为了得到函数y =2sin ⎝ ⎛⎭⎪⎫x 3+π6(x ∈R )的图象,只需把函数y=2sinx(x ∈R )的图象上所有的点经过怎样的变换得到?解:y =2sinx 用6x p +代替x ,左移 6p个单位 y =2sin ⎝ ⎛⎭⎪⎫x +π6再用3p代替x ,各点横坐标伸长到原来的3倍。
y =2sin ⎝ ⎛⎭⎪⎫x 3+π6.备选变式(教师专享)已知函数f(x)=23·sin ⎝ ⎛⎭⎪⎫x 2+π4cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π). (1) 求f(x)的最小正周期;(2) 若将f(x)的图象向右平移π6个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.解:(1) 因为f(x)=3sin ⎝⎛⎭⎪⎫x +π2+sinx =3cosx +sinx =2⎝ ⎛⎭⎪⎫32cosx +12sinx =2sin ⎝⎛⎭⎪⎫x +π3,所以f(x)的最小正周期为2π.(2) ∵ 将f(x)的图象向右平移π6个单位,得到函数g(x)的图象,∴ g(x)=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -π6+π3=2sin ⎝ ⎛⎭⎪⎫x +π6.∵ x ∈[0,π],∴ x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴ 当x +π6=π2,即x =π3时,sin ⎝⎛⎭⎪⎫x +π6=1,g(x)取得最大值2.当x +π6=7π6,即x =π时,sin ⎝⎛⎭⎪⎫x +π6=-12,g(x)取得最小值-1.题型3 五点法作图例3 已知a =(2cosx ,cos2x),b =(sinx ,-3),f(x)=a ·b . (1) 求f(x)的振幅、周期,并画出它在一个周期内的图象; (2) 说明它可以由函数y =sinx 的图象经过怎样的变换得到.解:(1) f(x)=a ·b =sin2x -3cos2x =2sin ⎝⎛⎭⎪⎫2x -π3,周期T =π,振幅A =2.列表从略,图象如下:(2) f(x)可以由y =sinx 的图象上各点右移π3个单位后,再将纵坐标伸长到原来的2倍,横坐标缩短到原来的12而得到.备选变式(教师专享)已知f(x)=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32.(1) 求ω和φ的值;(2) 在给定坐标系中作出函数f(x)在[0,π]上的图象; (3) 若f(x)>22,求x 的取值范围.解:(1) 周期T =2πω=π,∴ω=2,∵f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sinφ=32,-π2<φ<0,∴φ=-π3.(2) f(x)=cos ⎝ ⎛⎭⎪⎫2x -π3,列表如下:图象如图:(3)∵cos ⎝ ⎛⎭⎪⎫2x -π3>22,∴2k π-π4<2x -π3<2k π+π4, ∴2k π+π12<2x<2k π+7π12, ∴k π+π24<x<k π+7π24,k ∈Z ,∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫kπ+π24<x<kπ+7π24,k ∈Z .题型4 函数y =Asin (ωx +φ)的图象与性质的综合应用 例4 (2013·苏州期末)已知函数f(x)=Asin (ωx +φ)(其中A >0,ω>0,0<φ<π2)的周期为π,且图象上有一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-3. (1) 求f(x)的解析式;(2) 求函数y =f(x)+f ⎝⎛⎭⎪⎫x +π4的最大值及对应x 的值.解:(1) 由2πω=π,得ω=2.由最低点为M ⎝ ⎛⎭⎪⎫2π3,-3,得A =3. 且2×2π3+φ=3π2+2k π(k ∈Z ),0<φ<π2,∴ φ=π6.∴ f(x)=3sin ⎝ ⎛⎭⎪⎫2x +π6.(2) y =f(x)+f ⎝⎛⎭⎪⎫x +π4=3sin ⎝ ⎛⎭⎪⎫2x +π6+3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4+π6=3sin ⎝ ⎛⎭⎪⎫2x +π6+3cos ⎝ ⎛⎭⎪⎫2x +π6=32sin ⎝⎛⎭⎪⎫2x +5π12,∴ y max =3 2.此时,2x +5π12=2k π+π2,即x =k π+π24,k ∈Z . 变式训练已知函数f(x)=Asin (ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2.(1) 求f(x)的解析式;(2) 当x ∈⎣⎢⎡⎦⎥⎤0,π12时,求f(x)的最值.解:(1) 由最低点为M ⎝ ⎛⎭⎪⎫2π3,-2,得A =2.由T =π,得ω=2πT =2ππ=2.由点M ⎝ ⎛⎭⎪⎫2π3,-2在图象上得2sin ⎝ ⎛⎭⎪⎫4π3+φ=-2, 即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1,∴ 4π3+φ=2k π-π2(k ∈Z ), 即φ=2k π-11π6,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫0,π2,∴ φ=π6,∴ f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2) ∵ x ∈⎣⎢⎡⎦⎥⎤0,π12,∴ 2x +π6∈⎣⎢⎡⎦⎥⎤π6,π3.∴ 当2x +π6=π6,即x =0时,f(x)取得最小值1; 当2x +π6=π3,即x =π12时,f(x)取得最大值 3.1. (2013·贵州文)函数y =cos(2x +φ)(-π≤φ≤π)的图象向右平移π2个单位后,与函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象重合,则φ=________.答案:5π6 解析:因为y =cos(2x +φ)=cos(-2x -φ)=sin ⎣⎢⎡⎦⎥⎤π2-(-2x -φ)=sin ⎝ ⎛⎭⎪⎫2x +π2+φ,图象向右平移π2个单位后为y =sin ⎝ ⎛⎭⎪⎫2x -π2+φ,与y =sin ⎝⎛⎭⎪⎫2x +π3重合,所以φ-π2=π3,解得φ=5π6.2. (2013·上海一模)若函数f(x)=Asin(2x +φ)(A>0,-π2<φ<π2)的部分图象如图所示,则f(0)=________.答案:-1解析:由图象可知A =2,f ⎝ ⎛⎭⎪⎫π3=2,即f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2×π3+φ=2,所以sin ⎝ ⎛⎭⎪⎫2π3+φ=1,即2π3+φ=π2+2k π,k ∈Z ,所以φ=-π6+2k π,k ∈Z .因为-π2<φ<π2,所以当k =0时,φ=-π6,所以f(x)=2sin ⎝ ⎛⎭⎪⎫2x -π6,即f(0)=2sin ⎝ ⎛⎭⎪⎫-π6=2×⎝ ⎛⎭⎪⎫-12=-1.3. (2013·新课标)已知ω>0,函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案:⎣⎢⎡⎦⎥⎤12,54解析:由π2+2k π≤π2ω+π4<πω+π4≤3π2+2k π,k ∈Z ,得12+4k ≤ω≤54+2k ,k ∈Z .∵ ω>0,∴ 12≤ω≤54.4. (2013·苏北四市期末)已知角φ的终边经过点P(1,-1),点A(x 1,y 1)、B(x 2,y 2)是函数f(x)=sin (ωx +φ)(ω>0)图象上的任意两点.若|f(x 1)-f(x 2)|=2时,|x 1-x 2|的最小值为π3,则f ⎝ ⎛⎭⎪⎫π2=________.答案:-22解析:结合三角函数图象,知道函数的最小正周期为2π3,ω=3,角φ的终边经过点P(1,-1),取φ=-π4,f(x)=sin ⎝⎛⎭⎪⎫3x -π4,f ⎝ ⎛⎭⎪⎫π2=sin 5π4=-22.1. 已知函数y =Asin(ωx +φ)(A>0,ω>0,0<φ<π)的两个相邻最值点为⎝ ⎛⎭⎪⎫π6,2、⎝ ⎛⎭⎪⎫2π3,-2,则这个函数的解析式为________.答案:y =2sin ⎝⎛⎭⎪⎫2x +π6 解析:∵A =2,相邻最值点相距半个周期,即T 2=2π3-π6=π2,∴T =π,即ω=2,则函数解析式为y =2sin(2x +φ),点⎝ ⎛⎭⎪⎫π6,2在函数图象上,∴2=2sin ⎝ ⎛⎭⎪⎫π3+φ,即π3+φ=2kπ+π2,得φ=2kπ+π6,k ∈Z ,∴ 函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +π6. 2. (2014·泰州期末)已知函数f(x)=2sin ⎝⎛⎭⎪⎫2x +π4.(1) 求函数y =f(x)的最小正周期及单调递增区间;(2) 若f ⎝⎛⎭⎪⎫x 0-π8=-65,求f(x 0)的值.解:(1) T =2π2=π,增区间为⎣⎢⎡⎦⎥⎤-38π+k π,18π+k π,k ∈Z .(2) f ⎝ ⎛⎭⎪⎫x 0-π8=-65,即sin(2x 0)=-35,所以cos(2x 0)=±45,f(x 0)=2sin ⎝⎛⎭⎪⎫2x 0+π4=2(sin2x 0+cos2x 0)=25或-725.3. 已知a >0,函数f(x)=-2asin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f(x)≤1.(1) 求常数a 、b 的值;(2) 设g(x)=f ⎝⎛⎭⎪⎫x +π2且lgg(x)>0,求g(x)的单调区间. 解:(1) ∵ x ∈⎣⎢⎡⎦⎥⎤0,π2,∴ 2x +π6∈⎣⎢⎡⎦⎥⎤π6,76π.∴ sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2asin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a],∴f(x)∈[b ,3a +b].又∵-5≤f(x)≤1,∴b =-5,3a +b =1,因此a =2,b =-5. (2) 由(1)知a =2,b =-5,∴ f(x)=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g(x)=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1. 又由lgg(x)>0,得g(x)>1,∴ 4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴ sin ⎝⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z .由2kπ+π6<2x +π6≤2k π+π2(k ∈Z ),得g(x)的单调增区间为⎝⎛⎦⎥⎤kπ,k π+π6(k ∈Z ).由2kπ+π2≤2x +π6<2kπ+5π6,得g(x)的单调减区间为⎣⎢⎡⎭⎪⎫kπ+π6,k π+π3(k ∈Z ).4. 设a =⎝⎛⎭⎪⎫sin2π+2x 4,cosx +sinx ,b =(4sinx ,cosx -sinx),f(x)=a·b .(1) 求函数f(x)的解析式;(2) 已知常数ω>0,若y =f(ωx)在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,求ω的取值范围;(3) 设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π6≤x ≤23π,B ={x||f(x)-m|<2},若A B ,求实数m 的取值范围.解:(1) f(x)=sin2π+2x4〃4sinx +(cosx +sinx)·(cosx -sinx)=4sinx·1-cos ⎝ ⎛⎭⎪⎫π2+x 2+cos2x=2sinx(1+sinx)+1-2sin 2x =2sinx +1, 所以所求解析式为f(x)=2sinx +1. (2) ∵f(ωx)=2sinωx +1,ω>0, 由2kπ-π2≤ωx ≤2k π+π2,得f(ωx)的增区间是⎣⎢⎡⎦⎥⎤2kπω-π2ω,2k πω+π2ω,k ∈Z . ∵f (ωx)在⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,∴⎣⎢⎡⎦⎥⎤-π2,2π3 ⎣⎢⎡⎦⎥⎤-π2ω,π2ω.∴-π2≥-π2ω且2π3≤π2ω, ∴ω∈⎝ ⎛⎦⎥⎤0,34. (3) 由|f(x)-m|<2,得-2<f(x)-m <2, 即f(x)-2<m <f(x)+2. ∵A B ,∴当π6≤x ≤23π时, 不等式f(x)-2<m <f(x)+2恒成立. ∴f(x)max -2<m <f(x)min +2,∵f(x)max =f ⎝ ⎛⎭⎪⎫π2=3,f(x)min =f ⎝ ⎛⎭⎪⎫π6=2, ∴m ∈(1,4).1. 求形如y=Asin(ωx+φ)+k的单调区间时,只需把ωx+φ看作一个整体代入y=sinx的相应单调区间内即可,注意先把ω化为正数.求y=Acos(ωx+φ)和y=Atan(ωx+φ)的单调区间类似.2. 求函数y=Asin(ωx+φ)(A>0,ω>0)的解析式,常用的解题方法是待定系数法,由最高(低)点的纵坐标确定A,由周期确定ω,由适合解析式的点的坐标来确定φ,但由条件求得y=Asin(ωx+φ)(A >0,ω>0)的解析式一般不唯一,只有限定φ的取值范围,才能得出唯一解.3. 由y=sinx的图象变换到y=Asin(ωx+φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值.请使用课时训练(B)第3课时(见活页).[备课札记]。