专题复习动能定理机械能守恒能量守恒
- 格式:doc
- 大小:729.50 KB
- 文档页数:14
机械能守恒定律1.由物体间的相互作用和物体间的相对位置确定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.(1)物体由于受到重力作用而具有重力势能,表达式为E P=一mgh.式中h是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高h处其重力势能为E P=一mgh,若物体在零势能参考面下方低h处其重力势能为E P=一mgh,“一”不表示方向,表示比零势能参考面的势能小,明显零势能参考面选择的不同,同一物体在同一位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的状况下,都是以地面为零势面的.但应特殊留意的是,当物体的位置变更时,其重力势能的变更量与零势面如何选取无关.在实际问题中我们更会关切的是重力势能的变更量.(3)弹性势能,发生弹性形变的物体而具有的势能.中学阶段不要求详细利用公式计算弹性势能,但往往要依据功能关系利用其他形式能量的变更来求得弹性势能的变更或某位置的弹性势能.2.重力做功与重力势能的关系:重力做功等于重力势能的削减量W G=ΔE P减=E P初一E P末,克服重力做功等于重力势能的增加量W克=ΔE P增=E P末—E P初特殊应留意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变更.3、动能和势能(重力势能与弹性势能)统称为机械能.二、机械能守恒定律1、内容:在只有重力(和弹簧的弹力)做功的状况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.2.机械能守恒的条件(1)做功角度:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.(2)能转化角度:对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发朝气械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.3.表达形式:E K1+E pl=E k2+E P2(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中E P是相对的.建立方程时必需选择合适的零势能参考面.且每一状态的E P都应是对同一参考面而言的.(2)其他表达方式,ΔE P=一ΔE K,系统重力势能的增量等于系统动能的削减量.(3)ΔE a=一ΔE b,将系统分为a、b两部分,a部分机械能的增量等于另一部分b的机械能的削减量,三、推断机械能是否守恒首先应特殊提示留意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在削减.(1)用做功来推断:分析物体或物体受力状况(包括内力和外力),明确各力做功的状况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.(3)对一些绳子突然绷紧,物体间非弹性碰撞等除非题目的特殊说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒说明:1.条件中的重力与弹力做功是指系统内重力弹力做功.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力作功,其他力不做功或者其他力的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化.如图5-50所示,光滑水平面上,A与L1、L2二弹簧相连,B与弹簧L2相连,外力向左推B使L1、L2被压缩,当撤去外力后,A、L2、B这个系统机械能不守恒,因为L I对A的弹力是这个系统外的弹力,所以A、L2、B这个系统机械能不守恒.但对L I、A、L2、B这个系统机械能就守恒,因为此时L1对A的弹力做功属系统内部弹力做功.2.只有系统内部重力弹力做功,其它力都不做功,这里其它力合外力不为零,只要不做功,机械能仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和介质阻力,无电磁感应过程等等),则系统的机械能守恒,如图5-51所示光滑水平面上A与弹簧相连,当弹簧被压缩后撤去外力弹开的过程,B相对A没有发生相对滑动,A、B之间有相互作用的力,但对弹簧A、B物体组成的系统机械能守恒.3.当除了系统内重力弹力以外的力做了功,但做功的代数和为零,但系统的机械能不肯定守恒.如图5—52所示,物体m在速度为v0时受到外力F作用,经时间t速度变为v t.(v t>v0)撤去外力,由于摩擦力的作用经时间t/速度大小又为v0,这一过程中外力做功代数和为零,但是物体m的机械能不守恒。
区分动能定理、功能关系、机械能守恒、能量守恒及解题时选用技巧(含典例分析)一、动能定理物体所受合外力做的功等于物体动能的变化量,即使用动能定理时应注意以下2个方面的问题:(1)由于作用在物体上的诸多力往往不是同时同步作用,而是存在先后顺序,因此求合外力做的功W 合一般采取先分别求出单个力受力然后代数和相加即可,即:比如一个物体收到了三个F 1、F 2、F 3三个力的作用,三个力所做的功分别为“+10J ”、“-5J ”、“-7J ”,这样以来三个力所做的总功W 合=10+(-5)+(-7)=-2J 。
(2)动能的变化量(或称动能的增量)因此在使用动能定理之前首先要明确对哪一段过程使用,这样才能确定谁是初始,谁是末尾,下面举例说明:图1例1:如图1所示,AB 为粗糙的水平地面,AB 段的长度为L ,右侧为光滑的竖直半圆弧BC 与水平地面在B 点相切,圆弧的半径为R ,一个质量为m 的小物块放置在A 点,初速度为V 0水平向右,物块受到水平向右恒力F 的作用,但水平恒力F 在物块向右运动L 1距离时撤去(L 1<L ),物块恰好通过C 点,重力加速度为g。
求:小物块与地面之间的动摩擦因数u。
思路梳理:物块恰好通过C点,意味着小物块在C点时对轨道无压力,物块的重力恰好提供物块转弯所需的向心力,可据此求出物块在C点的速度V c,剩下的问题就变成了到底选哪一段过程使用动能定理进行解题的问题,大多数同学习惯一段一段分析,即先分析A至B段,再分析B至C段,也有同学指出可以直接分析A至C全过程即可,到底哪种比较简单,这其实要看题目有没有在B点设定问题,下面详细解答:解法一:对A至B过程运用动能定理,设小物块在B点的速度为V B再对B至C过程运用动能定理,设小物体在C点的速度为V C小物块恰好通过C点,则联立(1)(2)(3)式即可求出u。
解法二:对A至C过程运用动能定理,设小物块在C点的速度为V C小物块恰好通过C点,则联立(1)(2)式即可求出u。
机械能知识点总结一、功1、概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2、条件:. 力和力的方向上位移的乘积3、公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N )S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4、功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2πθ=时,即力与位移垂直,力不做功,功为零; 当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负; 5、功是一个过程所对应的量,因此功是过程量。
6、功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7、几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ二、功率1、概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2、公式:t W P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3、单位:瓦特W4、分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5、应用:(1)、机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力fF =时,速度不再增大达到最大值max υ,则f P /m ax =υ。
(2)、机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /m ax =υ。
机械能守恒与动能定理初中物理知识点总结机械能守恒是物理学中一个重要的基本定律,它与动能定理密切相关。
本文将对初中物理中关于机械能守恒和动能定理的知识点进行总结。
一、机械能守恒机械能是指物体由于位置和运动而具有的能量。
在不考虑外力做功的情况下,一个封闭的系统中的机械能守恒,即机械能的总量保持不变。
机械能包括两个部分:势能和动能。
势能是指物体由于位置而具有的能量,主要有重力势能和弹性势能。
动能是指物体由于运动而具有的能量。
1. 重力势能:重力势能是指物体由于重力作用而具有的能量。
在地球上,重力势能的计算公式为:Ep = mgh,其中Ep表示重力势能,m表示物体质量,g表示重力加速度,h表示物体的高度。
2. 弹性势能:弹性势能是指物体由于受力而发生形变,并具有能量的能力。
例如,当弹簧被压缩或拉伸时,就会积累弹性势能。
弹性势能的计算公式为:Ep = (1/2)kx^2,其中Ep表示弹性势能,k表示弹簧的弹性系数,x表示形变的位移。
3. 动能:动能是指物体由于运动而具有的能量。
动能的计算公式为:Ek =(1/2)mv^2,其中Ek表示动能,m表示物体质量,v表示物体的速度。
根据机械能守恒定律,一个封闭系统中的机械能总量保持不变。
当一个物体在重力场中自由下落时,它失去的重力势能转化为同等大小的动能。
同样,当一个物体被弹簧弹射出来时,它失去的弹性势能也转化为同等大小的动能。
二、动能定理动能定理描述了物体的动能变化与力做功的关系。
它表明,物体动能的变化等于外力所做的功。
动能定理的数学表达式为:ΔEk = W,其中ΔEk表示动能的变化量,W表示外力所做的功。
动能定理可以用来解释物体在运动过程中的动能变化情况。
当外力做功使物体的动能增加时,动能定理表明外力所做的功大于零;相反,当外力做功使物体的动能减少时,动能定理表明外力所做的功小于零。
三、机械能守恒和动能定理的应用机械能守恒和动能定理在物理学中有广泛的应用。
以下是一些常见的应用场景:1. 自由落体运动:当一个物体在只受重力作用下自由下落时,机械能守恒定律表明它的重力势能转化为动能。
机械能知识网络:§1 功和功率知识目标一、功的概念1、定义:力和力的作用点通过位移的乘积.2.做功的两个必要因素:力和物体在力的方向上的位移3、公式:W=FScosα(α为F与s的夹角).说明:恒力做功大小只与F、s、α这三个量有关.与物体是否还受其他力、物体运动的速度、加速度等其他因素无关,也与物体运动的路径无关.4.单位:焦耳(J) 1 J=1N·m.5.物理意义:表示力在空间上的积累效应,是能的转化的量度6.功是标量,没有方向,但是有正负.正功表示动力做功,负功表示阻力做功,功的正负表示能的转移方向.①当0≤a<900时W>0,力对物体做正功;②当α=900时W=0,力对物体不做功;③当900<α≤1800时W<0,力对物体做负功或说成物脚体克服这个力做功,这两种说法是从二个角度来描述同一个问题.二、注意的几个问题①F:当F是恒力时,我们可用公式W=Fscosθ运算;当F大小不变而方向变化时,分段求力做的功;当F的方向不变而大小变化时,不能用W=Fscosθ公式运算(因数学知识的原因),我们只能用动能定理求力做的功.②S:是力的作用点通过的位移,用物体通过的位移来表述时,在许多问题上学生往往会产生一些错觉,在后面的练习中会认识到这一点,另外位移S应当弄清是相对哪一个参照物的位移③功是过程量:即做功必定对应一个过程(位移),应明确是哪个力在哪一过程中的功.④什么力做功:在研究问题时,必须弄明白是什么力做的功.如图所示,在力F作用下物体匀速通过位移S则力做功FScosθ,重力做功为零,支持力做功为零,摩擦力做功-Fscos θ,合外力做功为零.【例1】如图所示,在恒力F的作用下,物体通过的位移为S,则力F做的功为解析:力F做功W=2Fs.此情况物体虽然通过位移为S.但力的作用点通过的位移为2S,所以力做功为2FS.答案:2Fs【例2】如图所示,质量为m的物体,静止在倾角为α的粗糙的斜面体上,当两者一起向右匀速直线运动,位移为S时,斜面对物体m的弹力做的功是多少?物体m所受重力做的功是多少?摩擦力做功多少?斜面对物体m做功多少?解析:物体m受力如图所示,m有沿斜面下滑的趋势,f为静摩擦力,位移S的方向同速度v的方向.弹力N对m做的功W1=N·scos(900+α)=- mgscosαs i nα,重力G对m做的功W2=G·s cos900=0.摩擦力f对m做的功W3=fscosα=mgscosαsinα.斜面对m的作用力即N和f的合力,方向竖直向上,大小等于mg(m处于平衡状态),则: w=F合scos900=mgscos900=o答案:- mgscosαs i nα,0, mgscosαs i nα,0点评:求功,必须清楚地知道是哪个力的功,应正确地画出力、位移,再求力的功.【例3】如图所示,把A、B两球由图示位置同时由静止释放(绳开始时拉直),则在两球向左下摆动时.下列说法正确的是A、绳子OA对A球做正功B、绳子AB对B球不做功C、绳子AB对A球做负功D、绳子AB对B球做正功解析:由于O点不动,A球绕O点做圆周运动,OA对球A不做功。
动能定理与机械能守恒定律动能定理和机械能守恒定律是物理学中两个基本的能量守恒原理。
它们在描述和解释物体运动过程中能量变化的规律方面起着重要作用,并在实际应用中具有广泛的应用。
本文将对这两个定律进行详细介绍和分析。
一、动能定理动能定理是描述物体运动中动能变化规律的定律。
它指出,当物体受到外力作用时,物体的动能会发生变化。
动能定理可以用一个简洁的数学表达式来表示:物体的净动能变化等于作用在物体上的合外力所做的功。
假设物体的质量为m,初速度为v₁,末速度为v₂。
根据动能定理,物体的动能变化ΔE_k等于合外力所做的功W:ΔE_k = W = F·d·cosθ其中,F为合外力的大小,d为物体移动的距离,θ为合外力与物体运动方向之间的夹角。
由此可以看出,动能定理将力、距离和角度等因素统一起来,明确了外力对物体运动所做的功与物体动能的关系。
在实际应用中,动能定理常常用于解析和计算物体的运动过程中的动能变化。
二、机械能守恒定律机械能守恒定律是描述物体在力学系统中机械能守恒现象的定律。
它指出,在一个封闭的力学系统中,物体的机械能总量保持不变,即机械能守恒。
机械能是由物体的动能和势能两部分组成的。
动能是由物体的运动状态引起的能量,势能是由物体所处位置的属性引起的能量。
根据机械能守恒定律,物体的机械能E_m在系统内各个位置的变化可以表示为:ΔE_m = ΔE_k + ΔE_p = 0其中,ΔE_k表示物体动能的变化,ΔE_p表示物体势能的变化。
当系统中没有外力做功或无能量转化时,物体的机械能保持不变。
机械能守恒定律在描述物体运动中能量转化和能量守恒方面起着重要作用。
例如,当物体在重力场中运动时,重力势能和动能之间发生转化,但总的机械能保持不变。
这一定律在实际应用中广泛应用于机械工程、能源利用等领域。
总结:动能定理和机械能守恒定律是物理学中两个重要的能量守恒原理。
动能定理描述了外力对物体动能变化的影响规律,机械能守恒定律描述了力学系统中机械能总量守恒的现象。
高中物理复习:机械能守恒定律和能量守恒定律【知识点的认识】1.机械能:势能和动能统称为机械能,即E=E k+E p,其中势能包括重力势能和弹性势能.2.机械能守恒定律(1)内容:在只有重力(或弹簧弹力)做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)表达式:观点表达式守恒观点 E1=E2,E k1+E p1=E k2+E p2(要选零势能参考平面)转化观点△E K=﹣△E P(不用选零势能参考平面)转移观点△E A=﹣△E B(不用选零势能参考平面)【命题方向】题型一:机械能是否守恒的判断例1:关于机械能是否守恒的叙述中正确的是()A.只要重力对物体做了功,物体的机械能一定守恒B.做匀速直线运动的物体,机械能一定守恒C.外力对物体做的功为零时,物体的机械能一定守恒D.只有重力对物体做功时,物体的机械能一定守恒分析:机械能守恒的条件:只有重力或弹力做功的物体系统,其他力不做功,理解如下:①只受重力作用,例如各种抛体运动.②受到其它外力,但是这些力是不做功的.例如:绳子的一端固定在天花板上,另一端系一个小球,让它从某一高度静止释放,下摆过程中受到绳子的拉力,但是拉力的方向始终与速度方向垂直,拉力不做功,只有重力做功,小球的机械能是守恒的.③受到其它外力,且都在做功,但是它们的代数和为0,此时只有重力做功,机械能也是守恒的.解:A、机械能守恒条件是只有重力做功,故A错误;B、匀速运动,动能不变,但重力势能可能变化,故B错误;C、外力对物体做的功为零时,不一定只有重力做功,当其它力与重力做的功的和为0时,机械能不守恒,故C错误;D、机械能守恒的条件是只有重力或弹力做功,故D正确.故选:D.点评:本题关键是如何判断机械能守恒,可以看能量的转化情况,也可以看是否只有重力做功.题型二:机械能守恒定律的应用例2:如图,竖直放置的斜面下端与光滑的圆弧轨道BCD的B端相切,圆弧半径为R,∠COB =θ,斜面倾角也为θ,现有一质量为m的小物体从斜面上的A点无初速滑下,且恰能通过光滑圆形轨道的最高点D.已知小物体与斜面间的动摩擦因数为μ,求:(1)AB长度l应该多大.(2)小物体第一次通过C点时对轨道的压力多大.分析:(1)根据牛顿第二定律列出重力提供向心力的表达式,再由动能定理结合几何关系即可求解;(2)由机械能守恒定律与牛顿第二定律联合即可求解.解:(1)因恰能过最高点D,则有又因f=μN=μmgcosθ,物体从A运动到D全程,由动能定理可得:mg(lsinθ﹣R﹣Rcosθ)﹣fl=联立求得:(2)物体从C运动到D的过程,设C点速度为v c,由机械能守恒定律:物体在C点时:联合求得:N=6mg答:(1)AB长度得:.(2)小物体第一次通过C点时对轨道的压力6mg.点评:本题是动能定理与牛顿运动定律的综合应用,关键是分析物体的运动过程,抓住滑动摩擦力做功与路程有关这一特点.题型三:多物体组成的系统机械能守恒问题例3:如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是()A.斜面倾角α=30°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒分析:C球刚离开地面时,弹簧的弹力等于C的重力,根据牛顿第二定律知B的加速度为零,B、C加速度相同,分别对B、A受力分析,列出平衡方程,求出斜面的倾角.A、B、C组成的系统机械能守恒,初始位置弹簧处于压缩状态,当B具有最大速度时,弹簧处于伸长状态,根据受力知,压缩量与伸长量相等.在整个过程中弹性势能变化为零,根据系统机械能守恒求出B的最大速度,A的最大速度与B相等;解:A、C刚离开地面时,对C有:kx2=mg此时B有最大速度,即a B=a C=0则对B有:T﹣kx2﹣mg=0对A有:4mgsinα﹣T=0以上方程联立可解得:sinα=,α=30°,故A正确;B、初始系统静止,且线上无拉力,对B有:kx1=mg由上问知x1=x2=,则从释放至C刚离开地面过程中,弹性势能变化量为零;此过程中A、B、C组成的系统机械能守恒,即:4mg(x1+x2)sinα=mg(x1+x2)+(4m+m)v Bm2以上方程联立可解得:v Bm=2g所以A获得最大速度为2g,故B正确;C、对B球进行受力分析可知,C刚离开地面时,B的速度最大,加速度为零.故C错误;D、从释放A到C刚离开地面的过程中,A、B、C及弹簧组成的系统机械能守恒,故D错误.故选:AB.点评:本题关键是对三个小球进行受力分析,确定出它们的运动状态,再结合平衡条件和系统的机械能守恒进行分析.【解题方法点拨】1.判断机械能是否守恒的方法(1)利用机械能的定义判断:分析动能与势能的和是否变化.如:匀速下落的物体动能不变,重力势能减少,物体的机械能必减少.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,机械能守恒.(3)用能量转化来判断:若系统中只有动能和势能的相互转化,而无机械能与其他形式的能的转化,则系统的机械能守恒.(4)对一些绳子突然绷紧、物体间非弹性碰撞等问题机械能一般不守恒,除非题中有特别说明或暗示.2.应用机械能守恒定律解题的基本思路(1)选取研究对象﹣﹣物体或系统.(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.(3)恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能.(4)选取方便的机械能守恒定律的方程形式(E k1+E p1=E k2+E p2、△E k=﹣△E p或△E A=﹣△E B)进行求解.注:机械能守恒定律的应用往往与曲线运动综合起来,其联系点主要在初末状态的速度与圆周运动的动力学问题有关、与平抛运动的初速度有关.3.对于系统机械能守恒问题,应抓住以下几个关键:(1)分析清楚运动过程中各物体的能量变化;(2)哪几个物体构成的系统机械能守恒;(3)各物体的速度之间的联系.13.能量守恒定律【知识点的认识】能量守恒定律1.内容:能量即不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变,叫能量守恒定律.2.公式:E=恒量;△E增=△E减;E初=E末;3.说明:①能量形式是多种的;②各种形式的能都可以相互转化.4.第一类永动机不可制成①定义:不消耗能量的机器,叫第一类永动机.②原因:违背了能量守恒定律.。
高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。
在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。
可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。
ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。
(3)理解:①外力对物体做的总功等于物体动能的变化。
W 总=△E K =E K2-E K1 。
它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。
可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。
外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。
②注意的动能的变化,指末动能减初动能。
用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。
③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。
②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。
图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。
动能定理与机械能守恒知识点总结动能定理和机械能守恒是经典力学中重要的概念和定律。
它们有着广泛的应用,并且对我们理解物体运动和相互作用提供了重要的理论支持。
本文将对动能定理和机械能守恒的知识点进行总结,并探讨它们的应用。
一、动能定理动能定理是描述物体运动的定理,它表明一个物体的动能变化等于物体所受合力所做的功。
动能定理可以用数学公式表示为:FΔx = Δ(1/2 mv²)其中,F表示合力,Δx表示物体在合力方向上的位移,v表示物体的速度,m表示物体的质量。
根据动能定理,当一个物体受到合力的作用时,物体的动能会发生变化。
动能定理对于分析物体运动状态和相互作用非常重要。
它可以用来计算物体在外力作用下的速度变化,或者根据速度变化来确定物体所受的合力大小。
同时,动能定理也可以用来解释机械能转化的过程。
二、机械能守恒机械能守恒是指在无摩擦和无内能损失的情况下,一个物体的机械能保持不变。
机械能包括物体的动能和势能两个方面。
动能是物体由于速度而具有的能量,而势能是物体由于位置而具有的能量。
机械能守恒可以用数学公式表示为:E = K + U = 常数其中,E表示物体的机械能,K表示物体的动能,U表示物体的势能。
根据机械能守恒原理,当一个物体在没有外力或有限作用力的情况下运动时,它的机械能将保持不变。
机械能守恒原理对于分析各种物理问题非常有用。
它可以用来计算物体在相互作用过程中的速度和位置变化,以及物体所具有的势能。
通过应用机械能守恒,我们可以更好地理解物体运动过程中能量的转化与变化。
三、应用与实例动能定理和机械能守恒在物理学中有着广泛的应用。
以下是一些常见的应用和实例:1. 车辆碰撞:当两辆车发生碰撞时,根据动能定理可以计算出车辆碰撞前后的速度变化。
同时,通过机械能守恒可以分析车辆碰撞过程中能量的转化和损失。
2. 自由落体运动:对于自由落体运动,可以利用动能定理计算物体下落的速度变化,以及机械能守恒来分析物体从起点到终点的能量转化情况。
动能定理与机械能守恒动能定理和机械能守恒定律是物理学领域中非常重要的两个概念。
它们在力学和能量转化的过程中发挥着重要的作用。
本文将介绍动能定理和机械能守恒定律的定义、原理以及它们在实际应用中的意义。
一、动能定理动能定理是描述物体动能变化的定律。
它表明,在没有外力或者合外力为零的情况下,物体的动能变化等于对物体施加的合力所做的功。
动能(Kinetic energy)是物体由于运动而具有的能量。
它是与物体质量和速度平方成正比的量,即动能等于质量乘以速度的平方再乘以一个常数(1/2),可以用下式表示:K = 1/2 * m * v²其中,K代表动能,m代表物体的质量,v代表物体的速度。
根据动能定理,如果物体的速度发生变化,其动能也会发生相应的改变。
当物体受到外力作用时,会产生加速度,从而改变速度,进而改变动能。
合外力所做的功等于物体动能的变化,可以用下式表示:W = ΔK其中,W代表合外力所做的功,ΔK代表动能的变化。
二、机械能守恒机械能守恒定律是描述物体在机械能转化过程中能量守恒的规律。
在没有外力做功或者外力做功为零的情况下,一个封闭系统的机械能保持不变。
机械能(Mechanical energy)是指物体由于位置或者运动而具有的能量。
它可以分为动能和势能两个部分。
动能在前文已经介绍过。
而势能(Potential energy)是指物体由于位置而具有的能量。
它可以是重力势能、弹性势能或者其他形式的势能。
机械能就是动能和势能的总和,可以用下式表示:E = K + U其中,E代表机械能,K代表动能,U代表势能。
根据机械能守恒定律,当一个封闭系统内没有外力做功时,物体的机械能保持不变。
这意味着动能和势能之间可以相互转化,总能量不会改变。
实际应用中,动能定理和机械能守恒定律被广泛应用于各个领域。
例如,在交通工程中,为了减少车辆的耗能,可以通过改变路面材料、优化行车路线等方式来减小摩擦力,从而提高汽车的动能和机械能的利用效率。
动能定理和机械能守恒动能定理和机械能守恒是物理学中非常重要的两个概念,它们经常被用来描述物体在运动过程中的能量变化。
本文将详细介绍这两个概念及其应用。
一、动能定理动能定理是描述物体在做功的过程中动能的变化关系的定理。
它的数学表达式为:W=ΔK,其中W表示物体受力做功的大小,ΔK表示物体动能的变化量。
这个定理的意义在于,当一个物体受到外力作用而运动时,物体所受的作用力所做的功等于物体动能的变化量。
例如,当一个物体被施加一个恒定的力F,沿直线方向移动了一个距离s,那么它所受到的功就是W=F×s,而它的动能的变化量ΔK 就是K2-K1=1/2mv2^2-1/2mv1^2。
那么根据动能定理,我们可以得到W=ΔK,即F×s=1/2mv2^2-1/2mv1^2。
这个公式可以用来计算物体在受力作用下动能的变化量。
二、机械能守恒机械能守恒是指在一个封闭的系统中,机械能的总量保持不变的性质。
在一个封闭的系统中,机械能只能通过物体之间的相互作用转化,而不能增加或减少。
机械能包括动能和势能两个部分,它们的总和表示为E=K+U,其中K表示动能,U表示势能。
例如,当一个物体从高处自由落下时,由于重力的作用,它的动能不断增加,而势能则不断减少。
当它落到地面时,由于地面的阻力和摩擦力的作用,它的动能被完全消耗,而势能则被全部转化为热能。
在这个过程中,机械能守恒定律得到了验证。
机械能守恒定律在实际生活中有着广泛的应用。
例如,当我们骑自行车的时候,我们需要不断地蹬踏,将化学能转化为机械能,使自行车前进。
在这个过程中,我们需要消耗大量的能量,而机械能守恒定律则保证了这些能量会被充分利用,不会浪费掉。
动能定理和机械能守恒是物理学中非常重要的两个概念,它们帮助我们理解物体在运动过程中的能量变化,并在实际生活中有着广泛的应用。
对于物理学学习者来说,掌握这两个概念是非常重要的。
第7练动能定理机械能守恒定律能量守恒定律[保分基础练]1.(2023·江苏盐城市三模)物体从离地高H处的M点开始做自由落体运动,下落至离地高度为13H处的N点,不计空气阻力,下列能量条形图表示了物体在M和N处的动能E k和重力势能E p的相对大小关系,可能正确的是()2.义乌国际商贸城的跳跳杆玩具广受孩子们的喜爱。
如图甲所示,跳跳杆底部装有一根弹簧,某次小孩从最低点弹起,以小孩运动的最低点为坐标原点,竖直向上为x轴正方向,小孩与杆整体的动能与其坐标位置的关系如图乙所示,图像0~x3之间为曲线,x2为其最高点,x3~x4为直线,不计空气阻力的影响。
则下列说法正确的是()A.x1位置时小孩处于超重状态B.x2位置时小孩不受弹簧弹力作用C.x3位置时小孩所受合外力为零D.x1~x4过程小孩的机械能始终守恒3.如图所示,质量m1=0.2 kg的物体P穿在一固定的光滑水平直杆上,直杆右端固定一光滑定滑轮。
一绕过两光滑定滑轮的细线的一端与物体P相连,另一端与质量m2=0.45 kg的物体Q相连。
开始时物体P在外力作用下静止于A点,绳处于伸直状态,已知OA=0.3 m,AB=0.4 m ,取重力加速度大小g =10 m/s 2,两物体均视为质点,不计空气阻力。
某时刻撤去外力、同时给P 一水平向左的速度v ,物体P 恰能运动到B 点,则v 的大小为( )A .3 m/sB .4 m/sC .5 m/sD .6 m/s4.(2023·江苏省模拟)如图所示,在竖直平面内有一半径为2.0 m 的四分之一圆弧形光滑导轨AB ,A 点与其最低点C 的高度差为1.0 m ,今由A 点沿导轨无初速度释放一个小球,若取g =10 m/s 2,则( )A .小球过B 点的速度v B = 5 m/s B .小球过B 点的速度v B =25(3-1) m/sC .小球离开B 点后做平抛运动D .小球离开B 点后继续做半径为2.0 m 的圆周运动直到到达与A 点等高的D 点5.(2023·江苏省苏锡常镇二模)如图为某水上乐园设计的水滑梯结构简图。
专题05 动能定理、机械能守恒定律、功能关系的应用核心要点1、功恒力做功:W=Flcosa合力做功:W合=F合lcosa变力做功:图像法、转换法等2、功率瞬时功率:P=Fvcosa平均功率:P=wt机车启动:P=Fv3、动能定律表达式:W=12mv22−12mv12备考策略1、动能定理(1)应用思路:确定两状态(动能变化),一过程(各个力做的功)(2)适用条件:直线运动曲线运动均可;恒力变力做功均可;单个过程多个过程均可(3)应用技巧:不涉及加速度、时间和方向问题是使用2、机械能守恒定律(1)守恒条件:在只有重力或弹力做功的物体系统内守恒角度E1=E2(2)表达形式:转化角度△E k=△E p转移角度△E A=-△E p3、功能关系:(1)合力的功等于动能的增量(2)重力的功等于重力势能增量的负值(3)弹力的功等于弹性势能增量的负值(4)电场力的功等于电势能增量的负值(5)除了重力和系统内弹力之外的其他力的功等于机械能的增量考向一动能定理的综合应用1.应用动能定理解题的步骤图解2.应用动能定理的四点提醒(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2020·江苏卷·4)如图1所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是()图1解析:由题意可知设斜面倾角为θ,动摩擦因数为μ1,则物块在斜面上下滑水平距离x时根据=E k,整理可得(mgtanθ-μ1mg)x=E k,即在斜面上运动能定理有mgxtan θ-μ1mgcos θxcosθ动时动能与x成线性关系;当小物块在水平面运动时,设水平面的动摩擦因数为μ2,由动能定理有一μ2mg(x一x0)=E k一E k0,其中E0为物块滑到斜面底端时的动能, x0为在斜面底端对应的水平位移,解得E k=E k0一μ2mg(x-x0),即在水平面运动时动能与x也成线性关系;综上分析可知A 项正确。
机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。
尤其是机械能能守恒和动能定理。
因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。
1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。
2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。
3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。
4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。
5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。
在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。
如果某一边没有, 说明在那个状态的重力势能为零。
不管用什么公式,等号两边决不能既有重力做功,又有重力势能。
解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。
因为动能定理的研究对象在高中阶段通常是单个的物体。
相关的习题有:《讲义》P15410、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R的光滑圆柱,与圆柱轴心一样高的A球的质量为2m正好着地的B球质量是m,释放A球后,B球上升,则A球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A、B,且m=2m=2m由图示位置从静止开始释放A物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B所做的功。
重力势能、动能、动能定理和机械能守恒定律 专题复习【复习目标】1.理解并掌握重力势能的变化和重力做功的关系,知道重力做功与路径无关.2.理解并掌握动能与合力做功的关系---即动能定理。
会用动能定理进行计算.3.理解并掌握机械能守恒的条件,会用机械能守恒定律解决问题。
重力势能的相对性.【重点难点】重点:重力势能、动能,动能定理的理解 难点:动能定理和机械能守恒定律的应用【复习内容】(一)重力做功与重力势能的关系[探究一]重力做功与重力势能关系如图,一质量为m 的小球从高为h 的位置,沿不同的路径向下运动到高为h 2的位置,试分别求出重力做的(1)沿A 路径时: (2)沿B 路径时:(3)沿C 路径时: 1、重力做功的特点: 公式:2、重力势能公式: 即:重力势能等于重力与物体所处位置高度的乘积3、重力做功与重力势能的关系式:2121mgh mgh E E W P P G -=-=即:重力做的功等于物体初位置的重力势能减去末位置的重力势能。
(1)当物体由高处向低处运动时,,021P P G E E W >>,重力做 功,重力势能 。
(2)当物体由低处向高处运动时,,021P P G E E W <<,重力做 功,重力势能 。
★(二)合力做功与动能的关系——动能定理[探究二]合力做功与动能的关系物理情景: 在光滑的水平面上,质量为m 的物体在恒力F的作用下做匀加速直线运动,经过位移L ,速度由v 1变为v 2,请推导恒力F 做功与物体速度的关系1、动能公式:2、动能定理: 2122122121mv mv E E W K K -=-=合;即:合力做的功等于物体的末动能减去初动能 (1)12,0K K E E W >>合,即:合力做正功,物体动能(2)12,0K K E E W <<合,即:合力做负功,物体动能(三)机械能守恒定律的应用[探究三]机械能守恒定律物体沿光滑曲面滑下,只有重力对物体做功.用我们学过的动能定理以及重力的功和重力势能的关系,推导出物体在A 处的机械能和B 处的机械能相等.(请写出推导过程)1、机械能守恒定律的内容在只有重力或弹力做功的物体系统内,动能和势能相互转化,而总的机械能保持不变。
机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。
尤其是机械能能守恒和动能定理。
因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。
1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。
2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。
3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。
4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。
5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。
在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。
如果某一边没有,说明在那个状态的重力势能为零。
不管用什么公式,等号两边决不能既有重力做功,又有重力势能。
解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。
因为动能定理的研究对象在高中阶段通常是单个的物体。
相关的习题有:《讲义》P154 10、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R 的光滑圆柱,与圆柱轴心一样高的A 球的质量为2m ,正好着地的B 球质量是m ,释放A 球后,B 球上升,则A 球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R 的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A 、B ,且m A =2m B =2m ,由图示位置从静止开始释放A 物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B 所做的功。
机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。
尤其是机械能能守恒和动能定理。
因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。
1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。
2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。
3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。
4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。
5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。
在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。
如果某一边没有,说明在那个状态的重力势能为零。
不管用什么公式,等号两边决不能既有重力做功,又有重力势能。
解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。
因为动能定理的研究对象在高中阶段通常是单个的物体。
相关的习题有:《讲义》P154 10、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R 的光滑圆柱,与圆柱轴心一样高的A 球的质量为2m ,正好着地的B 球质量是m ,释放A 球后,B 球上升,则A 球着地时的速度为多少?分析:相同点:系统机械能守恒,单独一个物体机械能不守恒,求解绳子对某个物体做功时利用动能定理。
区别:两个物体高度变化不同:1中A 和B 高度变化相同,2中A 和B 不同对于绳子连接的物体尤其注意两个物体速度是否相等。
P 79变式训练(2)机械能守恒定律的表达方式,在各种具体问题中,可根据解题的需要,以简便为原则列出不同形式的表达式.一般有下列几种常见形式:①物体在初状态的机械能E 1等于其末状态的机械能E2,即E 2=E 1或Ek2+Ep2=E k1+Ep1②减少(或增加)的势能△Ep 等于增加(或减少)的总动能△Ek,即△EP=-△Ek.③系统内一物体机械能的增加(或减少)等于另一物体机械能的减少(或增加),即△E1=--△E2在使用表达式(1)时,一定要选取参考面。
如果解题时没有加—想当然的把最低点就是参考面,因为它不一定是地面。
链条类问题最好采用这种方法,选取一个合适的参考面。
例如《5.3练测评P 3215》使用表达式(2)(3)时不需要选取参考面。
其中表达式(3)只对系统机械能守恒时才成立,表达式(1)(2)对单个物体和系统均可使用。
图1练习:3如右图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托往,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为注意:看清要求,是从静止开始释放b后,a可能达到的最大高度为还是b落地后a还能上升的高度。
注意事项:(1)判断系统机械能是否守恒时,最好从能量转化的角度:只有动能和势能(包括重力势能和弹性势能)的偶那个岛转化,而没有其它形式能(比如内能、化学能的产生和消失,或者说。
没有其他形式能的输入或者输出。
原因:有些情况下内力做功的情况不易判断。
比如:荡秋千中,人对自身做功。
有化学能的输入,E不守恒。
对于绳子突然蹦紧:如图所示,长为l不可伸长的细绳一端系于O点,一端系一质量为m的物体,物体自与水平夹角300(绳拉直)由静止释放,问物体到达O点正下方处的绳子的拉力是多少?。
(2)对系统利用机械能守恒时,注意系统内物体的速度是否相等,如果不相等,需要对哪个物体的速度进行分解,准确找出两者速度大小的关系。
例如轻绳一端挂一质量为M的物体,另一端系在质量为m的圆环上,圆环套在竖直固定的细杆上,定滑轮与细杆相距0.3m ,如图所示,将环拉至与定滑轮在同一水平高度上,再将环由静止释放,圆环沿杆向下滑动的最大位移为0.4m ,若不计一切摩擦阻力,求: ⑴物体与圆环的质量之比;⑵圆环下落0.3m 时的速度大小。
(g 取10m/s 2)机械能守恒定律与圆周运动结合物体在绳、杆、轨道约束的情况下在竖直平面内做圆周运动,往往伴随着动能,势能的相互转化,若机械能守恒,即可根据机械能守恒去求解物体在运动中经过某位里时的速度,再结合圆周运动、牛顿定律可求解相关的运动学、动力学的量.1如图半径分别为R 和r 的甲、乙两圆形轨道放置在同一竖直平面内,两轨道之间由一条水平轨道CD 相连,现有一小球从斜面上高为3R 处的A 点由静止释放,要使小球能滑上乙轨道并避免出现小球脱离圆形轨道而发生撞轨现象,试设计CD 段可取的长度。
小球与CD 段间的动摩擦因数为μ,其作各段均光滑。
】2如图,长为L 的细绳一端拴一质量为m 的小球,另一端固定在O 点,在O 点的正下方某处P 点有一钉子,把线拉成水平,由静止释放小球,使线碰到钉子后恰能在竖直面内做圆周运动,求P 点的位置3.如图所示,斜面AB 与竖直半圆轨道在B 点圆滑相连,斜面倾角为 :45°,半圆轨道的半径为R,一小球从斜面的顶点A 由静止开始下滑,进入半圆轨道,最后落到斜面上不计一切摩擦.试球:(结果可保留根号)。
(1)欲使小球能通过半圆轨道最高点C ,落到斜面上,斜面AB 的长度L 至少为多大?(2)在上述最小L 的条件下,小球从A 点由静止开始运动,最后落到斜面上的落点与半圆轨道直径BC的距离,x为多大?二在不符合守恒定律的条件下,应自然想到动能定理(1)由于动能定理反映的是物体两个状态的动能变化与总功间的量值关系,且功是因,动能变化是结果,所以等式的左边,右边是动能变化,最好不要颠倒,更不允许功和能相加减。
(2)一般说来,高中阶段动能定理的研究对象为单个质点。
(对于没有相对运动或者内力做功代数和为零两个以上物体也可以用。
)对于运动状态不同的物体系统,应单个分别使用动能定理或者使用能量守恒。
比如两个物体间有相对运动时,即有摩擦生热问题时。
练习1 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功?练习2.(12分)如图所示,在距水平地面高为0.4m处,水平固定一根长直光滑杆,在杆上P点固定一定滑轮,滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套有一质量m=2kg小球A。
半径R=0.3m的光滑半圆形细轨道.竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量也为m=2kg的小球B。
用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来。
杆和半圆形轨道在同一竖直面内,两小球均可看作质点,且不计滑轮大小的影响,g取l0m/s2。
现给小球A一个水平向右的恒力F=55N。
求:(1)把小球B从地面拉到P点正下方C点过程中.力F做的功;(2)小球B运动到C处时的速度大小;(3)小球B被拉到离地多高时,小球A与B的速度大小相等。
练习3:如图所示,质量为M、足够长的木板版静置于光滑的水平面上,当质量为m 的小木块以水平向右的初速度v 0 滑上木块的瞬间,同时对木板施一水平向右的恒力F,已知木板、木块间的动摩擦因数为μ ,在两物体速度相等时,其速度为v ,木板的位移为s ,求此时木块在木板上滑过的距离s .(2)应用动能定理求变力做功练习:如图所示,质量为m 的物块与转台之间能出现的最大静摩擦力为物体重力的k 倍,它与转轴OO /相距R ,物块随转台由静止开始转动,当转速增加到一定值时,物块即将在转台上滑动,在物块由静止到开始滑动前的这一过程中,转台对物块做的功为(D )A .0B .2πkmgRC .2kmgRD .21kmgR (3)应用动能定理求多过程问题:小球掉在泥潭中,斜坡—平面问题等练习:总质量为M 的列车以匀速率 v 0在平直轨道上行驶,各节车厢受的阻力均为重量的k 倍,而与车速无关。
某时刻列车后面质量为m 的车厢脱了钩而机车的牵引力未变,前面的列车又行进了位移L 时,司机关闭了发动机。
当列车与车厢都停止下来时,它们之间的距离是多少?(3)应用动能定理求物体做往复运动的总路程物体做往复运动的总路程隐含在滑动摩擦力做功之中练习1一个弹性小球质量为m,从高h处由静止开始下落,如果在运动过程中小球所受的空气阻力大小恒定,小球与地面碰撞后反弹时机械能没有损失,小球每次向上弹起的高度总等于它下落时高度的4/5,则小球运动过程中所受空气阻力大小为____,从开始运动到最后停下通过的总路程为_____。
练习2(15分)如图所示,质量m=0.5kg的小球从距地面高H=5m处自由落下,到达地面恰能沿凹陷于地面的粗糙半圆形槽壁运动,半圆槽半径R=0.4m。
小球到达槽最低点时速率为10m/s,并继续沿槽壁运动直到从槽左端边缘飞出,之后又落下······,如此反复几次,设摩擦力恒定不变,小球与槽壁相碰时机械能不损失,求:(1)小球第一次离槽上升的高度h;(2)小球最多能飞出槽外的次数(取g=10m/s2)。
三、对于发生相对运动(即内力做功代数和不为零的)物体系,也可以考虑能量守恒定律(或者分别使用动能定理)相对运动的物体系有一动一静和两个都运动两种情况,比如子弹射木块和板块问题,物体在静止面上滑动等。
四、四个功能关系的考察多在选择题中考察1.外力对物体做功的代数和等于物体动能的变化,即(动能定理)。
2.重力(或弹簧弹力)对物体所做的功等于物体重力势能(或弹性势能)增量的负值。
3除重力(和弹簧弹力)以外的力对物体所做的功,等于物体机械能的增量。
4.一对滑动摩擦力所做功的代数和总是负值,因摩擦所产生的内能等于滑动摩擦力跟物体间相对路程的乘积。
针对训练1:节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中,若礼花弹在由炮筒底部出发至炮筒口的过程中,克服重力做功W1,克服炮筒阻力及空气阻力做功W2,高压燃气对礼花弹做功W3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变)说法正确的是()A.礼花弹的动能变化量为W3+W2+W1B.礼花弹的动能变化量为W3 -W2 -W1C.礼花弹的机械能变化量为W3-W2D.礼花弹的机械能变化量为W3-W12:放在电梯地板上的货箱,在随电梯加速上升过程中,电梯对货箱做的功等于:A.货箱增加的势能B.货箱增加的动能C.货箱增加的机械能D. 货箱增加的动能和重力做的功4:如图所示,具有一定初速度的物块,沿去倾角为300的粗糙斜面向上运动的过程中,受到一个恒定的沿斜面向上的拉力作用,这时物块的加速度为4m/s2 ,方向沿斜面向下,那么在物块向上运动过程中,正确的说法是()A. 物块的机械能一定增加B. 物块的机械能一定减小C. 物块的机械能可能不变D. 物块的机械能可能增加也可能减小如果加速度大小为5m/s2和6m/s2,情况如何?必须掌握题型:机车两种启动方式类题目、子弹射木块类问题、传送带问题(水平和倾斜两种情况)把做过的有关题目看一下。