2.3.2平面与平面垂直的判定
- 格式:ppt
- 大小:1.50 MB
- 文档页数:45
§2.3.2 平面与平面垂直的判定 【学习目标】 1. 理解和掌握二面角和二面角的平面角的相关概念; 2. 掌握平面与平面垂直的判定定理. 【重点难点】 1.二面角的平面角; 2.面面垂直的判定定理. [自主感知] 1. 二面角及其相关定义? 2. 两个平面互相垂直的判定定理: 文字语言:若一个平面过另一个平面的 ,则这两个 平面 .简称:若线面垂直,则面面垂直 符号语言:若_______________________________,则 . [深入探究] 探究一:二面角大小的表示往往利用二面角的平面角例 2 如图所示,已知三棱锥D ABC -中,满足A B A C D B ==DC == 2,BC DA ==,求二面角A B C D --的大小. 探究二:面面垂直判定定理的考察 例1 如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于,A B 的任意一点,求证:平面PAC PBC ⊥平面.……………………………………装…………………………………订…….…………………………………线……….………………………………...................................…[拓展运用]例3 如图,在正方体''''ABCD A B C D-中,求证:平面''ACC A⊥平面'A BD.【课堂小结】1.二面角的平面角;2.面面垂直的判定定理.【当堂检测】1.已知直线l⊥平面α,则经过l且和平面α垂直的平面有()A.1个B.2个C.有无数个D.不存在2.正方体A1B1C1D1-ABCD中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值等于()A.33B.22C. 2D. 33.直线l是平面α的斜线,则经过l且和平面α垂直的平面有个.4.四边形ABCD是矩形,P为平面ABCD外一点,P A⊥平面ABCD,且P A=AB,则二面角P—BC—D的大小为.【课下作业】复习导学案,并完成相应学科练.【预习指导】请同学们提前预习下一节课课本内容和导学案.。
2.3.2平面与平面垂直的判定学习目标 1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法,会求简单的二面角的平面角.3.掌握两个平面互相垂直的概念,能用定义和定理判定面面垂直.知识点一二面角的概念1.定义:从一条直线出发的两个半平面所组成的图形.2.相关概念:(1)这条直线叫做二面角的棱;(2)两个半平面叫做二面角的面.3.画法:4.记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.5.二面角的平面角:若有(1)O∈l;(2)OA⊂α,OB⊂β;(3)OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.知识点二平面与平面垂直1.平面与平面垂直的定义(1)定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:(3)记作:α⊥β.2.平面与平面垂直的判定定理1.二面角的平面角所确定的平面与二面角的棱垂直.(√)2.对于确定的二面角而言,平面角的大小与顶点在棱上的位置有关.(×)3.已知一条直线垂直于某一平面,则过该直线的任意一个平面与该平面都垂直.(√)4.两垂直平面的二面角的平面角大小为90°.(√)题型一二面角的求法例1(1)如图,在正方体ABCD-A′B′C′D′中:①二面角D′-AB-D的大小为________.②二面角A′-AB-D的大小为________.答案①45°②90°解析①在正方体ABCD-A′B′C′D′中,AB⊥平面AD′,所以AB⊥AD′,AB⊥AD,因此∠D′AD为二面角D′-AB-D的平面角.在Rt△D′DA中,∠D′AD=45°,所以二面角D′-AB-D的大小为45°.②因为AB⊥平面AD′,所以AB⊥AD,AB⊥AA′,因此∠A′AD为二面角A′-AB-D 的平面角,又∠A′AD=90°,所以二面角A′-AB-D的大小为90°.(2)如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO =45°,求二面角A-BC-O的大小.解如图,在平面α内,过O作OD⊥BC,垂足为点D,连接AD,设CO=a.∵AO ⊥α,BC ⊂α,∴AO ⊥BC . 又AO ∩OD =O ,∴BC ⊥平面AOD . 而AD ⊂平面AOD , ∴AD ⊥BC .∴∠ADO 是二面角A -BC -O 的平面角. 由AO ⊥α,OB ⊂α,OC ⊂α, 知AO ⊥OB ,AO ⊥OC .∵∠ABO =30°,∠ACO =45°,CO =a , ∴AO =a ,AC =2a ,AB =2a . 在Rt △ABC 中,∠BAC =90°, ∴BC =AC 2+AB 2=6a , ∴AD =AB ·AC BC =2a ·2a 6a =233a .在Rt △AOD 中,sin ∠ADO =AO AD =a 233a =32.∴∠ADO =60°,即二面角A -BC -O 的大小是60°.反思感悟 (1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法. 跟踪训练1 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上的一点,且P A =AC ,求二面角P -BC -A 的大小.考点 二面角 题点 求二面角的大小解 由已知P A ⊥平面ABC ,BC ⊂平面ABC ,∴P A⊥BC.∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC.又∵P A∩AC=A,P A,AC⊂平面P AC,∴BC⊥平面P AC.又PC⊂平面P AC,∴PC⊥BC.又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角.由P A=AC知△P AC是等腰直角三角形,∴∠PCA=45°,即二面角P-BC-A的大小是45°.题型二平面与平面垂直的判定例2在边长为a的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,求证:平面PDB⊥平面P AC.证明∵PC⊥平面ABCD,BD⊂平面ABCD,∴PC⊥BD.∵四边形ABCD为菱形,∴AC⊥BD,又PC∩AC=C,∴BD⊥平面P AC.∵BD⊂平面PBD,∴平面PDB⊥平面P AC.反思感悟(1)证明平面与平面垂直的方法①利用定义:证明二面角的平面角为直角;②利用面面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(2)根据面面垂直的定义判定两平面垂直,实质上是把问题转化成了求二面角的平面角,通常情况下利用判定定理要比定义简单些,这也是证明面面垂直的常用方法,即要证面面垂直,只要转证线面垂直,其关键与难点是在其中一个平面内寻找一直线与另一平面垂直.跟踪训练2已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F 为棱BB1的中点,M为线段AC1的中点.求证:平面AFC1⊥平面ACC1A1.证明 延长C 1F 交CB 的延长线于点N ,连接AN .连接BD .由四棱柱ABCD -A 1B 1C 1D 1为直四棱柱,可知AA 1⊥平面ABCD , 又∵BD ⊂平面ABCD ,∴A 1A ⊥BD . ∵四边形ABCD 为菱形,∴AC ⊥BD . 又∵AC ∩A 1A =A ,AC ,A 1A ⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1.∵BF ∥CC 1,F 为NC 1的中点,∴B 为NC 的中点. 在四边形DANB 中,DA ∥BN 且DA =BN , ∴四边形DANB 为平行四边形, ∴NA ∥BD ,∴NA ⊥平面ACC 1A 1.又∵NA ⊂平面AFC 1,∴平面AFC 1⊥平面ACC 1A 1.图形的折叠问题典例 如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明 取BE 的中点N ,CD 的中点M ,∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E .∴A ′N ⊥BE .∵A ′C =A ′D ,∴A ′M ⊥CD . 在四边形BCDE 中,CD ⊥MN , 又∵MN ∩A ′M =M ,∴CD ⊥平面A ′MN ,∴CD ⊥A ′N .∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交, 又∵A ′N ⊥BE ,A ′N ⊥CD , ∴A ′N ⊥平面BCDE . 又∵A ′N ⊂平面A ′BE , ∴平面A ′BE ⊥平面BCDE .[素养评析] (1)折叠问题,即由平面图形经过折叠成为立体图形,在立体图形中解决有关问题.解题过程中,一定要抓住折叠前后的变量与不变量.(2)折叠问题要借助几何直观和空间想象感知事物的形态与变化,理解所要解决的数学问题,对于平面与平面垂直问题的证明,要有理有据,有逻辑地表达出来,所以,本题充分体现直观想象与逻辑推理的数学核心素养.1.过平面α外两点且垂直于平面α的平面( ) A.有且只有一个 B.有一个或两个 C.有且仅有两个 D.有一个或无数个答案 D2.直线l ⊥平面α,l ⊂平面β,则α与β的位置关系是( ) A.平行 B.可能重合 C.相交且垂直D.相交不垂直 考点 平面与平面垂直的判定 题点 判定两平面垂直 答案 C解析 由面面垂直的判定定理,得α与β垂直,故选C. 3.下列命题中正确的是( )A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β 考点 平面与平面垂直的判定 题点 判定两平面垂直 答案 C解析 当平面α和β分别过两条互相垂直且异面的直线时,平面α和β有可能平行,故A 错;由直线与平面垂直的判定定理知,B,D错,C正确.4.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β答案 D5.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍,沿AD将△ABC 翻折,使翻折后BC⊥平面ACD,求此时二面角B-AD-C的大小.考点二面角题点看图索角解由已知BD=2CD,翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.1.求二面角大小的步骤简称为“一作二证三求”.2.平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.一、选择题1.下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b考点平面与平面垂直的判定题点判定两平面垂直答案 D解析如图所示,在正方体ABCD-A1B1C1D1中,平面A1B1CD内的直线A1B1垂直于平面ABCD内的一条直线BC,但平面A1B1CD与平面ABCD显然不垂直.2.已知直线m,n与平面α,β,给出下列三个结论:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β.其中正确结论的个数是()A.0B.1C.2D.3考点垂直问题的综合应用题点线线、线面、面面垂直的相互转化答案 C解析①若m∥α,n∥α,则m与n可能平行、相交或异面,故①错误;易知②③正确.所以正确结论的个数是2.3.如图,已知P A⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.2对B.3对C.4对D.5对考点平面与平面垂直的判定题点判定两平面垂直答案 D解析∵P A⊥平面ABCD,∴平面P AD⊥平面ABCD,平面P AB⊥平面ABCD,又CD⊥平面P AD,AB⊥平面P AD,BC⊥平面P AB,∴平面PCD⊥平面P AD,平面P AB⊥平面P AD,平面PBC⊥平面P AB,∴共有5对互相垂直的平面.4.设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法中正确的是()A.若m∥α,n⊥β,m⊥n,则α⊥βB.若m∥α,n⊥β,m⊥n,则α∥βC.若m∥α,n⊥β,m∥n,则α⊥βD.若m∥α,n⊥β,m∥n,则α∥β答案 C解析由m∥α,m∥n得n∥α或n⊂α,由n⊥β,知α⊥β.5.如图所示,在四面体D-ABC中,若AB=BC,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE考点平面与平面垂直的判定题点判定两平面垂直答案 C解析因为AB=BC,且E是AC的中点,所以BE⊥AC.同理,DE⊥AC.又BE∩DE=E,所以AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.因为AC⊂平面ACD,所以平面ACD⊥平面BDE.6.在四面体A-BCD中,AB=BC=CD=AD,∠BAD=∠BCD=90°,A-BD-C为直二面角,E是CD的中点,则∠AED等于()A.90°B.45°C.60°D.30°考点 二面角 题点 求二面角的大小 答案 A解析 如图,设AB =BC =CD =AD =a ,取BD 中点F ,连接AF ,CF .由题意可得AF =CF =22a ,∠AFC =90°. 在Rt △AFC 中,可得AC =a , ∴△ACD 为正三角形. ∵E 是CD 的中点, ∴AE ⊥CD ,∴∠AED =90°,故选A.7.在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面ABCD 为矩形,则下列结论中错误的是( )A.平面P AB ⊥平面P ADB.平面P AB ⊥平面PBCC.平面PBC ⊥平面PCDD.平面PCD ⊥平面P AD 答案 C解析 对于A ,∵P A ⊥底面ABCD ,且底面ABCD 为矩形,∴P A ⊥AB ,又AB ⊥AD ,∴AB ⊥平面P AD ,∴平面P AB ⊥平面P AD ,故A 正确;对于B ,∵P A ⊥底面ABCD ,且底面ABCD 为矩形,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,∴平面P AB ⊥平面PBC ,故B 正确;对于D ,∵P A ⊥底面ABCD ,∴P A ⊥CD ,又CD ⊥AD ,∴CD ⊥平面P AD ,∴平面PCD ⊥平面P AD ,故D 正确.故选C.8.在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( ) A.32 B.22C. 2D. 3 考点 二面角题点求二面角的大小答案 C解析如图所示,连接AC交BD于点O,连接A1O,O为BD中点,∵A1D=A1B,∴在△A1BD中,A1O⊥BD.又∵在正方形ABCD中,AC⊥BD.∴∠A1OA为二面角A1-BD-A的平面角.设AA1=1,则AO=2 2.∴tan∠A1OA=122= 2.二、填空题9.已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角为________. 答案60°解析正四棱锥的体积为12,底面对角线的长为26,则底面边长为23,底面积为12,所以正四棱锥的高为3,所以侧面与底面所成的二面角的正切值为3,故所求的二面角为60°.10.已知两条不同的直线m,n,两个不同的平面α,β,给出下列结论:①若m垂直于α内的两条相交直线,则m⊥α;②若m∥α,则m平行于α内的所有直线;③若m⊂α,n⊂β,且α∥β,则m∥n;④若n⊂β,n⊥α,则α⊥β.其中正确结论的序号是________.(把正确结论的序号都填上)答案①④解析①中的内容即为线面垂直的判定定理,故①正确;②中,若m∥α,则m与α内的直线平行或异面,故②错误;③中,两个平行平面内的直线平行或异面,所以③错误;④中的内容为面面垂直的判定定理,故④正确.11.α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题________. 考点平面与平面垂直的判定题点用定义法证明两平面垂直答案①③④⇒②解析m⊥n,将m和n平移到一起,则确定一平面,∵n⊥β,m⊥α,∴该平面与平面α和平面β的交线也互相垂直,从而平面α和平面β的二面角的平面角为90°,∴α⊥β.故答案为①③④⇒②.三、解答题12.如图所示,在四棱锥S-ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E为SA的中点.求证:平面EBD⊥平面ABCD.考点平面与平面垂直的判定题点用定义法证明两平面垂直证明连接AC与BD交于O点,连接OE.∵O为AC的中点,E为SA的中点,∴EO∥SC.∵SC⊥平面ABCD,∴EO⊥平面ABCD.又∵EO⊂平面EBD,∴平面EBD⊥平面ABCD.13.在直三棱柱ABC-A1B1C1中,AB⊥BC,D为棱CC1上任一点.(1)求证:直线A1B1∥平面ABD;(2)求证:平面ABD⊥平面BCC1B1.证明(1)由直三棱柱ABC-A1B1C1,得A1B1∥AB.因为A1B1⊄平面ABD,AB⊂平面ABD,所以直线A1B1∥平面ABD.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以AB⊥BB1.又因为AB⊥BC,BB1⊂平面BCC1B1,BC⊂平面BCC1B1,且BB1∩BC=B,所以AB⊥平面BCC1B1.又因为AB⊂平面ABD,所以平面ABD⊥平面BCC1B1.14.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)考点平面与平面垂直的判定题点判定两平面垂直答案DM⊥PC(或BM⊥PC等)解析由题意得BD⊥AC,∵P A⊥平面ABCD,∴P A⊥BD.又P A∩AC=A,∴BD⊥平面P AC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.15.如图所示,在正三棱柱ABC-A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.考点平面与平面垂直的判定题点利用判定定理证明两平面垂直证明如图所示,取A1C的中点F,AC的中点G,连接FG,EF,BG,则FG∥AA1,且GF=12AA 1.因为BE =EB 1,A 1B 1=CB ,∠A 1B 1E =∠CBE =90°,所以△A 1B 1E ≌△CBE ,所以A 1E =CE .因为F 为A 1C 的中点,所以EF ⊥A 1C .又FG ∥AA 1∥BE ,GF =12AA 1=BE ,且BE ⊥BG , 所以四边形BEFG 是矩形,所以EF ⊥FG . 因为A 1C ∩FG =F ,所以EF ⊥侧面ACC 1A 1. 又因为EF ⊂平面A 1CE ,所以截面A 1CE ⊥侧面ACC 1A 1.。