一元一次不等式(组)复习--浙教版
- 格式:pdf
- 大小:284.91 KB
- 文档页数:14
- 1 -期末专题复习四 一元一次不等式【知识导航】1、理解不等式的解,一元一次不等式的概念,学会解一元一次不等式。
2、解一元一次不等式的过程与解一元一次方程类似,不等式的变形要注意与方程的变形相对照,特别是注意不等式的性质3•:当不等式两边都乘以同一个负数时,不等号要改变方向.3、会解一元一次不等式组.4、能根据简单的实际问题中的数量关系,列出一元一次不等式组并求解,并能根据实际意义检验解的合理性. 【例题分析】1、不等式组⎪⎩⎪⎨⎧≥--1213-<x x 的解集在数轴上表示正确的是( )A BC D 2、要使式子23x +有意义,字母x 的取值必须满足( )A .x >32-B .x ≥32-C .x >32D .x ≥323、(镇江市2006)如果00a b <>,,0a b +<,那么下列关系式中正确的是( ) A .a b b a >>->- B .a a b b >->>- C .b a b a >>->-D .a b b a ->>->4、不等式组的解集为( ) A.-1<x <2 B.-1<x≤2 C.x <-1 D.x≥25、 (江阴2006)关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a只有4个整数解,则a 的取值范围是 ( )A. -5≤a ≤-143B. -5≤a <-143C. -5<a ≤-143D. -5<a <-1436、某种药品的说明书上,贴有如图所示的标签,•一次服用这种药品的剂量范围是_______mg ~_______mg .7、(诸暨市2006)若不等式组112x x a-≤≤⎧⎨<⎩有解,那么a 必须满足 .8、(2006山西)若不等式组2,20x a b x ->⎧⎨->⎩的解集是-1<x<1,则(a+b )2006= .9、(2006杭州市)已知43xa+=,274xb-=,并且522b a≤<。
专题3.3 一元一次不等式(组)含参问题(12大类型)(全章知识梳理与考点分类讲解)第一部分【题型目录】【题型1】已知含参方程的解的正负性,求参数取值范围............................1;【题型2】已知含参一元一次不等式的解集,求参数取值范围........................2;【题型3】已知含参一元一次不等式整数解,求参数取值范围........................2;【题型4】已知含参一元一次不等式组有解,求参数取值范围........................2;【题型5】已知含参一元一次不等式组无解,求参数取值范围........................2;【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围......3;【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围......3;【题型8】已知含参一元一次不等式组解集,求参数值或取值范围.............3;【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围........4;【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围...4;【题型11】直通中考...........................................................5;【题型12】拓展延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】已知含参方程的解的正负性,求参数取值范围【例1】(23-24八年级下·陕西汉中·期末)1.关于x 的分式方程32211x mx x -=+++的解为负数,则m 的取值范围是( )A .0m <B .4m >-C .4m <-D .4m <-且5m ¹-【变式1】(20-21八年级下·江苏扬州·期中)2.已知关于x 的方程232x mx -=-的解是非负数,则m 的取值范围为 .【变式2】(23-24七年级下·贵州黔东南·阶段练习)3.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( )A .4a >-B .4a <-C .4a ³-D .4a £-【题型2】已知含参一元一次不等式的解集,求参数取值范围【例2】(23-24七年级下·全国·期中)4.已知关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,则a 的取值范围是( )A .5a £B .<5a C .3a £D .>5a 【变式1】(23-24七年级下·黑龙江齐齐哈尔·期末)5.如果关于x 的不等式(1)1a x -³解集为11x a³-,则a 的取值范围是 .【变式2】6.如果关于x 的不等式()11a x a +>+的解集为1x <,那么a 的取值范围是 .【题型3】已知含参一元一次不等式整数解,求参数取值范围【例3】(2024七年级下·江苏·专题练习)7.若关于x 的一元一次不等式1x m +£只有1个正整数解,则m 的取值范围是 .【变式1】(23-24八年级下·陕西宝鸡·期中)8.若关于x 的不等式57x m x +³的正整数解是1234、、、.则m 的取值范围为( )A .10m <B .8m ³C .810m ££D .810m £<【变式2】(23-24六年级下·上海浦东新·期末)9.若关于x 的不等式0x m -³的最小整数解是2x =,则m 的取值范围是⋯( )A .12m £<B .12m <£C .23m <£D .23m £<【题型4】已知含参一元一次不等式组有解,求参数取值范围【例4】(23-24七年级下·河南南阳·期末)10.已知关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,则实数m 的取值范围是( )A .3m >B .2m ≥C .1m <D .1m £-【变式1】(23-24七年级下·全国·单元测试)11.若不等式组12x x k <£ìí>î有解,则k 的取值范围是( )A .2k <B .2k ³C .1k <D .12k £<【变式2】(23-24七年级下·湖南衡阳·期中)12.关于x 的不等式组3284a x x a ->ìí+>î有解且每一个x 的值均不在26x -££的范围中,则a 的取值范围是 .【题型5】已知含参一元一次不等式组无解,求参数取值范围【例5】(23-24八年级下·陕西西安·期末)13.若关于x 的一元一次不等式组11340x xx a ì-³-ïíï->î无解,则a 的取值范围是 .【变式1】(23-24六年级下·上海杨浦·期末)14.若关于x 的不等式组62x x m m -<<ìí-<î无解,那么m 的取值范围是【变式2】(24-25八年级上·湖南长沙·开学考试)15.已知不等式组40329x a x x -<ìí-³-+î无解,则a 的取值范围是.【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围【例6】(24-25八年级上·湖南衡阳·开学考试)16.若关于x 的不等式组()()324122x x x m x ì-<-í-£-î,恰好有三个整数解,则m 的取值范围是 .【变式1】(22-23八年级下·四川达州·期中)17.若关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,则m 的取值范围是 .【变式2】(23-24八年级下·全国·单元测试)18.关于x 的不等式组()1023544133x x k x x k +ì+>ïïí+ï+>++ïî恰有三个整数解,则k 的取值范围是( )A .112k <£B .112k £<C .312k £<D .312k <£【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围【例7】(22-23七年级下·湖北武汉·阶段练习)19.如果关于x 的不等式组2030x m n x -³ìí-³î仅有四个整数解;1-、0、1、2,那么适合这个不等式组的整数m 、n 组成的有序实数对(),m n 最多共有( )A .4个B .6个C .8个D .9个【变式】(23-24七年级下·四川资阳·期末)20.已知关于x 的不等式组0217x a x -<ìí-³î至少有两个整数解,且存在以3,a ,6为边的三角形,则整数a 的值有个【题型8】已知含参一元一次不等式组解集,求参数值或取值范围【例8】(2024·湖北·模拟预测)21.若关于x 的一元一次不等式组63(1)51x x x m -+<-ìí->-î的解集是2x >,则m 的取值范围是( )A .3m >B .3m …C .3m <D .3m …【变式1】(23-24八年级下·全国·单元测试)22.若关于x 的不等式组220x a b x ->ìí->î的解集为11x -<<,则2019()a b +的值是( )A .1B .12C .1-D .12-【变式2】(22-23七年级下·江苏盐城·阶段练习)23.不等式组29612x x x k +>+ìí-<î的解集为2x <.则k 的取值范围为 .【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围【例9】(22-23八年级下·重庆忠县·期中)24.如果关于x 的不等式组441113(22m x x x ->ìïí-<+ïî有且仅有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的和为 .【变式1】(23-24七年级下·重庆北碚·期末)25.已知关于y 的分式方程52211a y y --=---解为非负整数,且关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,则所有满足条件的整数a 的和为( )A .6B .5C .9D .13【变式2】(22-23八年级下·江苏无锡·阶段练习)26.已知方程21144a a a +=--,且关于x 的不等式组x a x b>ìí£î只有2个整数解,那么b 的取值范围是( )A .13b -<£B .23b <£C .45b £<D .34b £<【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围【例10】(24-25八年级上·湖南长沙·开学考试)27.若存在一个整数m ,使得关于,x y 的方程组432173453x y m x y m +=+ìí+=-î的解满足1x y +£,且让不等式5041x m x ->ìí-<-î只有3个整数解,则满足条件的所有整数m 的和是( )A .12B .6C .—14D .—15【变式】(23-24七年级下·山东威海·期末)28.已知关于x ,y 的方程组3454331x y m x y m +=-ìí+=+î的解满足0,0x y x y +<->,求m 的取值范围.第三部分【中考链接与拓展延伸】【题型11】直通中考【例1】(2024·四川南充·中考真题)29.若关于x 的不等式组2151x x m -<ìí<+î的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m £【例2】(2023·四川眉山·中考真题)30.关于x 的不等式组35241x m x x >+ìí-<+î的整数解仅有4个,则m 的取值范围是( )A .54m -£<-B .54m -<£-C .43m -£<-D .43m -<£-【题型12】拓展延伸【例1】(22-23七年级下·重庆江津·期中)31.已知关于x 、y 的方程组3453x y ax y a +=-ìí-=î,下列结论中正确的个数有( )① 当3a =时,41x y =ìí=î是方程组的解;② 不存在一个实数a ,使得x 、y 的值互为相反数;③ 当方程组的解是52x y =ìí=-î时,方程组()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïî的解为3272m n ì=ïïíï=ïî;④ x 、y 都为自然数的解有3对.A .1个B .2个C .3个D .4个【例2】(23-24九年级上·重庆九龙坡·阶段练习)32.关于x 的分式方程23133a x x x -+=++的解为整数,且关于y 的不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,则所有满足条件的整数a 的值之和为 .1.D【分析】本题考查了分式方程的解,分式方程的解为负数的条件是有解且解为负数,解题的关键是能正确解分式方程并理解分式方程的解为负数的条件为有解且解为负数.【详解】解:322,11x mx x -=+++方程两边同乘以()1x +得:()3221,x x m -=++解得:4,x m =+∵关于x 的分式方程32211x mx x -=+++的解为负数,10x \+¹且 0,x <即410m ++¹且40,m +<解得:4m <-且 5.m ¹-故选:D .2.6m £且4m ¹##4m ¹且6m £【分析】本题考查了分式方程的解,解不等式等知识,首先求出关于x 的方程232x mx -=-的解,然后根据解是非负数,再解不等式求出m 的取值范围..【详解】解:关于x 的方程232x mx -=-得6x m =-+,20x -¹Q ,2x \¹,Q 方程的解是非负数,60m \-+³且62m -+¹,解这个不等式得6m £且4m ¹.故答案为:6m £且4m ¹.3.D【分析】本题考查了解一元一次方程和解一元一次不等式,熟练掌握解方程和不等式的方法是解题的关键.先解一元一次方程,再根据题意构建一元一次不等式,最后解不等式即可.【详解】∵528x a -=,∴825ax +=,∵关于x 的方程528x a -=的解是非正数,∴8205ax +=£,解得4a £-,故选:D .4.A【分析】考查不等式的解集,掌握一元一次不等式的求法是解题的关键. 先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】解:解不等式 413x a +>得,34ax ->,解不等式2103x +>得,12x >-,Q 关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,3142a -\³-,解得:5a £,故选:A ;5.1a <【分析】本题考查了不等式的性质,根据题意可知关于x 的不等式(1)1a x -³解集为11x a³-,则x 的系数的正数,再根据这个结果求出a 的取值范围,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:∵关于x 的不等式(1)1a x -³解集为11x a³-,∴10a ->,∴1a <,故答案为:1a <.6.1a <-【分析】本题考查了不等式的性质和解不等式,根据不等式的性质求解即可,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】∵关于x 的不等式()11a x a +>+的解集为1x <,∴10a +<,解得:1a <-,故答案为:1a <-.7.2<3m £【分析】先解一元一次不等式可得x ≤m−1,然后根据题意可得11<2m £-,进行计算即可解答.本题考查了一元一次不等式的整数解,准确熟练地进行计算是解题的关键.【详解】解:1x m +£,解得x ≤m−1,∵一元一次不等式1x m +£只有1个正整数解,∴11<2m £-,∴2<3m £,故答案为:2<3m £.8.D【分析】本题考查解不等式,解57x m x +³得2m x £,再由题意可得452m£<,解这个不等数组即可得出答案.【详解】解:解57x m x +³得2mx £,∵该不等式的正整数解为1、2、3、4,∴452m £<解得810m £<.故选:D .9.B【分析】本题主要考查解一元一次不等式的基本能力,解关于x 的不等式求得x m ³,根据不等式的最小整数解是2x =即可作答.【详解】解:0x m -³,移项,得:x m ³,Q 不等式的最小整数解是2x =,12m \<£,故选:B .10.A【分析】本题考查了求不等式的解集及其参数,先求出不等式组的解集,再根据不等式组有解的情况得到关于m 的不等式,求解即可,理解题意,熟练掌握求不等式组的解集是解题的关键.【详解】解:()12432x mx x -ì<-ïíï-£-î①②,解不等式①得,2x m <-,解不等式②得,1x ³,∵关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,∴21m ->,解得:3m >故选:A .11.A【分析】本题考查已知不等式的解集求参数,根据求不等式组解集的方法“大中取大,小中取小,大小小大中间找,大大小小找不到” 的原则求解即可.【详解】Q 不等式组有解,\两个不等式的解有公共部分,2.k \<故选:A .12.1a <【分析】本题考查了解一元一次不等式组,根据不等式组的解的情况求参数的取值范围,先求出不等式组的解集为243a x a -<<-,再结合题意得出243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,求解即可得出答案.【详解】解:3284a x x a ->ìí+>î①②,解不等式①得:3x a <-,解不等式②得:24x a >-,Q 不等式组有解,243a x a \-<<-,Q 每一个x 的值均不在26x -££的范围中,\243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,解得:1a <,故答案为:1a <.13.0a ³【分析】本题考查了解一元一次不等式组,不等式组解集的情况求参数,先对不等式进行求解,再根据关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解即可解答,熟练掌握知识点的应用是解题的关键.【详解】解:11340x x x a ì-³-ïíï->î①②解不等式①得,0x £,解不等式②得,x a >,∵关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解,∴0a ³,故答案为:0a ³.14.3m £-【分析】本题考查了不等式的解集,先解不等式x m m -<,然后根据不等式组无解,即可求出m 的取值范围.【详解】解:解不等式x m m -<,得2x m <,∵62x x m m -<<ìí-<î无解,∴26m £-,∴3m £-,故答案为:3m £-.15.16a £【分析】本题考查了解一元一次不等式组.熟练掌握解一元一次不等式组是解题的关键.解40x a -<得4a x <,解329x x -³-+得4x ³,由不等式组40329x a x x -<ìí-³-+î无解,可得44a £,计算求解即可.【详解】解:40329x a x x -<ìí-³-+î,40x a -<,解得,4a x <,329x x -³-+,解得,4x ³,∵不等式组40329x a x x -<ìí-³-+î无解,∴44a £,解得,16a £,故答案为:16a £.16.14m £<##41m >³【分析】本题考查不等式组的整数解问题,正确理解恰有3个整数解得意义是解题的关键.先解不等式组,写出不等式组的解集,再根据恰有三个整数解,可求出m 的范围.【详解】解:()()324122x x x m x ì-<-í-£-î①②解不等式①得:2x >-,解不等式②得:23m x +£,Q 不等式组有解,\不等式组的解集是:223m x +-<£.Q 不等式组恰好有3个整数解,则整数解是1,0,1-,\2123m +£<.14m \£<,故答案为:14m £<.17.5433m -<£-【分析】本题考查了根据一元一次不等式组解的情况求参数的取值范围,先求出不等式组的解集,再根据不等式组的解集只有3个整数解可得3322m -<+£-,解不等式即可求解,掌握解一元一次不等式组是解题的关键.【详解】解:()213644x x m x +<ìïí-³+ïî①②,由①得,x <1,由②得,32x m ³+,∴不等式组的解集为321m x +£<,∵关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,∴3322m -<+£-,即322323m m +£-ìí+>-î,解得5433m -<£-,故答案为:5433m -<£-.18.D【分析】本题主要考查了根据不等式组的解集情况求参数,先分别求出不等式组中两个不等式得解集,再根据原不等式组只有三个整数解建立关于k 的不等式组,解之即可得到答案.【详解】解:()1023544133x x k x x k +ì+>ïïí+ï+>++ïî①② 解不等式①得:25x >-,解不等式②得:2x k <,∵原不等式组恰有三个整数解,∴223k <£,∴312k £<,故选:D .19.B【分析】先求出不等式组的解,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】解:∵解不等式20x m -³得:2m x ³,解不等式30n x -³得:3n x £,∴不等式组的解集是23m n x ££,∵关于x 的不等式组的整数解仅有1-,0,1,2,∴212m -<-≤,233n £<,解得:4269m n -<£-£<,,即m 的值是32--,,n 的值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(),mn 共有6个,是()()()()()()363738262728------,,,,,,,,,,,.故选:B .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.20.3【分析】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.依据不等式组至少有两个整数解,即可得到a 5>,再根据存在以3,a ,6为边的三角形,可得39a <<,进而得出a 的取值范围是59a <<,即可得到a 的整数解有3个.【详解】解:解不等式组得:4x a £<,∵至少有两个整数解,则整数解至少为4和5,∴5a >,又∵存在以3,a ,6为边的三角形,∴39a <<,∴a 的取值范围为59a <<,∴整数a 的值为:6,7,8,有3个故答案为:3.21.D【分析】本题考查的是解一元一次不等式组,求出第一个不等式的解集,根据口诀:“同大取大、同小取小、大小小大中间找、大大小小无解”即可确定m 的范围.【详解】解:解不等式63(1)5x x -+<-得x >2,解不等式1x m ->-得1x m >-,∵解集是2x >,∴12m -£,解得3m £,故选D .22.C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据不等式组的解集得到a 、b 的值,代入计算即可.【详解】解:220x a b x ->ìí->î①②,解①得:2x a >+,解②得:2b x <,∵不等式组220x a b x ->ìí->î的解集为11x -<<,∴2112a b +=-ìïí=ïî,解得:32a b =-ìí=î,∴()20192019()321a b +=-+=-.故选:C .23.0k ³##0k £【分析】本题考查了根据不等式组的解集求参数,先分别求解两个不等式,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”得出22k £+,求解即可.【详解】解:29612x x x k +>+ìí-<î①②,由①可得:2x <,由②可得:2x k <+,∵该不等式组的解集为2x <,∴22k £+,解得:0k ³,故答案为:0k ³.24.5【分析】本题主要考查解一元一次不等式组,分式方程的综合,掌握不等式的性质,不等式组的取值方法,解分式方程的方法是解题的关键.根据不等式的性质分别求解,根据不等式组的取值方法“同大取大,同小取小,大小小大中间找,大大小小无解”及不等式组的解集的情况可得04m <£,再根据解分式方程的方法得到61x m =-,由分式方程有非负数解,可得14m <<,由此即可求解.【详解】解:441113(22m x x x ->ìïí-<+ïî,解不等式44m x ->,得:44m x -<,解不等式111322x x æö-<+ç÷èø,得:72x >-,∵不等式组有且仅有三个整数解,∴4104m --<£,解得:04m <£,解关于x 的分式方程26122mx x x --=--,得:61x m =-,∵分式方程有非负数解,∴601m ³-,且621m ¹-,10m -¹,解得:1m ³且4m ¹且1m ¹,综上,14m <<,所以所有满足条件的整数m 的值为2,3,∴符合条件的所有整数m 的和为235+=.故答案为:5.25.A【分析】本题主要考查解分式方程和一元一次不等式方程组,首先解得不等式方程组的解,根据题意找到a 的范围,再解的分式方程的解,结合分式方程的解和a 的范围求得a 的可能值即可.【详解】解:2311122y a y ->ìïí+£ïî由23y a ->,解得32a y +>,由11122y +£,解得5y £,则不等式方程组的解为,352a y +<£,∵关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,∴3252a +££,解得17a ££,52211a y y --=---,去分母得,()()2152y a ---=,去括号、移项得,25y a -=-,系数化为1得,52a y -=,∵1y =为分式方程的增根,∴512a -¹,解得3a ¹,∵y 的分式方程52211a y y --=---解为非负整数,∴502a y -=³,解得5a £,∴15a £<且3a ¹,∴当1a =时,2y =;当2a =时,32y =,舍去;当3a =时,1y =,舍去;当4a =时,12y =,舍去;当5a =时,0y =;则所有满足条件的整数a 的和为156+=.故选:A .26.D【分析】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.先解分式方程,得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:解方程21144a a a+=--,得1a =,经检验,1a =是该分式方程的解,∵关于x 的不等式组x a x b >ìí£î,即1x x b >ìí£î只有2个整数解,∴34b £<.故选:D .27.D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出m 的取值范围,再进行求解即可.本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.【详解】解:432173453x y m x y m +=+ìí+=-î①②,+①②,得:77714x y m +=+,∴2x y m +=+,∵1x y +£,∴21m +£, 解得:1m £-,解不等式50x m ->,得:5m x >, 解不等式41x -<-,得:3x <,故不等式组的解集是:35m x <<∵不等式组只有3个整数解,∴105m -£<,解得50m -£<,∴51m -££-,∴符合条件的整数m 的值的和为5432115-----=-,故选:D .28.31m -<<【分析】本题考查根据方程组的解集的情况求参数的范围,求不等式组的解集,根据方程组的解集的情况,得到关于m 的不等式组,求解即可.【详解】解:3454331x y m x y m +=-ìí+=+î①②,+①②得:7744x y m +=-,即447m x y -+=,-②①得:26x y m -=+,∵00x y x y +-,,∴4407260m m -ì<ïíï+>î∴31m -<<,故答案为:31m -<<.29.B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<ìí<+î,得:31x x m <ìí<+î,∵不等式组的解集为:3x <,∴13m +³,∴2m ≥;故选B .30.A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+ìí-<+î①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -£+<-,∴54m -£<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -£+<-是解此题的关键.31.B【分析】此题考查了二元一次方程组的解,一元一次不等式组,①把3a =代入方程组求出解,即可做出判断;②根据题意得到0x y +=,代入方程组求出a 的值,即可做出判断;③()()()()391232106m n m n a m n m n aì++-=-ïí+--=ïî的各项和原方程成比例,故可得方程52m n m n +=ìí-=-î,即可解答;④用a 表示,x y ,可得一元一次不等式组,再根据a 的取值范围,即可解答,熟知方程的各项成比例时,两个方程的解相同,是解题的关键.【详解】解:当3a =时,原方程为343533x y x y +=-ìí-=´î,解得41x y =ìí=-î,故①错误;x 、y 的值互为相反数时,可得0x y +=,可得方程3453y y a y y a-+=-ìí--=î,方程无解,故②正确;()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïîQ 的各项和原方程成比例,故可得52m n m n +=ìí-=-î,解得3272m n ì=ïïíï=ïî,故③正确;解3453x y a x y a +=-ìí-=î,可得5212a x a y +ì=ïïí-ï=ïî,当,x y 为自然数时,可得502102a a +ì³ïïí-ï³ïî,解得51a -££且a 为奇数,故5,3,1,1a =---,即x 、y 都为自然数的解有4对,故④错误;故选:B .32.20-【分析】本题考查了分式方程的解,一元一次不等式组的整数解,由分式方程得12a x +=,由一元一次不等式组得23a y +<£-,根据不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,即可得到125a -<<-,再由12a x +=为整数,即可得到a 的值,正确掌握解一元一次不等式组和解分式方程得方法是解题的关键.【详解】解:∵23133a x x x-+=++,∴12a x +=,由1313212y y a y y +ì+³ïïí+ï<-ïî得23a y +<£-,∵不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,∴125a -<<-,∵12a x +=为整数,∴11a =-或9-或―7,又∵30x +¹,∴1302a ++¹,∴7a ¹-,∴11a =-或9-,∴所有满足条件的整数a 的值之和()11920=-+-=-,故答案为:20-.。
第五章《一元一次不等式》复习一、知识点归纳1、用符号“<”(“≤”、“>”、“≥”),“≠”表示大小关系的式子,叫做不等式。
2、不等式的基本性质:性质1(传递性):若a <b 和b <c ,则a <c 。
性质2: 如果a >b ,那么a ±c >b ±c ;如果a <b ,那么a ±c <b ±c 。
性质3: 如果a >b ,且c >0,那么ac >bc ,c a >c b;如果a >b ,且c <0,那么ac <bc ,c a <c b。
3、一元一次不等式的解法及解集在数轴上的表示。
4、一元一次不等式组的解法及解集的确定方法。
5、一元一次不等式(组)的应用。
二、例题解析专题一、利用不等式的性质进行变形1、用“<”、“>”填空(1)b+6 b+7 (2)若a<b<0,则a 2 b 2(3)若a<b<0,则a+b b (4)565-- 465--2、判断下列不等式的变形是否正确:(1)a<b ,得ac<bc 。
( )(2)由x>y ,且m ≠0,得x ym m -<-( )(3)由x>y 得xz 2>yz 2( )(4)由xz 2>yz 2得x>y ( )3、下面选项中不是不等式的是( )。
A .231x x ≠+ B. 342x ≤C. 25y y =+D. m 不大于-6的2倍4、如果0a <,0b >,0a b +<,a b >,那么下列关系式正确的是()。
A .a b b a >>->- B. a a b b >->>-C .b a b a >>->- D. a b b a ->>->5、已知a,b,c是任意实数,并且a b c>>,那么下列式子中正确的是()。
初二数学期末复习专题——一元一次不等式(组)某某版【本讲教育信息】一. 教学内容:期末复习专题——一元一次不等式(组)二. 重点、难点:1、不等式:表示不等关系的式子,叫不等式。
符号有“>”、“<”、“≥”、“≤”和“≠”。
2、一元一次不等式:只含有一个未知数,且未知数的次数是1,系数不为0的不等式,叫一元一次不等式。
一元一次不等式的标准形式为0b ax >+或0b ax <+(a ≠0)。
3、不等式的三个基本性质。
4、求解一元一次不等式(组)的一般步骤。
【典型例题】例1. 以下说法错误的是()A. 由)1m (b )1m (a 22+<+可推出a<bB. 由)a m (b )b m (a +<+可推出bm am <C. 由)1m (b )1m (a 22-<-可推出a<bD. 由22)1m (b )1m (a +<+可推出a<b解:显然011m 2>≥+,∴“A ”正确。
又ab am )b m (a +=+且ab bm )a m (b +=+∴当)a m (b )b m (a +<+时,bm am <,∴“B ”正确。
0)1m (2≥+ ,但22)1m (b )1m (a +<+,0)1m (2>+∴,∴可知“D ”正确。
但“C ”为什么错了?问题在于1m 2-的值不确定,∴应选“C ”。
例2. 比较以下式子的大小。
(1)a>b ,b>2时,比较b a +与ab 。
(2)x 为实数时,比较1x 2x x x 33+++与。
解:(1)不妨设abb a y += 21b 121a 12b 2a b 1a 1y <<∴>>+=且,,,又 。
12121b 1a 1y =+<+=∴,即y<1,ab b a <+∴ (2)不妨设)1x 2x ()x x (y 33++-+=则化简,得1x y --= ∵x 为实数且y=0时,x=-1∴当x<-1时,x+1<0,0)1x (y >+-=∴当x>-1时,x+1>0,∴y<0当x=-1时,y=0例3. 使方程组⎩⎨⎧=+=+2y 3x 2a y 2x 3的解恰好是一对异号的实数时,求a 的取值X 围。
一、解不等式的通法与技巧解一元一次不等式的五个基本步骤和根据如下:同学们在熟练掌握一元一次不等式解法的五个步骤后,可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧,能使解题事半功倍。
二、单纯解不等式组1、 165()7510542352x x x x x ⎧-->-⎪⎪⎨--⎪-≥⎪⎩2、⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x3、2(3)4(1)22x x x x x -->⎧⎪⎨-+≤-⎪⎩4、165()7510542352x x x x x ⎧-->-⎪⎪⎨--⎪-≥⎪⎩5、若⎪⎩⎪⎨⎧<<><<c x b x a x x c b a 的不等式组则关于,的解集是( )A 、a <x <bB 、a <x <cC 、b <x <cD 、无解6、若a 2>a ,则a 的取值范围是____________;例3、若关于x 的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足x >y ,则p 的取值范围是_________.例4、如果不等式组⎩⎨⎧>-<+n x x x 737的解集是x >7,则n 的取值范围是( ) A 、n ≥7 B 、n ≤7 C 、n=7 D 、n <7例5、如果关于x 的不等式(2a -b)x +a -5b>0的解集为x<,求关于x 的不等式ax>b 的解集。
(同类模仿)已知关于x 的不等式组只有四个整数解,则实数的取值范围是 ____1070521x a x -⎧⎨->⎩≥,a()(同类模仿)已知不等式4x -a ≤0,只有四个正整数解1,2,3,4,那么正数a 的取值范围是什么?五、不等式与不等式组的应用题例1、某校为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决定举办“读书节”活动,在这次读书活动中,小明受到老师的鼓舞,每天所看的书比原计划多5 页,因而他在2天内读书超过28页,后来他真正体会到读书的乐趣,积极性大增,每天比原计划多读了10页,但照此速度4天他所读的页数还没有达到84页。
专题3.3 一元一次不等式组【九大题型】【浙教版】【题型1 一元一次不等式组的概念辨析】.............................................................................................................. 1 【题型2 解一元一次不等式组】 ............................................................................................................................. 2 【题型3 一元一次不等式组的有解或无解问题】 .................................................................................................. 3 【题型4 根据一元一次不等式组的解集求字母的值】 .......................................................................................... 3 【题型5 根据一元一次不等式组的解集求字母的取值范围】 .............................................................................. 3 【题型6 方程组的解构造不等式组求字母范围】 .................................................................................................. 4 【题型7 根据程序框图列不等式组求字母的取值范围】 ...................................................................................... 4 【题型8 根据一元一次不等式组的整数解求字母的取值范围】 .......................................................................... 5 【题型9 不等式组中的新定义问题】 (6)【知识点 一元一次不等式组】定义:由几个含同一未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组,组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时,我们称这个不等式组无解. 【题型1 一元一次不等式组的概念辨析】【例1】(2023春·四川巴中·八年级统考期末)下列不等式组中,是一元一次不等式组的是( )A .{x −2>0x <−3B .{x +1>0y −1<0C .{3x −2>0(x −2)(x +3)>0D .{3x >01x+1>0【变式1-1】(2023春·吉林长春·八年级校考期中)如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( ) A .t >23B .t ≤23C .12<t <23D .12≤t ≤23【变式1-2】(2023春·八年级单元测试)“a 与5的和是正数且a 的一半不大于3”用不等式组表示,正确的是( )A .{a +5>012a ⩽3B .{a +5>012a <3C .{a +5>012a ⩾3D .{a +5⩾012a ⩽3 【变式1-3】(2023春·江苏·八年级专题练习)有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数; 乙:其中一个不等式的解集为x ≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向. 请试着写出符合上述条件的一个不等式组 . 【题型2 解一元一次不等式组】【例2】(2023春·黑龙江绥化·八年级统考期末)不等式组{x +3>02x −4≤0的解集在数轴上表示为( )A .B .C .D .【变式2-1】(2023春·河南开封·八年级统考期末)下面是小李同学解不等式组{5−12x ≥3x−623+x >4的过程,请认真阅读并完成相应任务. 解:令{5−12x ≥3x−62,①3+x >4②解不等式℃,5−12x ≥3x−62去分母,得10−x ≥3x −6 第一步 移项,得−x −3x ≥−6−10 第二步 合并同类项,得−4x ≥−16 第三步 系数化为1,得x ≥4 第四步 任务一:上述解不等式℃的过程第______步出现了错误,其原因是______. 任务二:请写出正确的解题过程,并将不等式组的解集在数轴上表示出来,【变式2-2】(2023春·山东枣庄·八年级统考期中)解不等式组 (1){x −3(x −2)>42x−13≥3x+26−1 ,并写出该不等式组的最小整数解 (2){4x −2≤3(x +1)1−x−12<x4 ,并把解集在数轴上表示出来.【变式2-3】(2023春·上海浦东新·六年级校考期中)解关于x 的不等式组{ax −4<8−3ax (a +2)x −2>2(1−a )x +4 . 【题型3 一元一次不等式组的有解或无解问题】【例3】(2023春·安徽合肥·八年级合肥市庐阳中学校考期中)如果关于x 的不等式组{x −1≥4k x −k <4k +6有解,且关于x 的方程kx +6=x 有正整数解,则符合条件的所有整数k 的和为( ) A .-1B .-3C .-7D .-8【变式3-1】(2023秋·湖南株洲·八年级校考期末)若不等式组{x+13<x2x <2m无解,则m 的取值范围为 . 【变式3-2】(2023春·上海宝山·六年级校考期中)若不等式组{−1≤1−x <2x >m有解,则m 的取值范围是 .【变式3-3】(2023春·广东广州·八年级广州市天荣中学校考期中)已知关于x ,y 的不等式组{x −1>0x −a ⩽0有以下说法:℃若它的解集是1<x ≤4,则a =4;℃当a =1时,它无解;℃若它的整数解只有2,3,4,则4≤a <5;℃若它有解,则a ≥2.其中所有正确说法的序号是 . 【题型4 根据一元一次不等式组的解集求字母的值】【例4】(2023春·贵州·八年级校联考期末)若不等式组{x −m ≤1n −3x ≤0的解集是−1≤x ≤3,则m +n = .【变式4-1】(2023春·安徽亳州·八年级校考期中)(2023春·河南濮阳·八年级校考期末)若不等式组{x ≥−3x <a的解集中的整数和为-5,则整数a 的值为 .【变式4-2】(2023春·四川达州·八年级校考期中)若关于x 的不等式组{−2(x −2)−x <2k−x 2≥−12+x最多有2个整数解,且关于y 的一元一次方程3(y −1)−2(y −k)=8的解为非正数,则符合条件的所有整数k 的和为多少? 【变式4-3】(2023春·全国·八年级专题练习)已知关于x 的不等式组{x −m >02x −n ≤0 的整数解是-2,-1,0,1,2,3,4,若m ,n 为整数,则m +n 的值是( ) A .3B .4C .5或6D .6或7【题型5 根据一元一次不等式组的解集求字母的取值范围】【例5】(2023春·陕西西安·八年级期末)若不等式组{x +9<4x −3x >m的解集是x>4,那么m 的取值范围是 .【变式5-1】(2023春·湖南长沙·八年级统考期末)若关于x 的不等式组{3x −2<5x +4x ≤m −1的所有整数解的和为0,则m 的值不可能是( ) A .3B .3.2C .3.7D .4【变式5-2】(2023春·四川成都·八年级四川省成都市盐道街中学校考期中)关于x 的不等式组{2a −x >32x +8>4a的解集中每一个值均不在−1≤x ≤5的范围中,则a 的取值范围是 .【变式5-3】(2023春·湖北武汉·八年级校联考期末)关于x 的不等式组{2x >a +1x+62≥x +1的解集中所有整数之和最大,则a 的取值范围是( ) A .-3≤a≤0B .-1≤a<1C .-3<a≤1D .-3≤a<1【题型6 方程组的解构造不等式组求字母范围】【例6】(2023春·北京昌平·八年级北京市昌平区第二中学校考期中)已知{x −2y =k 2x −y =5k +6中的x 、y 满足0<x ﹣y <1,求k 的取值范围.【变式6-1】(2023春·福建泉州·八年级校考期中)已知关于x 和y 的二元一次方程组{x +3y =5k +12x −5y =13−k.(1)当k =0时,求该方程组的解;(2)若该方程组的解同时满足3x −2y =12k +1,求k 的值;(3)若w =x −52y +1,且−3≤ 3x +2y −17 ≤1,试求w 的取值范围.【变式6-2】(2023春·辽宁锦州·八年级统考期中)已知关于x ,y 的方程组{x −2y =m 2x +3y =2m −3的解满足不等式组{3x +y ≥0x +5y <0.求:满足条件的m 的整数值.【变式6-3】(2023春·江苏南通·八年级统考期末)已知关于x ,y 的方程组{3x −y =2m −6x +3y =4m +8的解为非负数,m ﹣2n =3,z =2m +n ,且n <0,则z 的取值范围是 . 【题型7 根据程序框图列不等式组求字母的取值范围】【例7】(2023春·四川眉山·八年级坝达初级中学校考期中)下面是一个运算程序图,若需要经过三次运算才能输出结果y ,则输入的x 的取值范围( )A .53<x <4B .53<x ≤4C .53≤x ≤4D .53≤x <4【变式7-1】(2023春·湖北十堰·八年级统考期末)运行程序如图所示,从“输入x ”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次就停止,则x 的取值范围是( )A .x ≤143 B .143≤x <6C .x <6D .143<x ≤8【变式7-2】(2023春·安徽黄山·八年级统考期末)运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .12.75<x ≤24.5B .x <24.5C .12.75≤x <24.5D .x ≤24.5【变式7-3】(2023秋·浙江温州·八年级校联考期中)如图是一个有理数混合运算的程序流程图.℃当输入数x 为0时,输出数y 是 .℃已知输入数x 为负整数,且整个运算流程总共进行了两轮..后,循环结束,输出数y ,则输入数x 最大值...为 .【题型8 根据一元一次不等式组的整数解求字母的取值范围】【例8】(2023春·山东聊城·八年级统考期末)已知关于x 的不等式组{x −a <02−x <0的解集中有且仅有3个整数,则a 的取值范围是( ) A .5<a ≤6B .5<a <6C .5≤a <6D .5≤a ≤6【变式8-1】(2023春·甘肃兰州·八年级兰州市第五十六中学校考期中)已知关于x 的不等式组{2x >−5x −4≤a有四个整数解,求实数a 的取值范围.【变式8-2】(2023春·四川泸州·八年级统考期末)若不等式组{x −2<3x −6,x ≤m.有两个整数解,则m 的取值范围是( ) A .3<m ≤4B .3≤m <4C .4<m ≤5D .4≤m <5【变式8-3】(2023春·四川成都·八年级统考期末)我们称形如{ax +b >0bx +a >0(其中b a 为整数)的不等式组为“互倒不等式组”,若互倒不等式组{ax +b >0bx +a >0(其中b a 为整数)有且仅有1,2两个正整数解,则b a = .【题型9 不等式组中的新定义问题】【例9】(2023秋·浙江宁波·八年级统考期末)用[x ]表示不大于x 的最大整数,如[4.1]=4,[−2.5]=−3,则方程6x −3[x ]+7=0的解是 .【变式9-1】(2023春·福建泉州·八年级统考期中)一个四位数,记千位数字与个位数字之和为x ,十位数字与百位数字之和为y ,如果x =y ,那么称这个四位数为“对称数”. (1)最大的“对称数”为______,最小的“对称数”为______;(2)若上述定义中的x 满足不等式|x +1|<4,则这样的对称数有______个;(3)一个四位的“对称数”M ,它的百位数字是千位数字a 的3倍,个位数字与十位数字之和为10,且个位数字b 能使得不等式组{3x−44−1≤x−228x −1>b恰有3个整数解,求出所有满足条件的“对称数”M 的值.【变式9-2】(2023春·福建福州·八年级校联考期末)对x ,y 定义一种新运算F ,规定:F (x,y )=(mx +ny )(3x −y )(其中m ,n 均为非零常数).例如:F (1,1)=2m +2n ,F (−1,0)=3m . 已知F (1,−1)=−8,F (1,2)=13. (1)求m ,n 的值;(2)关于a 的不等式组{F (a,3a +1)>−95F (5a,2−3a )≥340,求a 的取值范围.【变式9-3】(2023春·福建福州·八年级福建省福州延安中学校考期末)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“有缘方程”,如:方程x −1=0就是不等式组{x +1>0x −2<0的“有缘方程”.(1)试判断方程℃2x −3=0,℃3x −(x −1)=−1是否是不等式组{5x −2<32x +4>1的有缘方程,并说明理由;(2)若关于x 的方程3x +2k =5(k 为整数)是不等式组{3(x +1)−2x >24(x −1)≥2(x −3)+5x 的一个有缘方程,求整数k 的值;(3)若方程3−x =2x ,3x +5=x +9都是关于x 的不等式组{3x +2≥2x +3m 2x <3(2m +1)−x的有缘方程且不等式组的整数解有3个,求m的取值范围.。
(浙教版)2020中考数学二轮专项复习——一元一次不等式(组)【考点整理】1.不等式的概念不等式的概念:一般地,用不等号“<”,“≤”,“>”,“≥”,“≠”连接而成的数学式子叫做不等式.【智慧锦囊】不等式常分两类:①表示大小关系的不等式;②表示不等关系的不等式.常见不等式的基本语言有:①x是正数,则________;②x是负数,则______;③x是非负数,则______;④x大于y,则________;⑤x是非正数,则______;⑥x小于y,则________;⑦x不小于y,则________;⑧x不大于y,则________.2.不等式的基本性质不等式的基本性质1:a<b,b<c⇒a<c.不等式的基本性质2:不等式两边都加上(或减去)同一个数,所得到的不等式仍_______;不等式的基本性质3:(1)不等式两边都乘(或都除以)同一个正数,所得到的不等式仍________;(2)不等式两边都乘(或都除以)同一个负数,必须改变______________,所得到的不等式成立.3.一元一次不等式一元一次不等式:不等号的两边都是整式,而且只含有一个未知数,且未知数的最高次数是1,这样的不等式叫做一元一次不等式,其一般形式ax+b>0或ax+b<0(a≠0).不等式的解集:使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解.解一元一次不等式的一般步骤:(1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)系数化为1.4.一元一次不等式组定义:由几个含有同一未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组.不等式组的解集:组成不等式组的各个不等式的解的公共部分就是不等式组的解集.不等式组的解集,可划分为以下四种情形(以下假设a<b):【智慧锦囊】与方程不同的是,在去分母和系数化为1时,根据不等式的基本性质3,要注意不等号的方向是否改变,最后所得到的解就是不等式的解集.【解题秘籍】1.解不等式组技巧求不等式组的解集,通常采用“分开解”、“集中判”的方法,“分开解”就是分别求不等式组中各个不等式的解集;“集中判”就是利用数轴求出各个不等式的解集的公共部分.2.根据不等式(组)的解集确定字母的值已知不等式(组)的解集确定不等式(组)中字母的取值范围有以下四种方法:(1)逆用不等式(组);(2)分类讨论确定;(3)从反面求解确定;(4)借助数轴确定.此类问题是中考的热点考题.【易错提醒】1.一定要注意应用不等式的基本性质3时,不等式的两边都乘以(或除以)同一个负数,不等式的方向一定要改变;2.在数轴上表示不等式的解时,向左表示小于,向右表示大于;空心圈表示不含等于,实心点表示3.当不等式两边都乘以(或除以)的式子中含有字母时,一定要对字母分类讨论.【题型解析】1. 不等式的概念和基本性质【例题1】设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图11-1所示,那么▲,●,■这三种物体按质量从大到小排列应为 ( )A.■,●,▲B.▲,■,● C.■,▲,●D.●,▲,■2. 一元一次不等式及其解法【例题2】(2019浙江丽水4分)不等式3x﹣6≤9的解是.3. 解一元一次不等式组【例题3】(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.4. 与一元一次不等式(组)解集有关的问题【例题4】(2019•山东省德州市 •4分)已知:[x]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x ﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= .【例题5】(2019•山东省滨州市 •10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.5.带有字母的不等式解法研究【例题6】2019云南4分)若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是A.a <2B. a ≤2C.a >2D.a ≥2【同步检测】 一、选择题:1.(2019•甘肃武威•3分)不等式2x +9≥3(x +2)的解集是( ) A .x ≤3B .x ≤﹣3C .x ≥3D .x ≥﹣32.(2019•浙江宁波•4分)不等式>x 的解为( )A .x <1B .x <﹣1C .x >1D .x >﹣1 3. (201▪9广西河池▪3分)不等式组的解集是( ) A .x ≥2B .x <1C .1≤x <2D .1<x ≤2 4. (2019•湖北省仙桃市•3分)不等式组的解集在数轴上表示正确的是( )A .B .C .D .5. (2019•湖北省荆门市•3分)不等式组的解集为( ) A .﹣<x <0 B .﹣<x ≤0C .﹣≤x <0D .﹣≤x ≤0二、填空题:6. (2019•浙江绍兴•5分)不等式3x ﹣2≥4的解为 .7. (2019•湖南益阳•4分)不等式组⎩⎨⎧>-<-31x x 的解集为 .8. (2019•贵州省铜仁市•4分)如果不等式组的解集是x <a ﹣4,则a 的取值范围是 . 三、解答题9. (2019•江苏连云港•6分)解不等式组10. (2019•湖南湘西州•6分)解不等式组:并把解集在数轴上表示出来.11. (2019•四川省凉山州•10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)【考点整理】:1. x>0 , x<0 , x≥0 , x-y>0 , x≤0 , x-y<0 , x-y≥0 , x-y≤0 ;2. 成立, 成立, 不等号的方向,【题型解析】1. 不等式的概念和基本性质【例题1】设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图11-1所示,那么▲,●,■这三种物体按质量从大到小排列应为 ( )A.■,●,▲B.▲,■,● C.■,▲,●D.●,▲,■【解析】设▲,●,■的质量分别为a,b,c,由图可得a+c>2a,①a+b=3b,②由①得c>a,由②得a=2b,故可得c>a>b.2. 一元一次不等式及其解法【例题2】(2019浙江丽水4分)不等式3x﹣6≤9的解是x≤5.【分析】根据移项、合并同类项、化系数为1解答即可.【解答】解:3x﹣6≤9,3x≤9+63x≤15x≤5,故答案为:x≤5【点评】本题考查了解一元一次不等式,能根据不等式的性质求出不等式的解集是解此题的关键.3. 解一元一次不等式组【例题3】(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.【分析】先求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限.【解答】解:,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.4. 与一元一次不等式(组)解集有关的问题【例题4】(2019•山东省德州市•4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= 1.1 .【考点】列出代数式【分析】根据题意列出代数式解答即可.【解答】解;根据题意可得:{3.9}+{﹣1.8}﹣{1}=3.9﹣3﹣1.8+2﹣1+1=1.1,故答案为:1.1【例题5】(2019•山东省滨州市•10分)先化简,再求值:(﹣)÷,其中x 是不等式组的整数解.【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出x的整数解,由分式有意义的条件确定最终符合分式的x的值,代入计算可得.【解答】解:原式=[﹣]•=•=,解不等式组得1≤x<3,则不等式组的整数解为1.2,又x≠±1且x≠0,∴原式=.5.带有字母的不等式解法研究【例题6】2019云南4分)若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是A.a <2B. a ≤2C.a >2D.a ≥2 【解析】解不等式组得2>x ,a x >, 根据同大取大的求解集的原则, ∴2>a ,当2=a 时,也满足不等式的解集为2>x , ∴2≥a ,故选D 【同步检测】 一、选择题:1.(2019•甘肃武威•3分)不等式2x +9≥3(x +2)的解集是( ) A .x ≤3B .x ≤﹣3C .x ≥3D .x ≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可. 【解答】解:去括号,得2x +9≥3x +6, 移项,合并得﹣x ≥﹣3 系数化为1,得x ≤3; 故选:A .2.(2019•浙江宁波•4分)不等式>x 的解为( )A .x <1B .x <﹣1C .x >1D .x >﹣1【分析】去分母、移项,合并同类项,系数化成1即可. 【解答】解:>x ,3﹣x >2x , 3>3x , x <1, 故选:A .3. (201▪9广西河池▪3分)不等式组的解集是( ) A .x ≥2B .x <1C .1≤x <2D .1<x ≤2【解答】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.4. (2019•湖北省仙桃市•3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.5. (2019•湖北省荆门市•3分)不等式组的解集为()A.﹣<x<0 B.﹣<x≤0C.﹣≤x<0 D.﹣≤x≤0【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≥﹣,解②得x<0,则不等式组的解集为﹣≤x<0.故选:C.二、填空题:6. (2019•浙江绍兴•5分)不等式3x﹣2≥4的解为x≥2.【分析】先移项,再合并同类项,把x的系数化为1即可.合并同类项得,3x ≥6,把x 的系数化为1得,x ≥2.故答案为:x ≥2.7. (2019•湖南益阳•4分)不等式组⎩⎨⎧>-<-301x x 的解集为 . 【考点】一元一次不等式组的解法.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【解答】解:,解①得:x <1,解②得:x <-3,则不等式组的解集是x <-3.故答案为x <-3.8. (2019•贵州省铜仁市•4分)如果不等式组的解集是x <a ﹣4,则a 的取值范围是 .【解答】解:解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3三、解答题9. (2019•江苏连云港•6分)解不等式组【分析】先求出两个不等式的解集,再求其公共解. 【解答】解:, 由①得,x >﹣2,由②得,x <2,所以,不等式组的解集是﹣2<x <2.10. (2019•湖南湘西州•6分)解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣2<1得x<3,解不等式4x+5>x+2,得:x>﹣1,则不等式组的解集为﹣1<x<3,将解集表示在数轴上如下:11. (2019•四川省凉山州•10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3 .(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.。