1.1 高等数学预备知识
- 格式:ppt
- 大小:1.55 MB
- 文档页数:44
高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。
为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。
1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。
1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。
1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。
2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。
2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。
2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。
3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。
3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。
3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。
4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。
4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。
4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。
5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。
5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。
5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。
综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。
大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。
高数基础大一上知识点总结大学高等数学是大一上学期的一门重要基础课程,对于理工类专业的学生来说尤为重要。
在这门课程中,我们学习了许多基础知识和概念,以下是对大一上学期高等数学知识点的总结。
1. 数列和数列极限1.1 数列的概念及表示方法数列是按照一定规律排列的一组数,常用的表示方法有通项公式和递归公式。
1.2 数列的极限数列的极限是指当n趋近于无穷大时,数列逐渐趋于稳定的一个值。
可以通过极限的定义来确定数列是否存在极限。
1.3 数列极限的性质数列极限具有唯一性、有界性和保号性等性质。
2. 函数与极限2.1 函数的概念和性质函数是一种映射关系,常用的表示方法有解析式和图像。
函数的性质包括定义域、值域、奇偶性、单调性等。
2.2 函数的极限函数的极限是指当自变量趋近于某个值时,函数逐渐接近的一个值。
可以通过极限的定义和性质来求解函数的极限。
2.3 无穷小与无穷大无穷小是指当自变量趋近于极限时,函数趋近于0的量;无穷大是指当自变量趋近于某个值时,函数趋近于无穷大或负无穷大。
3. 导数与微分3.1 导数的概念与定义导数表示函数在某一点的变化率,可以通过极限的方法来计算函数的导数。
导数具有可加性、乘性、链式法则等性质。
3.2 导数的应用导数可以用于求函数的极值、判断函数的单调性和凹凸性,还可以用于近似计算和物理问题的建模。
3.3 微分的概念与性质微分是函数在某一点的变化量,微分具有线性性、可加性和可微性等性质。
4. 反函数与隐函数4.1 反函数的概念反函数是指满足一定条件的函数之间的互逆关系。
可以通过交换自变量和因变量来求解反函数。
4.2 隐函数的概念隐函数表示两个变量之间的关系,可以通过求导数和求偏导数的方法来求解隐函数的导数。
5. 积分与定积分5.1 积分的概念与性质积分表示函数与自变量之间的面积或者曲线长度的关系,积分具有可加性、线性性和保号性等性质。
5.2 不定积分与定积分不定积分是指求解函数的原函数,可以通过逆向求导的方法来计算不定积分。
高等数学知识点总结大一高等数学知识点总结(大一)在大一的高等数学课程中,学生们接触到了许多重要的数学知识点。
这些知识点对于建立坚实的数学基础以及将来深入学习数学领域至关重要。
本文将对大一高等数学中的一些重要知识点进行总结。
1. 极限与连续1.1 极限的定义极限是数列或函数在某特定点的趋近情况。
数列的极限定义为:对于任意给定的正数ε,存在正整数N,当n>N时,数列的值与极限的差的绝对值小于ε。
1.2 连续性函数连续性的定义为:若函数在某点x=a的左右极限存在且相等,则函数在该点连续。
2. 导数与微分2.1 导数的定义导数表示函数在某一点的变化率,导数的定义为:函数在某一点的导数等于函数在该点的极限。
2.2 微分微分是导数的一个应用,表示函数在某一点的线性逼近。
微分的定义为:函数在某一点的微分等于函数在该点的导数与自变量的差的乘积。
3. 不定积分与定积分3.1 不定积分不定积分是求函数的原函数,即求导运算的逆运算。
不定积分的定义为:函数F(x)是f(x)的一个原函数,即F'(x)=f(x)。
3.2 定积分定积分用于求函数在某一区间上的总量,也可以看作是函数的积分求和。
定积分的定义为:函数f(x)在区间[a,b]上的定积分等于以a和b为端点的曲线与x轴之间的面积。
4. 泰勒级数与幂级数4.1 泰勒级数泰勒级数是一种用无穷项多项式逼近函数的方法,可以将任意函数表示成幂级数的形式。
泰勒级数的定义为:函数f(x)的泰勒级数展开式为函数在某一点x=a的展开式。
4.2 幂级数幂级数是一种特殊的级数形式,可以用于表示各种函数。
幂级数的定义为:级数形式为∑(a_n*(x-a)^n),其中a_n为系数,a为中心点。
5. 多重积分多重积分用于求解多维空间中的曲面面积、体积等问题。
常用的多重积分有二重积分和三重积分。
5.1 二重积分二重积分用于求解平面区域上的面积,可以看作是定积分的推广。
二重积分的定义为:函数f(x,y)在平面区域D上的二重积分等于以D为底的立体与xoy平面之间的体积。
高数(一)的预备知识第一部份 代数部份 (一)、基础知识:1.自然数:0和正整数(由计数产生的)。
2.绝对值:aa a ⎧=⎨-⎩00a a ≥∠3.乘法公式()()22(±)22±22 a 33=()(a 22)a 33=()(a 22)4.一元二次方程(1)标准形式:a 20(2)解的判定:2240,40,0,b ac b ac ⎧∆=-〉⎪∆=-=⎨⎪∆〈⎩有两个不同的实数根有两个相同的实数根无实数根(3)一元二次根和系数的关系:(在简化二次方程中) 标准形式:x2设X1、X2为x2(x)0的两个根,则;1212pqx x x x +=-⎧⎨⋅=⎩ (4)十字相乘法: (二)指数和对数1.零指数与负指数:0(1)0,1;1(2)nna a x x -⎧≠=⎪⎨=⎪⎩则 2.根式与分数指数:(1)1na= (2)m na=3.指数的运算(a>0>0,() ∈R );(1)x yx ya a a+⋅= (2)()m n m n a a ⋅=(3)x y x y a a a -÷=(4)()n n n a b a b ⋅=⋅4.对数:设,xa N X N =则称为以a 为底的对数, 记作:, ,;5.对数的性质(1)· (2) loglog log a a MM N N=- (3)log log xa a N x N=⋅(4)换底公式:log log log a b a NN b=(5)log ln ,aN x a N e x =⇒= (三)不等式1.不等式组的解法:(1)分别解出两个不等式,例2153241X XX X -<-⎧⎨->-⎩(2)求交集 2、绝对值不等式(1);X a a X a ≤⇒-≤≤(2);X a X a X a ≥⇒≥≤-或3、1元2次不等式的解法:(1)标准形式:200ax bx c ++≥≤(或)(2)解法:00122⎧⎪⎨⎪⎩ 解对应的一元次方程判解:0a a ⎧⎪⎨⎪∆⎩①若与不等式同号,解取根外;②若与不等式异号,解取根内;③若无根(<),则a 与不等式同号; 例:(1)2560;x x -+≥ (2)2320;x x -+< (四)函数1、正、反比例函数:y kx = , 1y x=2、1元2次函数:2y ax bx c =++ (a ≠0)顶点:2424b ac b a a -(-,); 对称轴:2b x a=- ; 最值:244ac b y a -=;图像:(1)a >0,开口向上;(2)a <0,开口向下; 3、幂函数:n y x = (1,2,3);4、指数函数:x y a = (xe );5、对数函数: x第二部分 三角(一)角的概念 1、正角、负角2、角度与弧度的关系:0180π= 01180π=4、锐角的三角函数关系:222a b c += s i n b a c =cos a a c = b a ab5、任意角的三角函数sin y r α=αx r αyxαx y α1c o s α α1s i n α6、三角函数符号7.特殊角的三角函数值:00 300 450600900 1800 2700α0 1/2/2 21-1α 1/2/21/2 0 -10 α 0/3 1∞∞α∞13 0∞(二)三角变换1.倒数关系α·α1 α·α1α·α1α1cos αα1sin αα1tan α2. 平方关系的22sin cos 1αα+=22tan 1s ee αα+=22cot 1csc αα+=;3.诱导公式:(1)同名函数的:—α,1800±α,3600±α,K ·360+α的三角函数值等于角α的三角函数值;符号采用把X 当作锐角时原角所在象限原函数的符号。
学高数预备知识要想把高数学好,就必须把高中的一些知识再重温一遍,例如三角公式、重要的不等式、基本初等函数等,这些知识点,在高数老师看来,只要是到了大学的学生都是掌握了的,他不会再带你去回顾,直接就过了这个知识点。
以下就是高数中需要用到的高中的知识:一、集合论A∪B,称A并B,即子集A中的元素加上子集B的元素所得的元素。
A∩B,称A交B,即子集A与子集B中共同的元素。
cos(α+β)=cosαcosβ−sinαsinβcos(α−β)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1−tanαtanβ4.倍角公式sin2α=2sinαcosαcos2α=cos2α−sin2α=2cos2α−1=1−2sin2αtan2α=2tanα1−tan2α5.半角公式(sin α2)2=1−cosα2(cos α2)2=1+cosα26.诱导公式奇变偶不变(对于π2而言),符号看象限(对于整个括号而言)。
一全正,二正弦,三两切,四余弦。
(对于正号而言)sin(2kπ+α)=sinα sin(π+α)=−sinαcos(π2−α)=sinαtan(π2−α)=cotαcot(π2−α)=tanα7.三角形记忆法 8.万能替换公式sin α=2tan α21+tan 2αcos α=1−tan 2α21+tan 2α2 tan α=2tan α21−tan 2α2三、基本不等式⑴a 2+b 2≥2ab由此不等式得出其它不等式:(a +b)2≥4aba 2+b 2≥(a +b)22⑵a +b 2≥√ab 由此不等式得出其它不等式:ab ≤(a +b 2)2ab ≤a 2+b 22(a +b 2)2≤a 2+b 22 a b +b a≥2 (ab >0) √a 2+b 22≥a +b 2≥√ab ≥21a +1b sin αcos αtan αcot αsec αcsc α1 (1) 对角连接乘积为1,例:sin α∙csc α=1(2) 六边形每个端点都等于相邻两端点乘积,例:sin α=tan α∙cos α(3) 阴影三角形中,上两端点平方和等于下端点平方(包括中间的1点),例:sin 2α+cos 2α=12,tan 2α+12=sec 2α。
高中数学必修一预备知识High school mathematics required course one preparatory knowledge 高中数学必修一预备知识To excel in the study of high school mathematics, it is crucial to have a solid foundation in prerequisite knowledge.要想在高中数学学习中取得优异成绩,拥有扎实的预备知识至关重要。
This includes a basic understanding of arithmetic operations, fractions, decimals, and percentages.这包括基本的算术运算、分数、小数和百分数的理解。
Familiarity with algebraic concepts such as variables, equations, and functions is also essential.熟悉代数概念,如变量、方程和函数,同样必不可少。
Moreover, a grasp of geometric principles like lines, angles, and shapes is vital for laying a strong foundation.此外,掌握几何原理,如线、角和形状,对于奠定坚实的基础至关重要。
Lastly, an understanding of basic statistics and probability is helpful in preparing for more advanced topics in the subject.最后,了解基本的统计和概率知识有助于为数学学科中更高级的主题做好准备。
By mastering these preparatory knowledge areas, students will be well-prepared to tackle the challenges that lie ahead in their high school mathematics journey.通过掌握这些预备知识领域,学生将为他们在高中数学旅程中面临的挑战做好充分准备。
高等数学预备知识(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高等数学 预备知识1.不同三角函数间的关系αααcos sin tan =αααsin cos cot = ααcos 1sec = ααsin 1csc = 1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα2.加法公式(注意“±”与“ ”) βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =±βαβαβαtan tan 1tan tan )tan( ±=± αββαβαcot cot 1cot cot )cot(±=±3.和差化积2cos2sin2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=- βαβαβαcos cos )sin(tan tan ±=±βαβαβαsin sin )sin(cot cot ±±=±βαβαβαsin cos )cos(cot tan ±=± (注意符号)4.积化和差)]cos()[cos(21sin sin βαβαβα--+-=)]cos()[cos(21cos cos βαβαβα-++=)]sin()[sin(21cos sin βαβαβα-++=5.倍角公式ααααα2tan 1tan 2cos sin 22sin +== ααααααα222222tan 1tan 1sin 211cos 2sin cos 2cos +-=-=-=-= ααα2tan 1tan 22tan -= αααcot 21cos 2cot 2-=6.半角公式 2cos 12sinαα-±= 2cos 12cos αα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±= αααααααcos 1sin sin cos 1cos 1cos 12cot-=+=-+±= 7.降幂公式 )2cos 1(21sin 2αα-=)2cos 1(21cos 2αα+= 8.反三角函数(1)反三角函数的定义域与主值范围(2)图像(附加)三角函数的图像1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx y=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx (3)反三角函数的相互关系21arctanarccos2)arcsin(arcsinxxxxx-=-=--=π21arctanarcsin2)arccos(arccosxxxxx-=-=--=ππ21arcsincot23)arctan(arctanxxxarcxx+=-=--=π21arccosarctan 2)cot(cot xx x x arc x arc +=-=--=ππ9.数列 (1)等差数列通项公式:d n a a n )1(1-+= 前n 项和:d n n na n a a S n n 2)1(2)(11-+=+= (2)等比数列通项公式:11-=n n q a a前n 项和:qqa a q q a S n n n --=--=11)1(11 (3)某些数列的和)1(21321+=++++n n n )1(2642+=++++n n n2)12(531n n =-++++)12)(1(613212222++=++++n n n n 23333)321(321n n ++++=++++ 10.乘法与因式分解2222)(b ab a b a +±=± 3223333)(b ab b a a b a ++±=± ))((22b a b a b a +-=- ))((2233b ab a b a b a +±=±))((122321-----+++++-=-n n n n n n n b ab b a b a a b a b a (n 为正整数) ))((122321------+-+-+=-n n n n n n n b ab b a b a a b a b a (n 为偶数) ))((122321-----+--+-+=+n n n n n n n b ab b a b a a b a b a (n 为奇数) 11.不等式(1)有关绝对值的不等式||||||b a b a +≤± ||||||||||b a b a b a +≤-≤-||||||||k b a k b a +++≤±±± ((2)有关三角函数、指数函数、对数函数的不等式)20(tan sin π<<<<x xx x )0(1sin cos π<<<<x xxx)0(1≠+>x x e x )0,1(11≠<-<x x xe x )0(1ln >-≤x x x )0,1(1)1ln(≠<-<--<x x xx x x)0,1(1)1(>>+>+x x x ααα(3)某些重要不等式 ① 222a b ab +≥,221()2ab a b ≤+;②1()2a b +≥12121()n n n a a a a a a n+++≥⋅⋅⋅;(0,0,0,1,2,,i a b a i n ≥≥≥=)③ ||||||||||a b a b a b -≤±≤+,11221122|()()()||||()||||()||||()|n n n n a f x a f x a f x a f x a f x a f x +++≤+++n a a a na a a n n2222121+++≤+++ na a a a a a nn n ++≤2121))(()(121221∑∑∑===≤ni i ni ini i i b a b a (柯西不等式)12.阶乘、排列、组合 (1)阶乘n n ⋅⋅⋅⋅= 321! )12(531!2)!12(!)!12(+⋅⋅⋅⋅=+=+n n n n n (规定)1!0= 0!!0= )2(42!2!)!2(n n n n ⋅⋅⋅== (2)排列)1()2)(1()!(!+---=-=k n n n n k n n A kn123)2)(1(!⋅⋅--=== n n n n A P nn n(3)组合!)!(!!k k n n k A C kn kn-== (kn C 也记作⎪⎪⎭⎫ ⎝⎛k n ) 13.二项式定理与多项式定理二项式定理:∑=-----=+++++=+nk kk n k n nnnn n nn nn nnnnb a C b C abCb aC b a C a C b a 011222110)( 多项式定理:s q p ns q p n k b a s q p n k b a ∑=++=+++!!!!)(14.指数运算nm nmaa a +=⋅ n m n ma aa -= mn n m a a =)( m m mb a ab =)( mm m b a b a =⎪⎭⎫ ⎝⎛ m n n m n ma a a )(== m m a a 1=- )0(10≠=a a 15.对数运算01log =a 1log =a a y x xy a a a log log log +=y x yxa a alog log log -= x b x a b a log log = 对数恒等式:x a x a =log x a x a =log 换底公式:ayy b b a log log log =1log log =⋅a b b a 数学中常见基本初等函数和初等函数:①基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数和常数这6类函数称为基本初等函数。
高等数学预备知识(新生自学内容)(一)数学归纳法1、适用范围:只适用于证明与正整数n 有关的命题.2、证明步骤:(1)证明当n 取第一个值0n (例如01n =或2 等)时,命题成立.(2)假设当k n =(0k N k n +∈≥且)时结论正确,证明当1k n +=时结论也成立. 由这两个步骤,就可以断定命题对于从0n 开始的所有正整数n 都成立. 3、注意:第一步是递推的基础,第二步是递推的根据,两步缺一不可.4、用途:(1)证明代数和或三角恒等式;(2)证明不等式;(3)证明整除性;(4)证几何命题等.数学归纳法的思想类似于多米诺骨牌玩法:第一,要求第一张骨牌被推倒;第二,假如某一张骨牌倒下,要求其后一张骨牌必须跟着倒下. 例1、用数学归纳法证明:)1n 2)(1n (n 61n 3212222++=++++ . 证明:(1)当1n =时,左边=112=,右边=132161=⋅⋅⋅,等式成立. (2)假设当k n =时,等式成立,即)1k 2)(1k (k 61k 3212222++=++++ ,那么222222)1k ()1k 2)(1k (k 61)1k (k 321++++=++++++)6k 7k 2)(1k (61)]1k (6)1k 2(k )[1k (612+++=++++=]1)1k (2][(1)1k )[(1k (61)3k 2)(2k )(1k (61+++++=+++=故当1k n +=时等式也成立.根据(1)、(2)可知等式对任何+∈N n 都成立.例2、设)1n (n 3221a n +++⨯+⨯= (+∈N n ),求证:2)1n (a 2n +<.证明:(1)当1n =时,22)11(221a 21=+<=⨯=,不等式成立. (2 ) 假设当k n =时(1k ≥时)不等式成立,即有2)1k ()1k (k 3221a 2k +<+++⨯+⨯=那么,)2k )(1k (2)1k ()2k )(1k ()1k (k 3221a 21k ++++<++++++⨯+⨯=+2]1)1k [(2)2k (2)2k ()1k (2)1k (222++=+=+++++<, 即当1k n +=时不等式也成立.由(1)、(2)可知,不等式对任何+∈N n 都成立. 例3.设, ,11 ,11121 x x x x ++==) ,3 ,2(1111 =++=--n x x x n n n ,证明:{}n x 单调增加. 解:(1) ∵11=x ,且) ,3 ,2(1111=++=--n x x x n n n ,∴) ,3 ,2 ,1( 0 =>n x n .又∵0211111111112>=+=-++=-x x x x x x ,∴12x x >. (2)假设1->k k x x 成立,则)11()11( 111--+++-++=-k k k k k k x xx x x x 有 1111--+-+=k k k k x x x x 0)1)(1(11>++-=--k k k k x x x x ,由(1)、(2)可知, ) ,2 ,1( 1 =>+n x x n n ,从而{}n x 单调增加.(二) 三角函数A 三角函数的积化和差公式由正弦加法定理的两式相加减和余弦加法定理的两式相加减可得:三角函数的积化和差公式:1sin cos [sin()sin()]2αβαβαβ=++-1cos sin [sin()sin()]2αβαβαβ=+--1cos cos [cos()cos()]2αβαβαβ=++- 1sin sin [cos()cos()]2αβαβαβ=-+--当αβ=时,即为倍角公式.例1、不查表,求sin512πcos π12的值. 解:sin512πcos π12=12[sin (512π+π12)+sin (512π-π12)]=12+34. 或:sin512πcos π12=sin (2π—12π)cos π12 =cos 2π12=12(1+cos 6π)=12+34.练习: 2cos31︒sin 14︒; cos215πcos π5; sin 70︒cos20︒. 注:分析三角函数的积化和差公式的整体结构,记忆公式,从公式本身的结构特征上了解积化和差公式的作用.B 三角函数的和差化积在积化和差公式中,令α+β=θ,α—β=ϕ,则α=θϕ+2,β=θϕ-2所以有:sin θ+sin ϕ = 2sinθϕ+2cosθϕ-2sin θsin -ϕ = 2cosθϕ+2sinθϕ-2cos θ+cos ϕ = 2cosθϕ+2cosθϕ-2cos θ—cos ϕ = 2sin-θϕ+2sinθϕ-2叫做三角函数的和差化积公式1+cos α = 2cos 2α2,1-cos α = 2sin 2α2等都可看成和差化积的形式.例2、把sin 2α-sin 2β化成积的形式. 解:原式=(sin α+sin β)(sin α-sin β) =2sinαβ+2cosαβ-2·2 cosαβ+2sinαβ-2=sin (α+β)sin (α—β)例3、求.10cos 70cos 10sin 70sin+-解:s in s in cos cos cos s in cos cos 70107010240302403033-+==例4、化1+cot α+csc α 为积的形式.解:原式=αααsin sin cos 1++= 222222cos sin 2cos sin 2cos 2ααααα+ =2222sin )cos(cos ααπα-+ = 44222cos cos()sin ππαα- =2cos(4π—2α) csc 2α练习: 化1+sin α和1+cos α+cos β+cos(α+β)为积的形式. ( 1+sin α=2sin (4π+2α)cos(4π—2α), 1+cos α+cos β+cos(α+β)= 4cos αβ+2cos 2αcos 2β)在三角函数的计算和化简中,常要把a sin α+bcos α化为A sin (α+ϕ)的形式.如:sin α+3cos α=2(12sin α+32cos α)=2(sin αcos π3+sin π3cos α)=2sin (α+π3) 一般地,设a =Acos ϕ,b=A sin ϕ,则a sin α+bcos α=A(sin α cos ϕ+sin ϕcos α) =A sin (α+ϕ),其中:A =a b 22+,ϕ所在象限由a ,b 的符号决定,由tan ϕ=ba可求出ϕ的值. (ϕ在(—π,—2π),(—2π,2π),(0,2π),(2π,π)内的值)例5、将下列各式化为Asin(α+ϕ)的形式.(1) 3sin x -4cosx ; (2) 3cosx -4sin x ; 解:(1) A =5,tan ϕ=b a =-43=-1 .3333 ,a >0,b <0,所以ϕ在第IV 象限,即ϕ=-53︒8'. 故3sin x -4cosx =5sin (x -53︒8'). (2) A =5,tan ϕ=ba=-0 .75 ,a <0,b >0, 所以ϕ在第II 象限,即ϕ=180︒-36︒52'=143︒8',故3cosx -4sin x =5sin(x+143︒8').C 万能公式22222tan1tan 2tan222sin ;cos ;tan .1tan 1tan 1tan 222ααααααααα-===++-统称为万能公式它们的特点是统一用tan 2α来表示sin ,cos ,tan αααD 一个常用不等式当x 为锐角时,sin tan x x x <<即 sin tan x x x <<OACxB作单位圆,取圆心角x AOB =∠,∵AOB ∆的面积<扇形AOB 的面积AOC ∆<面积,∴x x x tan 2121sin 21<<,(三) 复数A 复数的概念一、复数的定义1、虚数单位 我们知道方程x 2=-1在实数范围内无解,为了使它有解,我们引进一个新数i,规定i 2=-1,且它能与实数一起进行四则运算.数i 叫做虚数单位.因为i 2=-1,所以i 3=—i,i 4=1,i 5=i,i 6=-1,i 7=—i,i 8=1… 即i 4n =1,i 4n+1=i,i 4n+2=-1,i 4n+3=-i (n ∈Z ).(—i) 2=-1,即i 和—i 是-1的两个平方根.我们规定:i 0=1,i-m=mi1(m ∈Z ).例如:i 2001=i, i —5=ii 115==—i. 2、纯虚数 我们再来看x 2=-4的解,可以看出有两个解2i 和-2i.数bi 叫做纯虚数,其中b ∈R,且b ≠0.3、虚数 考察方程x 2+2x+10=0的解,x 等于—1+3i 或—1—3i.数a+bi 叫做虚数,其中a 、b ∈R,且b ≠0.4、复数 数a+bi 叫做复数,其中a 、b ∈R,其中a 叫做复数的实部,b 叫做复数的虚部.复数集通常用C 来表示.虚数集通常用I 来表示.C =R I.⎪⎪⎩⎪⎪⎨⎧=⇒≠+⎪⎩⎪⎨⎧⎩⎨⎧=+)0()0()0(a bi b bi a b a bi a 纯虚数虚数无理数分数整数有理数实数复数 例题:实数m 为何值时,复数(m 2—3m —4)+ (m 2—5m —6)i 是(1)实数;(2)纯虚数?解:(1)当b =0时,复数为实数.即m 2—5m —6=0解得m=—1或6.(2)当a=0,且b ≠0时复数为纯虚数.即m 2—3m —4=0且m 2—3m —4≠0解得m=4. 5、复数相等的条件 两个复数相等必须是它们的实部和虚部分别相等. 二、复数的几何表示法1、用复数直角平面内的点表示复数 复数a+bi 是由一对有顺序的实数a 、b 构成,这与直角坐标平面的构成一样.我们规定:直角坐标平面内的横轴为实轴,单位为1,纵轴(不包括原点)为虚轴,单位为i,那么,复数a+bi 就可用这样的平面内的点M(a,b)来表示,其中,复数的实部a 和虚部b 分别是点M 的横坐标和纵坐标.我们把表示复数的平面叫做复数直角坐标平面.简称复平面. 例题:(1)用复平面内的点表示复数:—3+2i,3i,—2,0,-i,2—3i.(2)复平面内的点M(2 ,3) ;N(—3 ,—4) ;P(—3 ,0) ;Q(0 ,—2)各表示什么复数?解:略. 2、用向量表示复数 如果复平面内的点M 表示复数a+bi,连结原点O 与M 点,并且把O看作线段OM 的起点,M 点作为终点,那么线段OM 就是一条有方向的线段,这样的一条线段叫做向量.记作OM .可以看出:复数a+bi ⇔点M(a,b) ⇔向量OM .向量OM 的长度叫做复数a+bi 的模,记作|a+bi |.显然|a+bi |=a b 22+.例如:|-1+3i | =2.由x 轴的正半轴到向量OM 的角θ叫做复数a+bi 的幅角.它指出了向量OM 的方向.一个不等于0的复数a+bi 的幅角有无穷多个,它们的弧度数彼此相差2π的整数倍,我们把幅角在[0 ,2π)内的值叫做幅角的主值,但在高等数学中,我们常用(,]ππ-范围内的角。