2017-2018年甘肃省白银市景泰一中高一上学期数学期中试卷带答案
- 格式:doc
- 大小:757.00 KB
- 文档页数:21
会宁一中2017-2018学年度第一学期期中考试高一级数学试卷考试说明:本试卷分第I 卷 (选择题)和第n 卷(非选择题)两部分。
考生作答时,将答案 写在答题卡上,在本试卷上答题无效。
、选择题(共12小题,每小题5分,总共60分)。
,、已知集合肛叶510血二庞+点则。
与集知的关系是()A . - 1B . 1C . - 1 或 1D . 5、 方程log 3X + x - 3= 0的解所在的区间是()A. (0, 1) B . (1 , 2)C . (2 , 3)D . (3, 4) 6、函数 1 f(x) = 1 — x - 1()A . 在(-1, +m )上单调递增B . 在(1 , + ^ )上单调递增C . 在(-1,+^ )上单调递减D . 在(1 , + m )上单调递减 7、函数f (x ) = 1 + log 2X 与g (x )= 21 x 在同一直角坐标系下的图象大致是 (). 8、已知函数 严 0+3)-0且"1) 的图象恒过定点A ,若点A 也在 函数7的图象上,则/ '-( ) 2、 若幕函数的图像过点 1(2, 4),则它的单调递增区间是()A . (0,+^ )B . [0 ,+^ 0)3、 F 列函数中,与函数 1 y = x 有相同定义域的是(A . f(x) = lnxB . 1 f(x) = xC . f(x)=凶 xD . f(x) = e2X + 1 , X > 0 ,4、已知函数 f(x) = 3x2, x<0 , 且 f(X 0)= 3, 则实数 X 0的值为(11或一3。
2017--2018学年第一学期高一期中考试数学学科试题 试卷分值:160分 考试时间:120分钟一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.......... 1.若集合A={1,3},B={0,3},则A ∪B= .2.计算:sin210°的值为 .3.若扇形的半径为2,圆心角为,则它的面积为 . 4、函数()11+=-x a x f ()1,0≠>a a 过定点 .5、若一个幂函数)(x f 的图象过点)41,2(,则)(x f 的解析式为 .6、已知a=20.3,b=20.4,c=log 20.3,则a ,b ,c 按由大到小排列的结果是 .7、函数()()1log 13--=x x f 的定义域是 .8、已知点(4,)M x 在角α的终边上,且满足x <0,cos α=54,则tan α= . 9、不等式03242<+-+x x 的解集为 . 10、已知)0(51cos sin πααα<<=+,则=-ααcos sin _________. 11、关于x 的函数()()5342+-+=x a ax x f 在区间()2,∞-上是减函数,则a 的取值范围是 .12、已知定义在R 上的函数()21,01,0x x f x mx m x ⎧+≥=⎨+-<⎩,满足对任意12x x ≠都有1212()()0f x f x x x ->-成立,则实数m 的取值范围是 . 13、已知函数()x f 是定义在R 上的偶函数,若()x f 在(]0,∞-上是减函数,且()02=f ,则()0<xx f 的x 的取值范围为 . 14、已知函数⎪⎩⎪⎨⎧>+-≤=)(,42)(,)(2m x m mx x m x x x f ,其中m>0,若存在实数b,使得关于x 的方程b x f =)(有三个不同的根,则m 的取值范围是______________.二、解答题:本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)已知集合A={x|x 2﹣2x ﹣8≤0},集合[]R m m m B ∈-=,3(1)若A ∩B=[2,4],求实数m 的值;(2)设全集为R ,若A ⊆∁R B ,求实数m 的取值范围.16.(本小题满分14分)(1)(2)(lg5)2+lg2•lg50.17.(本小题满分14分)已知y=f (x )(x ∈R )是偶函数,当x ≥0时,f (x )=x 2﹣2x .(1)求f (x )的解析式;(2)若不等式f (x )≥mx 在1≤x ≤2时都成立,求m 的取值范围.18.(本小题满分16分)已知函数f (x )=为奇函数. (1)求a 的值;(2)证明:f (x )是R 上的增函数;(3)解不等式:()x f 2log ≤53.19.(本小题满分16分)如图,在长为10千米的河流OC 的一侧有一条观光带,观光带的前一部分为曲线段OAB ,设曲线段OAB 为函数()02≠++=a c bx ax y ,x ∈[0,6](单位:千米)的图象,且图象的最高点为A (4,4);观光带的后一部分为线段BC .(1)求函数为曲线段OABC 的函数()[]10,0,∈=x x f y 的解析式;(2)若计划在河流OC 和观光带OABC 之间新建一个如图所示的矩形绿化带MNPQ ,绿化带由线段MQ ,QP ,PN 构成,其中点P 在线段BC 上.当OM 长为多少时,绿化带的总长度最长?20.(本小题满分16分)若函数()x f 和()x g 满足:①在区间[a ,b ]上均有定义;②函数()()x g x f y -=在区间[a ,b ]上至少有一个零点,则称()x f 和()x g 在区间[a ,b ]上具有关系G .(1)若()()x x g x x f -==3,lg ,试判断()x f 和()x g 在[1,4]上是否具有关系G ,并说明理由;(2)若()122+-=x x f 和()2mx x g =在[1,4]上具有关系G ,求实数m 的取值范围.2017--2018学年第一学期高一期中考试数学学科试题(答案)一、填空题1、{0,1,3};2、﹣21;3、34π; 4、()2,1; 5、()2-=x x f ; 6、b ,a ,c .; 7、(]4,1; 8、-43; 9、()3log ,02; 10、57; 11、[0, 23]; 12、30≤<m ; 13、()()2,02,⋃-∞-; 14、()+∞,3 二、解答题15. 【解答】解:(Ⅰ)∵A={x |(x +2)(x ﹣4)≤0}==[﹣2,4]———3分 ∵A ∩B=[2,4],∴,解得m=5————————————7分( II )由(Ⅰ)知C R B={x |x <m ﹣3,或x >m },————————10分∵A ⊆C R B ,∴4<m ﹣3,或﹣2>m ,解得m <﹣2,或m >7.故实数m 的取值范围为(﹣∞,﹣2)∪(7,+∞)———————14分16. 【解答】解:(1)原式=﹣+3+1———————3分=4﹣+1+3+1 =9﹣.———————7分 (2)原式=lg 25+lg2(1+lg5)=lg5(lg5+lg2)+lg2———————10分=lg5+lg2=1.———————14分17、【解答】解:(1)当x <0时,有﹣x >0,∵f (x )为偶函数,∴f (x )=f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,--------4分 ∴f (x )=.------------------------------------------6分(2)由题意得x 2﹣2x ≥mx 在1≤x ≤2时都成立,即x ﹣2≥m 在1≤x ≤2时都成立,------------------------------------10分即m ≤x ﹣2在1≤x ≤2时都成立.而在1≤x ≤2时,(x ﹣2)min =﹣1,∴m ≤﹣1.--------------------------14分 18.【解答】(1)解:f (x )的定义域为R .----------------------2分∵f (x )为奇函数,∴f (-x )= - f(x),∴a=1.-----------------------------5分(2)证明:易得f (x )=1﹣122+x 设x 1∈R ,x 2∈R ,且x 1<x 2,∴f (x 1)﹣f (x 2)==.--------------8分∵, ∴f (x 1)﹣f (x 2)<0.∴f (x 1)<f (x 2).∴f (x )为R 上的增函数.-------------------------------------------------11分(3)令f (x )=,解得x=2.--------------------------------------13分∴f (log 2x )≤即f (log 2x )≤f (2).∵f (x )为R 上的增函数,∴log 2x ≤2.-------------------------------------------------------15分∴0<x ≤4.——————————————————16分19.【解答】解:(1)因为曲线段OAB 过点O ,且最高点为A (4,4), 所以,解得所以,当x ∈[0,6]时,()x x x f 2412+-=---------------(3分)因为后一部分为线段BC ,B (6,3),C (10,0),当x∈[6,10]时,()21543+-=xxf---------------(6分)综上,---------------(8分)(2)设OM=t(0<t≤2),则由,得,所以点---------------(11分)所以,绿化带的总长度y=MQ+QP+PN=---------------(13分)当t=1时,所以,当OM长为1千米时,绿化带的总长度最长---------------(16分)20.【解答】解:(1)它们具有关系G———————2分令h(x)=f(x)﹣g(x)=lgx+x﹣3,∵h(1)=﹣2<0,h(4)=lg4+1>0;故h(1)•h(4)<0,又h(x)在[1,4]上连续,故函数y=f(x)﹣g(x)在区间[a,b]上至少有一个零点,故f(x)和g(x)在[1,4]上具有关系G.———————6分(2)令h(x)=f(x)﹣g(x)=2|x﹣2|+1﹣mx2,当m≤0时,易知h(x)在[1,4]上不存在零点,———————9分当m>0时,h(x)=;当1≤x≤2时,由二次函数知h(x)在[1,2]上单调递减,故;故m∈[,3];———————11分当m∈(0,)∪(3,+∞)时,若m∈(0,),则h(x)在(2,4]上单调递增,而h(2)>0,h(4)>0;故没有零点;———————13分若m∈(3,+∞),则h(x)在(2,4]上单调递减,此时,h(2)=﹣4m+1<0;故没有零点;———————15分综上所述,若f(x)=2|x﹣2|+1和g(x)=mx2在[1,4]上具有关系G,则m∈[,3].———————16分。
2017—2018学年第一学期期中试卷高一年级数学试卷满分:150分 考试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.已知集合{1,2,3,4}A =,那么A 的真子集的个数是( )A 、15B 、16C 、3D 、42. 若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、1033. 设集合{}1->∈=x Q x A ,则( )A 、A ∅∉B AC AD 、⊆A4.下列各组函数中,表示同一函数的是( )A 、0,1x y y == B 、11,12+-=-=x x y x yC 、33,x y x y ==D 、()2,x y x y ==5.函数)3(-=x f y 的定义域为[4,7],则)(2x f y =的定义域为( )A 、(1,4)B 、[1,2]C 、)2,1()1,2(⋃--D 、 ]2,1[]1,2[⋃-- 6.设02log 2log <<b a ,则( ) A 、10<<<b a B 、10<<<a bC 、1>>b aD 、1>>a b7.若函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,则实数a 的取值范围是A 、3a ≤-B 、3a ≥-C 、5a ≤D 、3a ≥8.定义域为R 的函数y=f(x)的值域为[a ,b],则函数y=f(x +a)的值域为( )A 、[2a ,a +b]B 、[a ,b]C 、[0,b -a]D 、[-a ,a +b]9、下列函数中为偶函数,且在区间(0,)+∞上为增函数的是( )A 、x y -=3B 、||x y =C 、1()2xy =D 、42+-=x y10.若函数()y f x =是函数1xy a a a =≠(>0,且)的反函数,且(2)1f =,则()f x =( ) A 、x 2log B 、x21C 、x 21log D 、22-x11. 方程|x 2-6x |=a 有不同的四个解,则a 的范围是A 、a ≤9B 、0≤a ≤9C 、0<a<9D 、0<a ≤912.已知集合A={a ,b ,c},B={1,2,3,4,5,6}。
甘肃省武威市2017-2018学年高一数学上学期期中试题全卷满分150分。
考试用时150分钟。
一、选择题(每小题5分,共50分)1、已知集合2{|1,},{|1,}A y y x x R B y y x x R ==+∈==+∈,则A B =( )。
A 、{1,2}B 、{|1y y =或2}C 、0{(,)|1x x y y =⎧⎨=⎩或12x y =⎧⎨=⎩} D 、{|1}y y ≥2、已知,,a b c 均为非零实数,集合||{|}||||a b abA x x a b ab ==++,则集合A 的元素的个数为( )。
A 、2B 、3C 、4D 、53、已知全集为I ,集合,,P Q R 如图所示,则图 中阴影部分可以表示为( )。
A 、()I RC P Q B 、()I R C P Q C 、()I RC P QD 、()I R C Q P4、已知函数()y f x =的定义域和值域分别为[1,1]-和[5,9],则函数(21)y f x =+的定义域和值域分别为( )。
A 、[1,3]和[11,19]B 、[1,0]-和[2,4]C 、[1,0]-和[5,9]D 、[1,1]-和[11,19] 5、下列关于四个数:200.23,ln ,(3)()e a a R π+∈的大小的结论,正确的是( )。
A、200.2log 3(3)ln ea π<<+<B、200.2log 3(3)ln e a π<<+< C、200.2(3)log 3ln ea π<+<<D、200.2log 3(3)ln a eπ<+<<6、如图,函数1y x=、y x =、1y =的图象和直线1x =将 平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧。
则函数y=的图象经过的部分是( )。
A 、④⑦ B 、④⑧ C 、③⑦ D 、③⑧ 7、为了得到函数2ln(1)y x =+-的图象,只需把函数ln y x =的图象上所有点( )。
高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。
3.本卷命题范围:新人教版必修第一册第一章~第四章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。
一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。
2017-2018学年甘肃省兰州一中高一(上)期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.(5.00分)设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M∩(∁U N)=()A.{5}B.{0,3}C.{0,2,3,5}D.{0,1,3,4,5}2.(5.00分)下列四组函数,表示同一函数的是()A.f(x)=x,g(x)=B.f(x)=lgx2,g(x)=2lgxC.f(x)=,g(x)= D.f(x)=x,g(x)=3.(5.00分)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)4.(5.00分)设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x﹣y),则在映射f下B中的元素(1,1)对应的A中元素为()A.(1,3) B.(1,1) C.D.5.(5.00分)下列函数在(0,+∞)上是增函数的是()A.y= B.y=|x|C.y=﹣x2D.y=﹣2x+16.(5.00分)设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a7.(5.00分)若函数f(x)=1+是奇函数,则m的值是()A.﹣1 B.﹣2 C.1 D.28.(5.00分)函数f(x)=log2(x2﹣x﹣2)的单调递减区间是()A.(﹣∞,﹣1)B.C. D.(2,+∞)9.(5.00分)已知函数f (x)=则满足f (a)<的a的取值范围是()A.(﹣∞,﹣1)∪(0,)B.(﹣∞,﹣1)C.(0,)D.(﹣∞,﹣1)∪(0,2)10.(5.00分)已知f(x)=a x,g(x)=log a x(a>0,a≠1),若f(3)•g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能是下图中的()A.B.C.D.11.(5.00分)定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f (x+6)为偶函数,则()A.f(4)<f(7)B.f(4)>f(7)C.f(5)>f(7)D.f(5)<f(7)12.(5.00分)设A、B是非空数集,定义A*B={x|x∈A∪B且x∉A∩B},已知集合A={x|y=2x﹣x2},B={y|y=2x,x>0},则A*B=()A.[0,1]∪(2,+∞)B.[0,1)∪(2,+∞)C.(﹣∞,1]D.[0,2]二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.(5.00分)已知f(e x)=x,则f(5)等于.14.(5.00分)如果函数f(x)=x2+2(a﹣3)x+2在区间(﹣∞,4]上是单调减函数,那么实数a的取值范围是.15.(5.00分)函数f(x)=log2x•log2(2x)的最小值为.16.(5.00分)定义在R上的偶函数f(x)在区间[1,2]上是增函数.且满足f (x+1)=f(1﹣x),关于函数f(x)有如下结论:①;②图象关于直线x=1对称;③在区间[0,1]上是减函数;④在区间[2,3]上是增函数;其中正确结论的序号是.三、解答题(本大题共6小题,共70分)17.(10.00分)集合A={x|﹣1≤x≤7},B={x|2﹣m<x<3m+1},若A∩B=B,求实数m的取值范围.18.(12.00分)计算:(1)+lg2﹣log29×log32﹣5;(2)(3)﹣(5)0.5÷()×.19.(12.00分)已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=log2(x+1).(1)求函数f(x)的解析式;(2)若f(a﹣2)﹣f(5﹣a)<0,求a的取值范围.20.(12.00分)已知定义在R上的函数f(x)=2x﹣.(1)若f(x)=,求x的值;(2)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.21.(12.00分)(1)求证:函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(2)若f(x)=,x∈[0,1],利用上述性质,求函数f(x)的值域;(3)对于(2)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1),求实数a的值.22.(12.00分)已知函数,函数g(x)的图象与f(x)的图象关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在实数m>n>2,使得(2)中函数y=h(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.2017-2018学年甘肃省兰州一中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.(5.00分)设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M∩(∁U N)=()A.{5}B.{0,3}C.{0,2,3,5}D.{0,1,3,4,5}【解答】解:∵全集U={0,1,2,3,4,5},N={1,4,5},∴∁U N={0,2,3},又集合M={0,3,5},则M∩(∁U N)={0,3}.故选:B.2.(5.00分)下列四组函数,表示同一函数的是()A.f(x)=x,g(x)=B.f(x)=lgx2,g(x)=2lgxC.f(x)=,g(x)= D.f(x)=x,g(x)=【解答】解:A 由于f(x)=x,g(x)=,则值域分别为R和{y|y≥0}和R,故A不对;B 由于f(x)=lgx2,g(x)=2lgx,则定义域分别为{x|x≠0}和{x|x>0},故B 不对;C 根据函数的解析得,或x2﹣4≥0,解得x≥2;x≥2或x≤﹣2,故C 不对;D 由于(x)=x=g(x)=,则它们的定义域和解析式相同,故D对.故选:D.3.(5.00分)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.4.(5.00分)设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x﹣y),则在映射f下B中的元素(1,1)对应的A中元素为()A.(1,3) B.(1,1) C.D.【解答】解:∵从A到B的映射f:(x,y)→(x+2y,2x﹣y),∴在映射f下B中的元素(1,1)对应的A的元素x+2y=1,2x﹣y=1∴x=,y=故选:C.5.(5.00分)下列函数在(0,+∞)上是增函数的是()A.y= B.y=|x|C.y=﹣x2D.y=﹣2x+1【解答】解:对于A,反比例函数y=图象分布在一、三象限,在两个象限内均为减函数,故A不符合题意;对于B,当x>0时,函数y=|x|=x,显然是区间(0,+∞)上的增函数,故B正确;对于C,因为二次函数y=﹣x2的图象是开口向下的抛物线,关于x=0对称,所以函数y=﹣x2在区间(0,+∞)上是减函数,可得C不符合题意;对于D,由于一次函数y=﹣2x+1的一次项系数k=﹣2为负数,所以函数y=﹣2x+1在区间(0,+∞)上不是增函数,故D不符合题意;故选:B.6.(5.00分)设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:∵0<0.32<1log20.3<020.3>1∴log20.3<0.32<20.3,即c<b<a故选:D.7.(5.00分)若函数f(x)=1+是奇函数,则m的值是()A.﹣1 B.﹣2 C.1 D.2【解答】解:∵函数f(x)=1+是奇函数,∴f(0)=1+=0,解得m=﹣2,故选:B.8.(5.00分)函数f(x)=log2(x2﹣x﹣2)的单调递减区间是()A.(﹣∞,﹣1)B.C. D.(2,+∞)【解答】解:令t=x2﹣x﹣2,可得函数f(x)=log2t,∴t>0,∴x<﹣1,或x>2,故函数的定义域为{x|x<﹣1,或x>2 }.故本题即求函数t在定义域内的减区间.利用二次函数的性值可得t在定义域内的减区间为(﹣∞,﹣1),故选:A.9.(5.00分)已知函数f (x)=则满足f (a)<的a的取值范围是()A.(﹣∞,﹣1)∪(0,)B.(﹣∞,﹣1)C.(0,)D.(﹣∞,﹣1)∪(0,2)【解答】解:f (a)<等价为或,即有或,则a<﹣1或0<a<,故选:A.10.(5.00分)已知f(x)=a x,g(x)=log a x(a>0,a≠1),若f(3)•g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能是下图中的()A.B.C.D.【解答】解:∵f(3)=a3>0,∴由f(3)•g(3)<0,得g(3)<0,即g(3)=log a3<0,∴0<a<1,∴f(x)=a x,g(x)=log a x(a>0,a≠1),都为单调递减函数,故选:C.11.(5.00分)定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f (x+6)为偶函数,则()A.f(4)<f(7)B.f(4)>f(7)C.f(5)>f(7)D.f(5)<f(7)【解答】解:根据题意,y=f(x+6)为偶函数,则函数f(x)的图象关于x=6对称,f(4)=f(8),f(5)=f(7);故C、D错误;又由函数在(6,+∞)上为增函数,则有f(8)>f(7);又由f(4)=f(8),故有f(4)>f(7);故选:B.12.(5.00分)设A、B是非空数集,定义A*B={x|x∈A∪B且x∉A∩B},已知集合A={x|y=2x﹣x2},B={y|y=2x,x>0},则A*B=()A.[0,1]∪(2,+∞)B.[0,1)∪(2,+∞)C.(﹣∞,1]D.[0,2]【解答】解:由题意,A={x|y=2x﹣x2}=R,B={y|y=2x,x>0}={y|y>1}.∵A*B={x|x∈A∪B且x∉A∩B},∴A*B=(﹣∞,1].故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.(5.00分)已知f(e x)=x,则f(5)等于ln5.【解答】解:∵f(e x)=x,设e x=t,则x=lnt,∴f(x)=lnx,∴f(5)=ln5.故答案为:ln5.14.(5.00分)如果函数f(x)=x2+2(a﹣3)x+2在区间(﹣∞,4]上是单调减函数,那么实数a的取值范围是(﹣∞,﹣1] .【解答】解:∵函数f(x)=x2+2(a﹣3)x+2在区间(﹣∞,4]上是单调减函数,∴二次函数的对称轴x≥4,即3﹣a≥4,∴a≤﹣1.故答案为:(﹣∞,﹣1].15.(5.00分)函数f(x)=log2x•log2(2x)的最小值为﹣.【解答】解:设log2x=t∈R,则f(x)=t(1+t)=t2+t=≥﹣,当t=﹣,即,x=时取等号.∴函数f(x)的最小值为﹣.故答案为:﹣.16.(5.00分)定义在R上的偶函数f(x)在区间[1,2]上是增函数.且满足f (x+1)=f(1﹣x),关于函数f(x)有如下结论:①;②图象关于直线x=1对称;③在区间[0,1]上是减函数;④在区间[2,3]上是增函数;其中正确结论的序号是①②③.【解答】解:①取x=,∵f(x+1)=f(1﹣x),∴,∵函数f(x)是偶函数,∴,故①正确;②f(x+1)=f(1﹣x),故图象关于直线x=1对称,故②正确;③偶函数f(x)在区间[1,2]上是增函数,图象关于直线x=1对称,故函数f(x)在[0,1]上是减函数,故③正确;④∵f(x+1)=f(1﹣x),又函数是偶函数,∴f(x+2)=f(﹣x)=f(x),∴函数是周期为2的函数,∵函数f(x)在[0,1]上是减函数,∴函数在区间[2,3]上是减函数,故④不正确.故正确的结论是①②③.故答案为:①②③三、解答题(本大题共6小题,共70分)17.(10.00分)集合A={x|﹣1≤x≤7},B={x|2﹣m<x<3m+1},若A∩B=B,求实数m的取值范围.【解答】(10分)解:∵集合A={x|﹣1≤x≤7},B={x|2﹣m<x<3m+1},A∩B=B,∴B⊆A,…(2分)当B=∅时,有:2﹣m≥3m+1,解得m≤,…(4分).当B≠∅时,,解得,…(8分)综上可知,实数m的取值范围为{m|m≤2}.…(10分)18.(12.00分)计算:(1)+lg2﹣log29×log32﹣5;(2)(3)﹣(5)0.5÷()×.【解答】解:(1)原式=lg5+lg2+﹣•﹣3=1+﹣2﹣3=﹣.(2)原式=()﹣()+(0.2)÷×=﹣+25××=﹣+2=.19.(12.00分)已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=log2(x+1).(1)求函数f(x)的解析式;(2)若f(a﹣2)﹣f(5﹣a)<0,求a的取值范围.【解答】(12分)解:(1)设x<0,则﹣x>0,∴f(﹣x)=log2(﹣x+1)=f(x),∴x<0时,f(x)=log2(﹣x+1),∴…(6分)(2)∵f(x)=log2(x+1)在[0,+∞)上为增函数,∴f(x)在(﹣∞,0)上为减函数.由于f(a﹣2)<f(5﹣a),∴|a﹣2|<|5﹣a|,∴.∴a的取值范围是:(﹣∞,).…(12分)20.(12.00分)已知定义在R上的函数f(x)=2x﹣.(1)若f(x)=,求x的值;(2)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.【解答】解:(1)由.(2x﹣2)(2x+1)=0∵2x>0⇒2x=2⇒x=1.(2)由m(2t﹣2﹣t)≥﹣2t(22t﹣2﹣2t),又t∈[1,2]⇒2t﹣2﹣t>0,m≥﹣2t(2t+2﹣t)即m≥﹣22t﹣1.只需m≥(﹣22t﹣1)max令y=﹣22t﹣1,易知该函数在t∈[1,2]上是减函数,所以.综上m≥﹣5.21.(12.00分)(1)求证:函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(2)若f(x)=,x∈[0,1],利用上述性质,求函数f(x)的值域;(3)对于(2)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1),求实数a的值.【解答】解:(1)证明:设,任取x1,x2∈(0,]且x1<x2,,显然,x1﹣x2<0,x1x2>0,x1x2﹣a<0,∴h(x1)﹣h(x2)>0,即该函数在∈(0,]上是减函数;同理,对任意x1,x2∈[,+∞)且x1<x2,h(x1)﹣h(x2)<0,即该函数在[,+∞)上是增函数;(2)解:,设u=2x+1,x∈[0,1],1≤u≤3,则,u∈[1,3].由已知性质得,当1≤u≤2,即时,f(x)单调递减,所以减区间为;同理可得增区间为;由f(0)=﹣3,,,得f(x)的值域为[﹣4,﹣3].(3)g(x)=﹣x﹣2a为减函数,故g(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].由题意,f(x)的值域是g(x)的值域的子集,∴,∴.22.(12.00分)已知函数,函数g(x)的图象与f(x)的图象关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在实数m>n>2,使得(2)中函数y=h(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.【解答】解:(1)由题意,函数g(x)的图象与f(x)的图象关于直线y=x对称,∵,∴g(x)=.那么:g(mx2+2x+1)=(mx2+2x+1)的定义域为R,即对任意x,mx2+2x+1>0恒成立,当m=0时,2x+1>0对任意x没有恒成立,要使当m≠0时,要使对任意x,mx2+2x+1>0恒成立,则,解得:m>1.故实数m的取值范围是(1,+∞).(2)由函数y=[f(x)]2﹣2af(x)+3,设t=f(x)=则函数y=t2﹣2at+3=(t﹣a)2+3﹣a2,其对称轴t=a∵x∈[﹣1,1],∴≤t≤2.当a>2时,可得,t=2时,y min=7﹣4a;当≤a≤2时,可得,t=a时,y min=3﹣a2;当时,得t=时,y min=∴h(a)=(3)设实数m>n>2,则h(x)=7﹣4x,x>2,且h(x)在x∈(2,+∞)上单调递减速.由定义域为[n,m],值域为[n2,m2],所以两式相减得,可得:m+n=4,与m>n>2矛盾所以不存在m,n满足条件.。
白银市2017年普通高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯ B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3. 4的平方根是( )A . 16B . 2C . 2±D . 2±4. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )A .B . C. D .5.下列计算正确的是 ( )A .224x x x += B .824x x x ÷= C. 236x x x = D .()220x x --=6.将一把直尺与一块三角板如图放置,若0145∠=,则2∠ 为 ( )A . 115°B . 120° C. 135° D .145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b >< C. 0,0k b <> D .0,0k b << 8.已知,,a b c 是ABC ∆的三条边长,化简a b c c a b +----的结果为 ( ) A .222a b c +- B .22a b + C. 2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .()()32220570x x --=B .322203232570x x +⨯=⨯- C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-=10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//,PQ BD PQ 与边AD (或边CD )交于点,Q PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是( )A .22cmB . 32cm C. 42cm D .52cm二、填空题:本大题 共8小题,每小题4分,共32分,将答案填在答题纸上11.分解因式:221x x -+=____________.12. 估计512-与0.5的大小关系:512-___________0.5(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016mn c ++的值为.14.如图,ABC ∆内接于O ,若032OAB ∠=,则C ∠=.15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是.16.如图,一张三角形纸片ABC ,090,8,6C AC cm BC cm ∠===.现将纸片折叠:使点A与点B 重合,那么折痕长等于cm .17.如图,在ABC ∆中,090,1,2ACB AC AB ∠===,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于____________.(结果保留π)18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为_____________,第2017个图形的周长为______________.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19. 计算:()11123tan 3042π-⎛⎫-+-- ⎪⎝⎭20. 解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩ ,并写出该不等式组的最大整数解.21. 如图,已知ABC ∆,请用圆规和直尺作出ABC ∆的一条中位线EF (不写作法,保留作图痕迹).22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的XX 路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南XX 路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得045,65DAC DBC ∠=∠=.若132AB =米,求观景亭D 到南XX 路AC 的距离约为多少米?(结果精确到1米,参考数据:000sin 650.91,cos 650.42,tan 65 2.14≈≈≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域两数和等于12,则为平局;若指针所指区域两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题 ,共50分. 解答应写出文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表: 频数频率分布表成绩x (分) 频数(人) 频率5060x ≤< 10 0.05 6070x ≤< 30 0.157080x ≤<40n8090x ≤< m0.35 90100x ≤≤500.25频数分布直方图根据所给信息,解答下列问题:(1)m =__________,n =______________; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在_______________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人? 25.已知一次函数1y k x b =+与反比例函数2k y x=的图象交于第一象限内的()1,8,4,2P Q m ⎛⎫⎪⎝⎭两点,与x 轴交于A 点. (1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.如图,矩形ABCD 中,6,4AB BC ==,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 就菱形时,求EF 的长.27.如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.白银市2017年初中毕业、高中招生考试数学试题参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 题号 1 2 3 4 5 6 7 8 9 10 答案BBCDDCADAB二、填空题:本大题共8小题,每小题3分,共24分. 11. 2(1)x -12. >13. 0 14. 5815. k ≤5且k ≠1 16.15417. 3π18. 8(1分),6053(2分) 三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分) 19.(4分)解:原式=323312-2分 =23312-3分 31.4分 20.(4分)解:解1(1)2x -≤1得:x ≤3,1分解1-x <2得:x >-1. 2分 则不等式组的解集是:-1<x ≤3. 3分 ∴该不等式组的最大整数解为3x =.4分21.(6分)解:如图, 5分(注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.) ∴线段EF 即为所求作.6分22.(6分)解:过点D 作DE ⊥AC ,垂足为E ,设BE =x ,1分在Rt △DEB 中,tan DEDBE BE∠=, ∵∠DBC =65°, ∴tan65DE x =.2分 又∵∠DAC =45°, ∴AE =DE .∴132tan65x x +=,3分 ∴解得115.8x ≈,4分 ∴248DE ≈(米). 5分∴观景亭D 到南XX 路AC 的距离约为248米. 6分 23.(6分)解:(1)画树状图:3分列表 6 7 8 9 39101112BDCAE甲乙 3456 7 8 9 6 7 8 9 6 7 8 9 9 10 11 12 10 11 12 13 11 12 13 14甲乙 和 开始4 10 11 12 135 11 12 13 143分可见,两数和共有12种等可能性;4分(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=;5分刘凯获胜的概率为31124=. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(7分) 解:(1)m=70, 1分n=0.2;2分(2)频数分布直方图如图所示,3分(3)80≤x<90;5分(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).7分25.(7分) 解:(1)∵点P在反比例函数的图象上,∴把点P(12,8)代入kyx=2可得:k2=4,∴反比例函数的表达式为4yx=,1分∴Q (4,1) .把P(12,8),Q (4,1)分别代入1y k x b=+中,得频数(人)频数分布直方图成绩(分)1118214k b k b⎧=+⎪⎨⎪=+⎩,解得129k b =-⎧⎨=⎩, ∴一次函数的表达式为29y x =-+;3分(2)P ′(12-,-8) 4分(3)过点P ′作P ′D ⊥x 轴,垂足为D.5分∵P ′(12-,-8), ∴OD =12,P ′D =8,∵点A 在29y x =-+的图象上,∴点A (92,0),即OA =92, ∴DA =5, ∴P ′A 2289,D DA P +'6分 ∴sin ∠P ′AD 88989P P D A ''=== ∴sin ∠P ′AO 889=.7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴A B ∥DC ,OB =OD ,1分 ∴∠OBE =∠ODF , 又∵∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ),2分 ∴EO =FO ,∴四边形BEDF 是平行四边形;4分 (2)当四边形BEDF 是菱形时,设BE =x 则 DE =x ,6AE x =-,在Rt △ADE 中,222DE AD AE =+, ∴2224(6)x x =+-, ∴133x =, 135214332BEDF S BE AD =BD EF,=∴⋅=⨯=⋅菱形6分152233BD AB EF ,EF ==∴⨯=∴=又27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴AN =4,1分∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8,2分∴由勾股定理可知:NB = ∴B (,2)3分 (2)连接MC ,NC 4分 ∵AN 是⊙M 的直径, ∴∠ACN =90°, ∴∠NCB =90°,5分在Rt △NCB 中,D 为NB 的中点, ∴CD =12NB =ND , ∴∠CND =∠NCD ,6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°, ∴∠MCN +∠NCD =90°,7分 即MC ⊥CD .∴直线CD 是⊙M 的切线.8分28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩,1分解得:14a =-,32b =. ∴该二次函数的表达式为213442y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8),MNB CxA Oy则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10.令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴810AM NC nAB BC -==. 4分 ∵OA =4,BC =10, ∴114102022ABCSBC OA =⋅=⨯⨯=. 5分 1122222810ABN AMN ABN S BN OA n+n+S AM CN n ,S AB CB =⋅=⨯-===()4=()又∴2811(8)(2)(3)51055AMNABNnS S n n n -==-+=--+.6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.=8分 ∵2241625AB OB OA =+=+,22641645AC OC OA =++=∴12AB AC,=9分 ∴14OM AC =. 10分。
高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。
考试用时120分钟。
第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。
2017-2018学年甘肃省白银市会宁一中高三(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.(5分)函数y=x2+bx+c(x∈[0,∞))是单调函数的充要条件是()A.b≥0 B.b>0 C.b<0 D.b≤03.(5分)已知sin(π+θ)=﹣cos(2π﹣θ),|θ|<,则θ等于()A.﹣B.﹣C.D.4.(5分)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+) B.y=sin(2x+)C.y=sin 2x+cos 2x D.y=sin x+cos x5.(5分)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.6.(5分)将函数的图象向左平移个单位,所得的图象所对应的函数解析式是()A.y=sin2x B.y=cos2x C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3C.f(x)=()x D.f(x)=3x8.(5分)函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)9.(5分)函数f(x)=的图象大致为()A.B.C.D.10.(5分)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)曲线y=在点(1,﹣1)处的切线方程为.14.(5分)已知f(x)是R上的偶函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=.15.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.16.(5分)函数的部分图象如图所示,则将y=f(x)的图象向右平移单位后,得到的图象解析式为.三、解答题:17.(10分)设f(x)=.(1)求f(x)的定义域;(2)求f(x)的值域及取最大值时x的值.18.(12分)已知二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)=f(x)+2x且f(0)=1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣1,1]时,不等式:f(x)>2x+m恒成立,求实数m的范围.19.(12分)已知命题p:x2﹣4x﹣5≤0,命题q:x2﹣2x+1﹣m2≤0(m>0).(1)若p是q的充分条件,求实数m的取值范围.(2)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围.20.(12分)已知函数f(x)=aln x﹣x+.(1)若a=4,求f(x)的极值;(2)若f(x)在定义域内无极值,求实数a的取值范围.21.(12分)已知函数f(x)=ln.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>2(x+).22.(12分)某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x ≤11)元时,一年的销售量为(12﹣x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).2017-2018学年甘肃省白银市会宁一中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.2.(5分)函数y=x2+bx+c(x∈[0,∞))是单调函数的充要条件是()A.b≥0 B.b>0 C.b<0 D.b≤0【解答】解:∵函数y=x2+bx+c(x∈[0,+∞))是单调函数的∴根据二次函数的性质得出:﹣≤0,b≥0,∴函数y=x2+bx+c(x∈[0,∞))是单调函数的充要条件是b≥0,故选:A.3.(5分)已知sin(π+θ)=﹣cos(2π﹣θ),|θ|<,则θ等于()A.﹣B.﹣C.D.【解答】解:sin(π+θ)=﹣cos(2π﹣θ),|θ|<,可得﹣sinθ=﹣cosθ,|θ|<,即tan,|θ|<.∴θ=.故选:D.4.(5分)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+) B.y=sin(2x+)C.y=sin 2x+cos 2x D.y=sin x+cos x【解答】解:对于A:y=cos(2x+)最小正周期为T=,且y=cos(2x+)=﹣sin2x,所以函数的图象关于原点对称,故正确.对于B:y=sin(2x+)最小正周期为T=,且y=sin(2x+)=cos2x,函数的图象关于y轴对称,故错误.所对于C:y=sin2x+cos2x=最小正周期为T=,函数的图象不关于原点对称,故错误.对于D:y=sinx+cosx=最小正周期为T=2π,函数的图象不关于原点对称,故错误,故选:A.5.(5分)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.【解答】解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选:D.6.(5分)将函数的图象向左平移个单位,所得的图象所对应的函数解析式是()A.y=sin2x B.y=cos2x C. D.【解答】解:将函数的图象向左平移个单位,所得的图象所对应的函数解析式为y=sin[2(x+)+]=sin(2x+)的图象,故选:C.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x B.f(x)=x3C.f(x)=()x D.f(x)=3x【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.8.(5分)函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:∵f(1)=ln(1+1)﹣2=ln2﹣2<0,而f(2)=ln3﹣1>lne﹣1=0,∴函数f(x)=ln(x+1)﹣的零点所在区间是(1,2),故选:B.9.(5分)函数f(x)=的图象大致为()A.B.C.D.【解答】解:此函数是一个奇函数,故可排除C,D两个选项;又当自变量从原点左侧趋近于原点时,函数值为负,图象在X轴下方,当自变量从原点右侧趋近于原点时,函数值为正,图象在x轴上方,故可排除B,A选项符合,故选:A.10.(5分)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:a、b都是不等于1的正数,∵3a>3b>3,∴a>b>1,∵log a3<log b3,∴,即<0,或求解得出:a>b>1或1>a>b>0或b>1,0<a<1根据充分必要条件定义得出:“3a>3b>3”是“log a3<log b3”的充分条不必要件,故选:B.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)曲线y=在点(1,﹣1)处的切线方程为y=﹣2x+1.【解答】解:由题意可得:,所以在点(1,﹣1)处的切线斜率为﹣2,所以在点(1,﹣1)处的切线方程为:y=﹣2x+1.故答案为:y=﹣2x+1.14.(5分)已知f(x)是R上的偶函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=2.【解答】解:∵f(x+4)=f(x),∴f(7)=f(﹣1+4+4)=f(﹣1)∵f(x)是R上的偶函数∴f(﹣1)=f(1)∴f(7)=f(1)∵x∈(0,2)时,f(x)=2x2,∴f(7)=f(1)=2×12=2故答案为215.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.【解答】解:函数,由2kπ﹣πφ≤2kπ,可得6kπ﹣3π﹣3φ≤x≤6kπ﹣3φ,由题意在区间(﹣π,π)上单调递增,所以6kπ﹣3π﹣3φ≤﹣π 且π≤6kπ﹣3φ,因为0<φ<2π,所以k=1,实数φ的取值范围为;故答案为:16.(5分)函数的部分图象如图所示,则将y=f(x)的图象向右平移单位后,得到的图象解析式为y=sin(2x ﹣).【解答】解:由图知,A=1,T=π,∴T=π,ω==2,又×2+φ=+2kπ(k∈Z),∴φ=2kπ+(k∈Z),又|φ|<,∴φ=;∴y=f(x)的解析式为y=sin(2x+),∴将y=f(x)的图象向右平移单位后得y=sin[2(x﹣)+]=sin(2x﹣).故答案为:y=sin(2x﹣).三、解答题:17.(10分)设f(x)=.(1)求f(x)的定义域;(2)求f(x)的值域及取最大值时x的值.【解答】解:(1)由1﹣2sin x≥0,根据正弦函数图象知:定义域为{x|2kπ+π≤x≤2kπ+,k∈Z}.(2)∵﹣1≤sin x≤1,∴﹣1≤1﹣2sin x≤3,∵1﹣2sin x≥0,∴0≤1﹣2sin x≤3,∴f(x)的值域为[0,],当x=2kπ+,k∈Z时,f(x)取得最大值.18.(12分)已知二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)=f(x)+2x且f(0)=1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣1,1]时,不等式:f(x)>2x+m恒成立,求实数m的范围.【解答】解:(1)二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)=f(x)+2x 且f(0)=1.由f(0)=1.可得:c=1,f(x+1)=f(x)+2x,可得a(x+1)2+b(x+1)=ax2+bx+2x,即ax2+2ax+1+bx+b=ax2+bx+2x,待定系数法,可得:∴a=1,b=﹣1,故得f(x)的解析式为:f(x)=x2﹣x+1(Ⅱ)不等式:f(x)>2x+m恒成立,转化为f(x)﹣2x>m恒成立,令g(x)=f(x)﹣2x=x2﹣3x+1开口向上,x=.当在x∈[﹣1,1]时:g(x)时单调性减函数,∴当x=1时,g(x)取得最小值为:﹣1.∴实数m的范围是(﹣∞,﹣1).19.(12分)已知命题p:x2﹣4x﹣5≤0,命题q:x2﹣2x+1﹣m2≤0(m>0).(1)若p是q的充分条件,求实数m的取值范围.(2)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围.【解答】解:(1)对于p:A=[﹣1,5],对于q:B=[1﹣m,1+m],p是q的充分条件,可得A⊆B,∴,∴m∈[4,+∞).(2)m=5,如果p真:A=[﹣1,5],如果q真:B=[﹣4,6],p∨q为真命题,p∧q为假命题,可得p,q一真一假,①若p真q假,则无解;②若p假q真,则,∴x∈[﹣4,﹣1)∪(5,6].20.(12分)已知函数f(x)=aln x﹣x+.(1)若a=4,求f(x)的极值;(2)若f(x)在定义域内无极值,求实数a的取值范围.【解答】解:(1)已知a=4,∴f(x)=4ln x﹣x+,(x>0),f′(x)=﹣1﹣=,令f′(x)=0,解得x=1或x=3.当0<x<1或x>3时,f′(x)<0,当1<x<3时,f′(x)>0,f(1)=2,f(3)=4ln 3﹣2,∴f(x)取得极小值2,极大值4ln 3﹣2.(2)f(x)=aln x﹣x+(x>0),f′(x)=﹣1﹣=,f(x)在定义域内无极值,即f′(x)≥0或f′(x)≤0在定义域上恒成立.即方程f′(x)=0在(0,+∞)上无变号零点.设g(x)=﹣x2+ax﹣(a﹣1),根据二次函数的性质得:△≤0或,解得a=2,∴实数a的取值范围为a=2.21.(12分)已知函数f(x)=ln.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>2(x+).【解答】(12分)解:(1)因为f(x)=ln(1+x)﹣ln(1﹣x),所以f′(x)=+,f′(0)=2.又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.…(6分)(2)令g(x)=f(x)﹣2(x),则:g′(x)=f′(x)﹣2(1+x2)=.因为g′(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x).…(12分)22.(12分)某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x ≤11)元时,一年的销售量为(12﹣x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).【解答】解:(1)分公司一年的利润L(万元)与售价x的函数关系式为:L=(x﹣3﹣a)(12﹣x)2,x∈[9,11].(2)L′(x)=(12﹣x)2+2(x﹣3﹣a)(12﹣x)×(﹣1)=(12﹣x)2﹣2(x ﹣3﹣a)(12﹣x)=(12﹣x)(18+2a﹣3x).令L′(x)=0得x=6+a或x=12(不合题意,舍去).∵3≤a≤5,∴8≤6+a≤.在x=6+a两侧L′的值由正值变负值.所以,当8≤6+a≤9,即3≤a≤时,L max=L(9)=(9﹣3﹣a)(12﹣9)2=9(6﹣a);当9<6+a≤,即<a≤5时,L max=L(6+a)=(6+a﹣3﹣a)[12﹣(6+a)]2=4(3﹣a)3,即当3≤a≤时,当每件售价为9元,分公司一年的利润L最大,最大值Q(a)=9(6﹣a)万元;当<a≤5时,当每件售价为(6+a)元,分公司一年的利润L最大,最大值Q (a)=4(3﹣a)3万元.赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质 (4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=。
2017—2018学年第一学期期中试卷高一年级数学试卷满分:150分 考试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.已知集合{1,2,3,4}A =,那么A 的真子集的个数是( )A 、15B 、16C 、3D 、4 2. 若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 3. 设集合{}1->∈=x Q x A ,则( )A 、A ∅∉B AC AD 、⊆A 4.下列各组函数中,表示同一函数的是( )A 、0,1x y y ==B 、11,12+-=-=x x y x yC 、33,x y x y ==D 、()2,x y x y == 5.函数)3(-=x f y 的定义域为[4,7],则)(2x f y =的定义域为( )A 、(1,4)B 、[1,2]C 、)2,1()1,2(⋃--D 、 ]2,1[]1,2[⋃--6.设02log 2log <<b a ,则( )A 、10<<<b aB 、10<<<a bC 、1>>b aD 、1>>a b 7.若函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,则实数a 的取值范围是A 、3a ≤-B 、3a ≥-C 、5a ≤D 、3a ≥8.定义域为R 的函数y=f(x)的值域为[a ,b],则函数y=f(x +a)的值域为( )A 、[2a ,a +b]B 、[a ,b]C 、[0,b -a]D 、[-a ,a +b]9、下列函数中为偶函数,且在区间(0,)+∞上为增函数的是( )A 、x y -=3B 、||x y =C 、1()2x y = D 、42+-=x y 10.若函数()y f x =是函数1x y a a a =≠(>0,且)的反函数,且(2)1f =,则()f x =( )A 、x 2logB 、x 21 C 、x 21log D 、22-x 11. 方程|x 2-6x |=a 有不同的四个解,则a 的范围是A 、a ≤9B 、0≤a ≤9C 、0<a<9D 、0<a ≤912.已知集合A={a ,b ,c},B={1,2,3,4,5,6}。
甘肃省会宁县2017-2018学年高一数学上学期期中试题(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(甘肃省会宁县2017-2018学年高一数学上学期期中试题(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为甘肃省会宁县2017-2018学年高一数学上学期期中试题(1)的全部内容。
2017-2018学年度第一学期期中考试高一级数学试卷考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
一、选择题(共12小题,每小题5分,总共60分)。
1、已知集合( )A。
B . C 。
D 。
2、若幂函数的图像过点(2,41),则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C.(-∞,+∞) D.(-∞,0)3、下列函数中,与函数y =x 1有相同定义域的是( )A .f(x)=lnxB .f (x)=x 1 C.f(x)=|x| D.f(x )=e x4、已知函数f (x)=3x2,x<0,2x +1,x ≥0,且f (x0)=3,则实数x 0的值为( )A.-1 B.1 C.-1或1 ﻩ D.-1或-315、 方程log 3x+x-3=0的解所在的区间是( )A .(0, 1) B.(1, 2) C.(2,3) D.(3,4)6、函数f(x)=1-x -11( )A.在(-1,+∞)上单调递增 B .在(1,+∞)上单调递增C.在(-1,+∞)上单调递减 D.在(1,+∞)上单调递减7、函数f(x )=1+log 2x与g (x)=21-x在同一直角坐标系下的图象大致是().8、 已知函数的图象恒过定点A,若点A 也在函数的图象上,则( )A. B . C 。
白银市第十中学2017-2018学年第一学期期中考试高一数学模拟试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则()A. B. C. D.【答案】B【解析】∵集合A={x∈Q|x>﹣1},∴集合A中的元素是大于﹣1的有理数,对于A,“∈”只用于元素与集合间的关系,故A错;对于B,不是有理数,故B正确,C错,D错;故选B.点睛:集合是高考中必考的知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错.2.下列四组中的,,表示同一个函数的是().A. ,B. ,C. ,D. ,【答案】D【解析】对于A,f(x)=1,定义域为R,g(x)=x0=1,定义域是{x|x≠0},定义域不同,不是同一函数;对于B,f (x)=x﹣1,定义域是R,g(x)=﹣1,定义域为{x|x≠0},定义域不同,不是同一函数;对于C,f(x)=x2,定义域为R,g(x)==x2,定义域是[0,+∞),定义域不同,不是同一函数;对于A,f(x)=|x|,定义域是R,g(x)==|x|,定义域是R,定义域相同,对应关系也相同,是同一函数.故选D.点睛:判定两个函数是否为同一个函数,主要看定义域和对应法则,只有定义域与对应法则相同的函数才是同一个函数,与函数的自变量名称无关.3.下列函数在区间上是增函数的是()A. B. C. D.【答案】A【解析】对于A,在上是增函数,对于B,在上是增函数,对于C,在上是减函数,对于D,是减函数,所以选A.4.下列函数的图像关于轴对称的是()A. B. C. D.【答案】A【解析】因为函数图象关于轴对称,所以函数为偶函数,因为,所以选A.5.已知函数,则()A. -1B. 0C. 1D. 2【答案】D【解析】,故选D.6.的零点所在的区间是()A. B. C. D.【答案】B【解析】函数f(x)=e x﹣是(0,+∞)上的增函数,再根据f()=﹣2<0,f(1)=e﹣1>0,可得f()f(1)<0,∴函数f(x)=e x﹣的零点所在的区间是(,1),故选B.点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.7.若,,,则()A. B. C. D.【答案】A【解析】因为,所以,故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.8.已知幂函数的图像关于原点对称,且在上是减函数,则()A. 0B. 0或2C. 0D. 2【答案】B【解析】幂函数在上是减函数,所以,解得,又,所以,当时,不是奇函数,所以,故选B.9.定义在上的函数满足,且在上为增函数,若,则必有()A. B. C. D.【答案】D【解析】,由知,函数为偶函数,所以,又函数在上为增函数,所以,即,故选D.10.在同一坐标系中,函数与(其中且)的图象的可能是()A. B. C. D.【答案】C【解析】对底数a讨论。
景泰县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( )A .15,10,25B .20,15,15C .10,10,30D .10,20,202. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1 B .±2C.或3D .1或23. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 4. 函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c <0,d >0D .a >0,b >0,c >0,d <05. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( ) A .0<a <1 B.﹣≤a≤ C .﹣1≤a ≤1 D .﹣2≤a ≤26. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .4C .D .27. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .18. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、259. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个11.若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .212.抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D .二、填空题13.已知函数f (x )=x m 过点(2,),则m= .14.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .15.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数的取值范围为______.16.在△ABC中,角A,B,C所对边分别为a,b,c,且,B=45°,面积S=2,则b等于.17.如图,P是直线x+y-5=0上的动点,过P作圆C:x2+y2-2x+4y-4=0的两切线、切点分别为A、B,当四边形P ACB的周长最小时,△ABC的面积为________.18.已知z,ω为复数,i为虚数单位,(1+3i)z为纯虚数,ω=,且|ω|=5,则复数ω=.三、解答题19.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.20.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积.21.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)23.在中,、、是 角、、所对的边,是该三角形的面积,且(1)求的大小; (2)若,,求的值。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,,,则集合()A. B. C. D.【答案】D【解析】试题分析:因为A∪B={x|x≤0或x≥1},所以,故选 D.考点:集合的运算.2. 已知,则为()A. 2B. 3C. 4D. 5【答案】A【解析】3. 已知集合,集合为整数集,则()A. B. C. D.【答案】D【解析】试题分析:,所以,故选 D. 考点:集合的交集运算.视频4. 已知,且,则等于()A. B. C. D.【答案】B【解析】因为,设,则,所以,因为,所以,解得,故选 B.5. 设函数与的图象的交点为,则所在的区间是()A. B. C. D.【答案】A..................考点:函数零点点评: 本题主要考查函数的零点和方程的根的关系和零点存在性定理,考查考生的灵活转化能力和对零点存在性定理的理解,属于基础题.6. 定义在上的函数满足,,等于()A. 1B. 2C. 3D. 4【答案】A【解析】因为,,所以令,得,所以,再令,得,所以,故选 A.7. 与函数的定义域相同的函数是()A. B. . C. D.【答案】C【解析】函数的定义域为,A中定义域为;B中定义域为R;C中定义域为;D中定义域为;故选 C.8. 设,,,则()A. B. C. D.【答案】A【解析】故选A9. 已知函数,则下列结论正确的是()A. 是偶函数,递增区间是B. 是偶函数,递减区间是C. 是奇函数,递减区间是D. 是奇函数,递增区间是【答案】C【解析】由函数可得,函数的定义域为,且,故函数为奇函数,函数,如图所示,所以函数的递减区间为,故选 C.10. 幂函数的图象过点,则它的单调递增区间是()A. B. C. D.【答案】B【解析】设幂函数的解析式,则,解得,所以,所以他的单调递增区间是,故选 C.11. 函数的图象的大致形状是()A. B. C. D. 【答案】D【解析】函数的定义域为{x|x≠0},所以y==当x>0时,函数是指数函数,其底数0<a<1,所以函数递减;当x<0时,函数图象与指数函数y=a x(x<0)的图象关于x 轴对称,函数递增.故选:D.点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.12. 设,,且,则下列关系中一定成立的是()A. B. C. D.【答案】D【解析】由题意得,作出函数的图象,如图所示,由图象可知,要使且成立,则有且,故必有且,又,即为,所以,故选 D.点睛:本题主要考查了指数函数的单调性的应用,着重考查了指数函数单调性确定参数的取值范围,由于本题条件较多,且函数单调性相对比较复杂,本题借助函数图象来辅助研究,由图象辅助研究函数性质是函数图象的重要作用,以形助数的解题技巧是常用的一种判定函数单调性的一种方法.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设全集,,,则__________.【答案】{7,9}【解析】因为全集,所以,所以.14. 已知,,则__________.【答案】【解析】试题分析:由得,所以,解得,故答案为.考点:指数方程;对数方程.15. 已知函数是定义在上的奇函数且,当时,,则__________.【答案】-3【解析】因为,所以函数的周期为,因为是定义在上奇函数,所以,则,所以,令,则,即,又函数为奇函数,所以,所以.点睛:本题主要考查了函数值的求解问题,其中解答中涉及到函数的奇偶性的转化,函数的赋值法,以及周期性的性质等知识点的综合运用,试题比较基础,属于基础题,解答中根据函数的奇偶性和周期性的性质将条件转化是解答的关键.16. 已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.【答案】或【解析】设x<0,则-x>0,f(-x)=x2+4x,所以x<0时,f(x)=-x2-4x.所以f(x)=当x≥0时,由x2-4x>x,解得x>5,当x<0时,由-x2-4x>x,解得-5<x<0,故不等式的解集为(-5,0)∪(5,+∞).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 记函数的定义域为集合,函数的定义域为集合.求:(1)集合;(2)集合、.【答案】(1) ;或;(2);或. 【解析】试题分析:(1)对数的真数大于求出集合,开偶次方的被开方非负,求出集合;(2)直接利用集合的运算求出集合.试题解析:(1);或.(2);或.18. 已知函数,,(为正常数),当时,函数.(1)求的值;(2)求函数的单调递增区间.【答案】(1)1;(2)在上单调递增;在上单调递增.【解析】试题分析:(1)由已知中函数与的图象在轴上的截距相等,结合函数,,可以构造关于的方程,解方程可以求出的值;(2)由(1)中结论,可以得到函数的解析式,利用零点分段法,可以将其转化为分段函数的形式,再由二次函数的性质,即可分析函数的单调递增区间.试题解析:(1)由题意,,又,所以.(2).当时,,在上单调递增;当时,,它在上单调递增.19. 已知函数.(1)用定义证明:函数在区间上是减函数;(2)若函数是偶函数,求实数的值.【答案】(1)见解析;(2)-2.【解析】试题分析:(Ⅰ)设,计算的结果等于,可得,从而判断函数在区间上是减函数;(Ⅱ)因为函数,是偶函数,从而得到,由此求得的值.试题解析:(Ⅰ)设,且,所以=因为,所以<0,-2<0.所以>0.即.所以函数f(x)在区间(-∞,1]上是减函数.(Ⅱ)因为函数g(x)=f(x)-mx,所以g(x)=-2x-2-mx=-(2+m)x-2.又因为g(x)是偶函数,所以g(-x)=g(x).所以-(2+m)(-x)-2=-(2+m)x-2. 所以2(2+m)x=0.因为x是任意实数,所以2+m=0.所以m=-2.点睛:本题主要考查了利用定义证明函数的单调性,其具体步骤为:1、取值;2、作差;3、化简;4、判断,得结论.其关键步骤是化简中的因式分解,将最后的结果和0比较;考查了函数奇偶性的性质,若函数为偶函数,则对定义域内任意均有恒成立,代入后根据对应系数相等可得结果.20. 和盛机械生产厂每生产某产品(百台),其总成本为(万元),其中固定成本为 2.8 万元,并且每生产 1 百台的生产成本为 1 万元(总成本=固定成本+生产成本).销售收入(万元)满足,假定生产的产品都能卖掉,请完成下列问题:(1)写出利润函数的解析式(注:利润=销售收入-总成本);(2)试问该工厂生产多少台产品时,可使盈利最多?【答案】(1);(2)当工厂生产 400 台时,可使赢利最大为 3.6 万元.【解析】试题分析:(Ⅰ)根据利润=销售收入-总成本,可得利润函数y=f(x)的解析式;(Ⅱ)利用(Ⅰ)中函数解析式,分段求最值,即可得出结论试题解析:(Ⅰ)由题意得∴.……………………6 分(Ⅱ)当时,∵函数递减,∴<=(万元).当时,函数当时,有最大值为(万元).∴当工厂生产400台时,可使赢利最大为万元.……………………12 分考点:根据实际问题选择函数类型21. 已知函数是定义在上的偶函数,且当时,.现已画出函数在轴左侧的图象,如图所示,并根据图象:(1)直接写出函数,的增区间;(2)写出函数,的解析式;(3)若函数,,求函数的最小值.【答案】(1)在区间,上单调递增;(2);(3)的最小值为.【解析】试题分析:(1)根据偶函数的图象关于轴对称,可作出的图象,由图象可得的单调递增函数;(2)令,则,根据条件可得,利用函数是定义在上的偶函数,可得,从而可得函数的解析式;(3)先求出抛物线对称轴,然后分当时,当,当时三种情况,根据二次函数的增减性解答.试题解析:(1)在区间,上单调递增.(2)设,则.∵函数是定义在上的偶函数,且当时,.∴,∴.(3),对称轴方程为:,当时,为最小;当时,为最小;当时,为最小.综上,有:的最小值为.点睛:本题主要考查了函数的综合应用问题,其中解答中涉及到分段函数的解析式,分段函数的单调性,函数最值的求解等知识点的综合考查,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,解答中熟记分析函数性质的求解方法是解答的关键.22. 已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的值;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.【答案】(1);(2)或;(3).【解析】试题分析:(1)利用已知条件,将代入,解不等式,求出的取值范围;(2)首先分情况进行讨论,利用仅有一解,即和的两种情况进行讨论;(3)利用函数的单调性,最大值和最小值,将不等式进行转换和化简从而求出的取值范围.试题解析:(1)由得解得(2)方程的解集中恰有一个元素.等价于仅有一解,等价于仅有一解,当时,,符合题意;当时,,解得综上:或(3)当时,,,所以在上单调递减.函数在区间上的最大值与最小值分别为,.即,对任意成立.因为,所以函数在区间上单调递增,所以时,有最小值,由,得.故的取值范围为.考点:函数与不等式综合.。
一、单选题。
(本大题共8小题,共40高一(上)期中数学试卷分。
在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。
2017-2018学年甘肃省白银市景泰一中高一(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)设全集U={1,2,3,4,5,6,7},集合A={3,5},集合B={1,3,5},则()A.U=A∪B B.U=(∁U A)∪B C.U=A∪(∁U B)D.U=∁U(A∩B)2.(5.00分)与函数y=x有相同的图象的函数是()A.B.C.D.3.(5.00分)函数的定义域是()A.[1,+∞)B.(﹣∞,1]C. D.4.(5.00分)已知函数,则f[f(﹣1)]=()A.4 B.±2 C.﹣2 D.25.(5.00分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.年接待游客量逐年增加B.月接待游客量逐月增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳6.(5.00分)函数f(x)=e x+x的零点所在一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)7.(5.00分)函数f(x)=x2+2(a﹣1)x+2在(﹣2,+∞)上是增函数,则实数a 的范围是()A.a≥3 B.a≥﹣C.a≤3 D.a≤﹣18.(5.00分)等于()A.B.2 C.D.29.(5.00分)已知y=f (x)是定义在R 上的奇函数,当x≥0 时,f (x)=x (x+2),则当x<0 时,f (x)的表达式为()A.f (x)=﹣x(x+2) B.f (x)=x(x+2)C.f (x)=﹣x(x﹣2)D.f (x)=x(x﹣2)10.(5.00分)已知,则a,b,c 的三个数的大小关系为()A.c>b>a B.b>a>c C.a>b>c D.b>c>c11.(5.00分)函数y=|x+1|的图象是()A.B.C.D.12.(5.00分)若函数f(x)对于任意实数x总有f(﹣x)=f(x),且f(x)在区间(﹣∞,﹣1]上是减函数,则()A.f(﹣)<f(﹣1)<f(2)B.f(﹣1)<f(﹣)<f(2)C.f(2)<f(﹣1)<f(﹣)D.f(2)<f(﹣)<f(﹣1)二、填空题:本大题共4个小题,每小题5分,共20分13.(5.00分)函数y=a2x﹣2+3(a>0且a≠1)的图象恒过定点.14.(5.00分)=.15.(5.00分)若函数f(2x+1)的定义域为,则函数f(x﹣1)的定义域为.16.(5.00分)下列命题:①偶函数的图象一定与y轴相交;②定义在R上的奇函数f(x)必满足f(0)=0;③f(x)=(2x+1)2﹣2(2x﹣1)既不是奇函数又不是偶函数;④,则f为A到B的映射;⑤在(﹣∞,0)∪(0,+∞)上是减函数.其中真命题的序号是(把你认为正确的命题的序号都填上)三、解答题:本题共6小题,70分.解答应写出文字说明,证明过程或演算步骤.17.(10.00分)用函数单调性的定义证明:函数在(﹣∞,1)上是减函数.18.(12.00分)设全集为R,A={x|1≤x<7},B={x|2<x<10},(1)求A∪B,(∁U A)∩B;(2)若C={x|2m<x≤m+6}且B∩C=C,求实数m 的范围.19.(12.00分)已知函数.(1)在下图给定的直角坐标系中画出函数f(x)的图象;(2)写出函数f(x)的单调递减区间;(3)由图象指出当x取何值时函数f(x)有最值.20.(12.00分)已知函数f(x)=log a(2x﹣1),g(x)=log a(4﹣2x)(a>0且a ≠1).(1)求函数h(x)=f(x)﹣g(x)的定义域;(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x 的取值范围.21.(12.00分)已知函数f(x)=b•a x(其中a、b 为常数,a>0 且a≠1 )的图象经过点A(1,27),B(2,81).(1)求f (x)的解析式;(2)若不等式在x∈(﹣∞,1]上恒成立,求实数m 的取值范围.22.(12.00分)(1)已知函数是奇函数,求实数m 的值;(2)画出函数的图象;(3)利用函数的图象回答,k 为何值时,方程无解?有一解?有两解?2017-2018学年甘肃省白银市景泰一中高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)设全集U={1,2,3,4,5,6,7},集合A={3,5},集合B={1,3,5},则()A.U=A∪B B.U=(∁U A)∪B C.U=A∪(∁U B)D.U=∁U(A∩B)【解答】解:∵全集U={1,2,3,4,5,6,7},集合A={3,5},集合B={1,3,5},∴C U A={1,2,4,6,7},∴U=(C U A)∪B.故选:B.2.(5.00分)与函数y=x有相同的图象的函数是()A.B.C.D.【解答】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选:D.3.(5.00分)函数的定义域是()A.[1,+∞)B.(﹣∞,1]C. D.【解答】解:由,解得.∴函数的定义域是(,1].故选:C.4.(5.00分)已知函数,则f[f(﹣1)]=()A.4 B.±2 C.﹣2 D.2【解答】解:函数,则f[f(﹣1)]=f(3+1)=f(4)==2,故选:D.5.(5.00分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.年接待游客量逐年增加B.月接待游客量逐月增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳【解答】解:由折线图得:在A中,年接待游客量逐年增加,故A正确;在B中,月接待游客量8月份后逐月减少,故B错误;在C中,各年的月接待游客量高峰期大致在7,8 月,故C正确;在D中,各年 1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳,故D正确.故选:B.6.(5.00分)函数f(x)=e x+x的零点所在一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)【解答】解:∵函数f(x)=e x+x是R上的连续函数,f(﹣1)=﹣1<0,f(0)=1>0,∴f(﹣1)•f(0)<0,故函数f(x)=e x+x的零点所在一个区间是(﹣1,0),故选:B.7.(5.00分)函数f(x)=x2+2(a﹣1)x+2在(﹣2,+∞)上是增函数,则实数a 的范围是()A.a≥3 B.a≥﹣C.a≤3 D.a≤﹣1【解答】解:∵函数f(x)=x2+2(a﹣1)x+2的对称轴为x=1﹣a,又函数f(x)=x2+2(a﹣1)x+2在(﹣2,+∞)上是增函数,∴1﹣a≤﹣2,∴a≥3.故选:A.8.(5.00分)等于()A.B.2 C.D.2【解答】解:===.故选:A.9.(5.00分)已知y=f (x)是定义在R 上的奇函数,当x≥0 时,f (x)=x (x+2),则当x<0 时,f (x)的表达式为()A.f (x)=﹣x(x+2) B.f (x)=x(x+2)C.f (x)=﹣x(x﹣2)D.f (x)=x(x﹣2)【解答】解:∵y=f (x)是定义在R 上的奇函数,∴f(﹣x)=﹣f(x),设x<0,则﹣x>0,当x≥0 时,f (x)=x(x+2),故f(﹣x)=﹣x(﹣x+2)=x(x﹣2)=﹣f(x),则当x<0 时,f (x)=﹣x(x﹣2),故选:C.10.(5.00分)已知,则a,b,c 的三个数的大小关系为()A.c>b>a B.b>a>c C.a>b>c D.b>c>c【解答】解:a<0,b=>1,c∈(0,1).∴b>c>a.故选:D.11.(5.00分)函数y=|x+1|的图象是()A.B.C.D.【解答】解:∵函数y=|x+1|=,∴画出图象应为A如图所示的图象.故选:A.12.(5.00分)若函数f(x)对于任意实数x总有f(﹣x)=f(x),且f(x)在区间(﹣∞,﹣1]上是减函数,则()A.f(﹣)<f(﹣1)<f(2)B.f(﹣1)<f(﹣)<f(2)C.f(2)<f(﹣1)<f(﹣)D.f(2)<f(﹣)<f(﹣1)【解答】解:∵f(﹣x)=f(x),∴f(x)为偶函数,又f(x)在区间(﹣∞,﹣1]上是减函数,f(2)=f(﹣2),﹣2<﹣<﹣1,∴f(﹣1)<f(﹣)<f(2).故选:B.二、填空题:本大题共4个小题,每小题5分,共20分13.(5.00分)函数y=a2x﹣2+3(a>0且a≠1)的图象恒过定点(1,4).【解答】解:根据题意,数y=a2x﹣2+3中,令2x﹣2=0,解可得x=1,此时f(1)=a2﹣2+3=4,即函数的图象恒过定点(1,4),故答案为:(1,4).14.(5.00分)=﹣1.【解答】解:∵=﹣==﹣1.故答案为:﹣1.15.(5.00分)若函数f(2x+1)的定义域为,则函数f(x﹣1)的定义域为[1,4] .【解答】解:∵函数f(2x+1)的定义域为,即,∴0≤2x+1≤3,即函数f(x)的定义域为[0,3],由0≤x﹣1≤3,得1≤x≤4.∴函数f(x﹣1)的定义域为[1,4].故答案为:[1,4].16.(5.00分)下列命题:①偶函数的图象一定与y轴相交;②定义在R上的奇函数f(x)必满足f(0)=0;③f(x)=(2x+1)2﹣2(2x﹣1)既不是奇函数又不是偶函数;④,则f为A到B的映射;⑤在(﹣∞,0)∪(0,+∞)上是减函数.其中真命题的序号是②(把你认为正确的命题的序号都填上)【解答】解:例如f(x)=是偶函数但不与y轴相交,故①错;若f(x)为奇函数,所以有f(﹣0)=﹣f(0),所有f(0)=0,故②正确;∵f(x)=(2x+1)2﹣2(2x﹣1)=4x2+3,∴f(﹣x)=4(﹣x)2+3=4x2+3=f(x)∴f(x)为偶函数,故③错;∵﹣1∈A,但按对应法则B中无元素与之对应,故④错;例如x=﹣1时f(﹣1)=﹣1;x=2时,f(2)=,有f(﹣1)<f(2),故⑤错故答案为②三、解答题:本题共6小题,70分.解答应写出文字说明,证明过程或演算步骤.17.(10.00分)用函数单调性的定义证明:函数在(﹣∞,1)上是减函数.【解答】证明:设x1<x2<1,则f(x1)﹣f(x2)=﹣=,∵x1<x2<1,∴x2﹣x1>0,(x1﹣1)(x2﹣1)>0,故f(x 1)﹣f(x2)>0,故f(x)在(﹣∞,1)递减.18.(12.00分)设全集为R,A={x|1≤x<7},B={x|2<x<10},(1)求A∪B,(∁U A)∩B;(2)若C={x|2m<x≤m+6}且B∩C=C,求实数m 的范围.【解答】解:(1)∵全集为R,A={x|1≤x<7},B={x|2<x<10},∴A∪B={x|1≤x<10},C U A={x|x<1或x≥7},(∁U A)∩B={x|7≤x<10}.(2)∵C={x|2m<x≤m+6},B={x|2<x<10},且B∩C=C,∴C⊆B,当C=∅时,2m≥m+6,解得m≥6,成立,当C≠∅时,,解得1≤m≤4.综上,实数m的范围是[6,+∞)∪[1,4].19.(12.00分)已知函数.(1)在下图给定的直角坐标系中画出函数f(x)的图象;(2)写出函数f (x )的单调递减区间;(3)由图象指出当x 取何值时函数f (x )有最值.【解答】解:(1)由分段函数的图象画法,可得f (x )的图象; (2)函数 f (x ) 的单调递减区间为(﹣1,0),(1,4); (3)通过图象可得,x=1时,f (x )取得最大值2; x=4时,f (x )取得最小值﹣1.20.(12.00分)已知函数f (x )=log a (2x ﹣1),g (x )=log a (4﹣2x )(a >0且a ≠1).(1)求函数h (x )=f (x )﹣g (x )的定义域;(2)利用对数函数的单调性,讨论不等式f (x )≥g (x )中 x 的取值范围. 【解答】解:(1)要使函数h (x )=f (x )﹣g (x )=log a (2x ﹣1)﹣log a (4﹣2x )有意义,需,解得:<x <2,故函数h (x )=f (x )﹣g (x )的定义域为(,2).(2)∵不等式f (x )≥g (x ),即 log a (2x ﹣1)≥log a (4﹣2x ),∴当a>1时,有,解得≤x<2.当1>a>0时,有,解得<x≤.当不等式f(x)≥g(x)中x的取值范围为(,2).21.(12.00分)已知函数f(x)=b•a x(其中a、b 为常数,a>0 且a≠1 )的图象经过点A(1,27),B(2,81).(1)求f (x)的解析式;(2)若不等式在x∈(﹣∞,1]上恒成立,求实数m 的取值范围.【解答】解:(1)由已知可得,,解得a=3,b=9,所以f(x)=9•3x=3x+2,(2)由(1)可得m≤()x+()x,x∈(﹣∞,1],令()x=t,则t≥,令g(t)=t2+t,其对称轴为t=﹣,所以g(t)在[,+∞)为单调增函数,所以g(t)min=g()=,即实数m的取值范围是:(﹣∞,].22.(12.00分)(1)已知函数是奇函数,求实数m 的值;(2)画出函数的图象;(3)利用函数的图象回答,k 为何值时,方程无解?有一解?有两解?【解答】解:(1)∵函数是R上的奇函数,∴f(0)=,∴m=﹣1.(2)y=()x向下平移一个单位得到y=()x﹣1,再把x轴下方的沿x轴翻折到x轴上方,得到y=|()x﹣1|再朝上平移1个单位即可,函数的图象如下:(3)根据图象可得:k<1时,无解;1<k<2,有两解;k=1或k≥2时,1解.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。