Design, production and testing of PMN–PT electrostrictive transducers
- 格式:pdf
- 大小:250.20 KB
- 文档页数:6
《基于超声波检测的倒车雷达设计》开题报告一、课题的目的和意义1.研究目的(1)研究了一种汽车倒车雷达预警系统。
该系统在常见的汽车倒车预警装置的基础上采用计算机控制技术和超声波测距技术,通过显示障碍物与汽车的距离并根据其距离远近实时发出报警,解除了驾驶员泊车和起动车辆时前后左右探视所引起的困扰,提高了驾驶安全性。
(2)在研究汽车倒车雷达预警系统过程中,运用理论分析、电路设计和计算机仿真等研究手段,完成了倒车雷达预警系统硬件和软件的设计,采用了模糊控制算法,进行了系统的计算机仿真。
2.研究意义随着中国经济的持续增长和汽车价格的持续下降,越来越多的家庭拥有自己的汽车。
在享受汽车给我们带来的便利同时,由于倒车而产生的问题也日益突出。
一方面汽车的数量逐年增加,公路、街道、停车场和车库拥挤不堪,可转动的空间越来越少;另一方面,新司机及非专职司机越来越多,因倒车引起的纠纷越来越多,车辆之间、车辆与人、车辆与墙壁等障碍物之间的碰撞时有发生。
在2006年汽车事故的发生比例中,倒车引起的事故占28%,倒车己成为令人们头痛的一项任务,即使是经验丰富的司机也在抱怨倒车是件费力费神的事。
据统计危险境况时,如果能给驾驶员半秒钟的预处理时间,则可分别减少追尾事故的30%,路面相关事故的50%,迎面撞车事故的60%。
改善倒车遇到的窘境被越来越多的人所关注,人们对汽车操纵的便捷性提出了更高的要求,希望有种装置能够解决汽车倒车给人们带来的不便,消除驾驶中的不安全因素,可将车快速准确地停放到指定的位置。
二、文献综述国外汽车倒车雷达预警系统早期大多采用红外线的发射与接收原理,不属于雷达(无线电波)的产品,最大的缺点是红外线波易受干扰,整个系统的警示音常呈现不稳定的乱鸣状态,另外对深黑色粗糙表面物体的反应也较差。
但更糟糕的是,无论是红外线发射器或接收器,只要任何一方让一层薄薄的冰雪或泥尘覆盖,系统就会失效。
最近在欧美出现的一种电磁感应倒车雷达。
大气环境监测仪器工艺流程英文回答:The process of manufacturing atmospheric environmental monitoring instruments involves several steps. Firstly, the design and development phase is crucial. This includes researching and understanding the requirements of the monitoring instrument, brainstorming ideas, and creating a prototype. For example, when designing a portable air quality monitor, I would need to consider factors such as the size, weight, and accuracy of the device.Once the design is finalized, the next step is the procurement of materials and components. This involves sourcing high-quality sensors, circuit boards, casings, and other necessary parts. It is important to ensure that the materials meet the required standards and specifications. For instance, I would need to find a reliable supplier for gas sensors that can accurately detect pollutants in the air.After the procurement of materials, the assembly process begins. This involves putting together the various components to create the final product. It is important to follow proper assembly procedures and quality control measures to ensure that the instrument functions correctly. For example, I would need to carefully solder the circuit board, connect the sensors, and assemble the casing.Once the instrument is assembled, it undergoes testing and calibration. This is done to verify its accuracy and performance. For example, I would expose the air quality monitor to known levels of pollutants and compare the readings with a reference instrument to ensure that it provides reliable measurements.After testing, the instrument is ready for packaging and distribution. This involves packaging it in a suitable manner to protect it during transportation. Additionally, user manuals and other documentation are prepared to provide instructions on how to use the instrument effectively.中文回答:制造大气环境监测仪器的工艺流程包括几个步骤。
便携式PM2.5检测仪切割器的设计与验证李征真【摘要】The particles, especially those with aerodynamic diameter less than or equal to a nominal 2. 5 μm (PM2. 5) will cause serious harm to the human health, and its concentration is one of the main indexes for evaluating the environmental air quality, so the particle measurement needs a portable cutter. First, the impact design criteria was used for calculating the Stokes number, then the parameter model was established with Fluent6. 3, and finally, baed on this design, a cutter sample was manufactured and test was made on it according to the national standards. The test proved that the fitting curve of the collection efficiency obtained by this sample met the national standard and design requirements.%颗粒物特别是空气动力学直径在2.5μm及以下的细颗粒物( PM2.5)对人体健康会造成严重危害,其浓度大小是衡量空气质量好坏的一个重要指标,对其进行检测时需要一种切割器。
CMMI 22个PA缩写及主要内容CMMI 22个PA缩写EPG:工程过程组(Engineering Process Group)MSG:管理指导组/高层管理组(Management Steering Group)SPI:软件过程改进(Software Process Improvement)PAT:过程行动组(Process Action Team)PA:过程域(Process Area)PP:项目策划(Project Planning)PMC:项目监控(Project Monitoring and Control)IPM:集成的项目管理(Integrated Project Management)RSKM:风险管理(Risk Management)CM:配置管理(Configuration Management)PPQA:过程和产品质量保证(Process and Product Quality Assurance)MA:度量和分析(Measurement and Analysis)DAR:决策分析和解决方案(Decision Analysis and Resolution)REQM:需求管理(Requirements Management)RD:需求开发(Requirements Development)TS:技术解决方案(Technical Solution)PI:产品集成(Product Integration)Ver:验证(Verification)Val:确认(Validation)OPF:组织过程焦点(Organization Process Focus)OPD:组织过程定义(Organization Process Definition)OT:组织培训(Organizational Training)22个PA的主要内容有:1.CM:(Configuration Management)软件配置管理。
学术交流基于大数据提升工程设计质量的智能化审核创新质量管理戴春雷 徐梅香(中通服咨询设计研究院有限公司)摘要:针对通信工程设计审核审定超期、流于形式、影响设计质量问题,笔者公司设计质量提升小组聚焦客户需求及设计质量管理,通过现状调查、原因分析、目标设定、制定对策、效果检查、巩固总结等一系列措施,研究开发智能化审核系统,用信息化手段把控设计流程,优化管理,确保设计质量。
该系统实现了设计文件上传平台、设计人员持证设计、审核审定人员抢单、无人抢单系统自动派单、系统定期进行统计分析、结合大数据自动化审核、建立质量问题标准库等功能目标。
智能化审核系统经过实践运用与效果检测,达到预期目标,后期将持续改进优化,更好地提升审核审定效率、提升设计人员专业技术水平、有效管控质量问题,促使公司质量管理工作不断提升。
关键词:设计质量 大数据智能化审核 5W1H 抢单激励制 质量管理New Intelligent Approving Quality Management Base on Big Data to Promote Engineering Design QualityDai Chunlei, Xu Meixiang( China Information Consulting & Designing Institute Co., Ltd. )Abstract: The communication engineering design exists several problems of approving extending and formalization, our quality circles focus on customer requirements and design quality management, takes series steps of status investigation、cause analysis、goal setting、develop countermeasure、consolidating and conclusion , researches and develops a kind of smart system design. The quality of the examining and approving was poor. This paper developed a kind of intelligent approving system, controls and optimizes the design flow to ensure design quality. This intelligence examining and approving system adopts the innovative principle, realizes the standardization, high-efficient and intellectualization of the examining and approving work used in examining and approving of communication engineering project, creatively harnesses big data platform, adopts scrambling and amassing points institution of the assessing officer, deducting points institution of the designer to realize automation and intelligence examining and approving. This intelligence examining and approving system achieves the prospective object after application and testing, it will keep improving and optimizing, lift approving efficiency, promote technology level of designers, promote the quality of management.Key words: design quality, big data intelligent approving, 5W1H, scrambling motivation institution, quality management1 引言1.1 现状调查质量是关系国家民生的大事,设计质量是项目设计之核心,是通信设计企业的核心竞争力,是企业的生命力[1]。
质量管理体系中英文缩写与其解释Engineering 工程 / Process 工序(制程)Man, Machine, Method, Material,人,机器,方法,物料,环境- 可能导4M&1EEnvironment致或造成问题的根本原因AIAutomatic Insertion自动插机ASSYAssembly制品装配ATEAutomatic Test Equipment自动测试设备BLBaseline参照点BMBenchmark参照点BOMBill of Material生产产品所用的物料清单C&ED/CCause and Effect Diagram原因和效果图AEDCACorrective Action解决问题所采取的措施电脑辅助设计.用于制图和设计3维物体 CADComputer-aided Design的软件对文件的要求进行评审,批准,和更改 CCBChange Control Board的小组依照短期和长期改善的重要性来做持续 CIContinuous Improvement改善COBChip on Board邦定-线焊芯片到PCB板的装配方法. CTCycle Time完成任务所须的时间DFMDesign for Manufacturability产品的设计对装配的适合性设计失效模式与后果分析--在设计阶段 Design Failure Mode and EffectDFMEA预测问题的发生的可能性并且对之采取 Analysis措施六西格玛(6-Sigma)设计 -- 设计阶段预 DFSSDesign for Six Sigma测问题的发生的可能性并且对之采取措施并提高设计对装配的适合性DFTDesign for Test产品的设计对测试的适合性实验设计-- 用于证明某种情况是真实DOEDesign of Experiment的根据一百万件所生产的产品来计算不良DPPMDefective Part Per Million品的标准Design Verification / DesignDV设计确认Validation客户要求的工程更改或内部所发出的工ECNEngineering Change Notice程更改文件ECOEngineering Change Order客户要求的工程更改静电发放-由两种不导电的物品一起摩ESDElectrostatic Discharge擦而产生的静电可以破坏ICs和电子设备在生产线上或操作中由生产操作员对产FIFinal Inspection品作最后检查F/TFunctional Test测试产品的功能是否与所设计的一样FAFirst Article / Failure Analysis首件产品或首件样板/ 产品不良分析功能测试-检查产品的功能是否与所设FCTFunctional Test计的一样符合产品的装配,形状和外观及功能要FFFFit Form Function求FFTFinal Functional Test包装之前,在生产线上最后的功能测试失效模式与后果分析-- 预测问题的发FMEAFailure Mode and Effect Analysis生可能性并且对之采取措施FPYFirst Pass Yield首次检查合格率FTYFirst Test Yield首次测试合格率FWFirmware韧体(软件硬化)-控制产品功能的软件在波峰焊接之前,将PTH元件用手贴装HLHandload到PCB上,和手插机相同I/OInput / Output输入 / 输出iBOMIndented Bill of Material内部发出的BOM(依照客户的BOM)线路测试-- 用电气和电子测试来检查ICTIn-circuit TestPCBA短路,开路,少件,多件和错件等等不良情报联络书-反馈信息所使用的一种表IFFInformation Feedback Form格IRInfra-red红外线主要制程输入可变因素-在加工过程中,KPIVKey Process Input Variable所有输入的参数/元素,将影响制成品的质量的可变因素主要制程输出可变因素-在加工过程中,KPOVKey Process Output Variable所有输出的结果,所呈现的产品品质特征。
第8卷 第3期2010年6月实验科学与技术Experi m ent Science and Technol ogyVol 18No 13Jun 12010收稿日期:2010-01-19基金项目:深圳大学精品课程建设项目。
作者简介:郭小勤(1960-),女,硕士,副教授,主要从事控制理论与控制工程领域的教学与科研工作。
基于项目的C D IO 理念在课程教学中的应用郭小勤,曹广忠(深圳大学机电与控制工程学院,广东深圳 518060)摘要:根据C D I O 工程教育理念,结合线性系统理论课程特点,设计了模拟真实工程环境的龙门吊车控制实验项目。
该项目以设计为导向、工程能力培养为目标,构思了以吊运过程平稳性和快速性为总体控制目标的实验教学内容。
在项目实施中,以问题为导向,引导学生主动学习,并在完成项目的整个过程中主动探寻学科知识。
教学实践证明基于项目的教学模式极大地提高了学生学习的积极性和主动性,提高了科学研究能力和工程实践能力。
关 键 词:C D I O 工程教育;线性系统理论;设计导向学习;龙门吊车控制中图分类号:G642·423;TP27114 文献标志码:B 文章编号:1672-4550(2010)03-0083-03Appli cati on of the Project 2based CD I O I dea i n Course Teachi n gG UO Xiao 2qin,CAO Guang 2zhong(College of Electr omechanical and Contr ol Engineering,Shenzhen University,Shenzhen 518060,China )Abstract:The experi m ent p r oject of gantry crane contr ol is designed t o si m ulate p ractical engineering according t o the CD I O engineer 2ing educati on initiative and peculiarity of linear syste m theory course .The p r oject is design 2oriented f or engineering ability training,and its final contr ol goal t o achieve a s mooth and rap id lifting and moving p r ocess was conceived f or the contents of experi m ent teach 2ing .I n the p r oject i m p le mentati on,students are guided t o learning actively by p r oble m s 2oriented method and t o exp l ore acade m icknowledge in p ractice .Teaching p ractice p r oved that the p r oject 2based teaching model greatly enhance students πlearning enthusias mand initiative and i m p r ove the capacity of scientific research and engineering p ractice 1Key words:C D I O engineering educati on;linear syste m theory;design 2oriented learning;gantry crane contr ol1 引 言2000年10月,由美国麻省理工学院和瑞典皇家理工学院等4所大学组成的工程教育改革研究团队提出、并持续发展和倡导了全新的CD I O (Con 2ceiving -Designing -I m p le menting -Operati on )工程教育理念即构思—设计—实现—运行。
Adaptive Optics for Vision Science: Principles, Practices, Designand ApplicationsJason Porter, Abdul Awwal, Julianna LinHope Queener, Karen Thorn(Editorial Committee)Updated on June 30, 2003−Introduction1.Introduction (David Williams)University of Rochester1.1 Goals of the AO Manual (This could also be a separate preface written by the editors)* practical guide for investigators who wish to build an AO system* summary of vision science results obtained to date with AO1.2 Brief History of Imaging1.2.1 The evolution of astronomical AOThe first microscopes and telescopes, Horace Babcock , military applications during StarWars, ending with examples of the best AO images obtained to date. Requirements forastronomical AO1.2.2 The evolution of vision science AOVision correction before adaptive optics:first spectacles, first correction of astigmatism, first contact lenses, Scheiner and thefirst wavefront sensor.Retinal imaging before adaptive optics:the invention of the ophthalmoscope, SLO, OCTFirst AO systems: Dreher et al.; Liang, Williams, and Miller.Comparison of Vision AO and Astronomical AO: light budget, temporal resolutionVision correction with AO:customized contact lenses, IOLs, and refractive surgery, LLNL AO Phoropter Retinal Imaging with Adaptive OpticsHighlighted results from Rochester, Houston, Indiana, UCD etc.1.3 Future Potential of AO in Vision Science1.3.1 Post-processing and AO1.3.2 AO and other imaging technologies (e.g. OCT)1.3.3 Vision Correction1.3.4 Retinal Imaging1.3.5 Retinal SurgeryII. Wavefront Sensing2. Aberration Structure of the Human Eye (Pablo Artal)(Murcia Optics Lab; LOUM)2.1 Aberration structure of the human eye2.1.1 Monochromatic aberrations in normal eyes2.1.2 Chromatic aberrations2.1.3 Location of aberrations2.1.4 Dynamics (temporal properties) of aberrations2.1.5 Statistics of aberrations in normal populations (A Fried parameter?)2.1.6 Off-axis aberrations2.1.7 Effects of polarization and scattering3. Wavefront Sensing and Diagnostic Uses (Geunyoung Yoon) University of Rochester3.1 Introduction3.1.1 Why is wavefront sensing technique important for vision science?3.1.2 Importance of measuring higher order aberrations of the eyeCharacterization of optical quality of the eyePrediction of retinal image quality formed by the eye’s opticsBrief summary of potential applications of wavefront sensing technique3.1.3 Chapter overview3.2 Wavefront sensors for the eye3.2.1 History of ophthalmic wavefront sensing techniques3.2.2 Different types of wavefront sensors and principle of each wavefrontsensorSubjective vs objective method (SRR vs S-H, LRT and Tcherning)Measuring light going into vs coming out of the eye (SRR, LRT and Tcherning vs S-H) 3.3 Optimizing Shack-Hartmann wavefront sensor3.3.1 Design parametersWavelength, light source, laser beacon generation, pupil camera, laser safety…3.3.2 OSA standard (coordinates system, sign convention, order of Zernikepolynomials)3.3.3 Number of sampling points (lenslets) vs wavefront reconstructionperformance3.3.4 Tradeoff between dynamic range and measurement sensitivityFocal length of a lenslet array and lenslet spacing3.3.5 PrecompensationTrial lenses, trombone system, bite bar (Badal optometer)3.3.6 Increasing dynamic range without losing measurement sensitivityTranslational plate with subaperturesComputer algorithms (variable centroiding box position)3.3.7 Requirement of dynamic range of S-H wavefront sensor based on a largepopulation of the eye’s aberrations3.4 Calibration of the wavefront sensor3.4.1 reconstruction algorithm - use of simulated spot array pattern3.4.2 measurement performance - use of phase plate or deformable mirror 3.5 Applications of wavefront sensing technique to vision science3.5.1 Laser refractive surgery (conventional and customized ablation)3.5.2 Vision correction using customized optics (contact lenses andintraocular lenses)3.5.3 Autorefraction (image metric to predict subjective vision perception)3.5.4 Objective vision monitoring3.5.5 Adaptive optics (vision testing, high resolution retinal imaging)3.6 SummaryIII. Wavefront Correction with Adaptive Optics 4. Mirror Selection (Nathan Doble and Don Miller)University of Rochester / Indiana University4.1 Introduction4.1.1 Describe the DMs used in current systems.4.1.1.2 Xinetics type – Williams, Miller, Roorda – (PZT and PMN)4.1.1.3 Membrane – Artal, Zhu(Bartsch)4.1.1.4 MEMS – LLNL Phoropter, Doble4.1.1.5 LC-SLM – Davis System.4.2 Statistics of the two populations4.2.1 State of refraction:4.2.1.1 All aberrations present4.2.1.2 Zeroed Defocus4.2.1.3 Same as for 4.2.1.2 but with astigmatism zeroed in addition4.2.2 For various pupil sizes (7.5 - 2 mm) calculate:4.2.2.1 PV Error4.2.2.2 MTF4.2.2.3 Power Spectra4.2.3 Required DM stroke given by 95% of the PV error for the variousrefraction cases and pupil sizes.4.2.4 Plot of the variance with mode order and / or Zernike mode.4.3 Simulation of various Mirror TypesDetermine parameters for all mirrors to achieve 80% Strehl.4.3.1 Continuous Faceplate DMs4.3.1.1 Describe mode of operation.4.3.1.2 Modeled as a simple Gaussian4.3.1.3 Simulations for 7.5mm pupil4.3.1.4 Parameters to vary:Number of actuators.Coupling coefficient.Wavelength.4.3.1.5 All the above with unlimited stroke.4.3.2 Piston Only DMs4.3.2.1 Describe mode of operation.4.3.2.2 Simulations for 7.5mm pupil with either cases4.3.2.3 No phase wrapping i.e. unlimited stroke.Number of actuators.Packing geometryWavelength.Need to repeat the above but with gaps.4.3.2.4 Effect of phase wrappingTwo cases:Phase wrapping occurs at the segment locations.Arbitrary phase wrap.4.3.3 Segmented Piston / tip / tilt DMs4.3.3.1 Describe mode of operation.4.3.3.2 Three influence functions per segment, do the SVD fit on a segment by segmentbasis.4.3.3.3 Simulations for 7.5mm pupil.4.3.3.4 No phase wrapping unlimited stroke and tip/tilt.Number of actuators - squareSame as above except with hexagonal packing.Wavelength.Gaps for both square and hexagonal packing.4.3.3.5 Effect of phase wrappingPhase wrapping occurs at the segment locations.Arbitary phase wrap. Wrap the wavefront and then determine the required number ofsegments. Everything else as listed in part 1).4.3.4 Membrane DMs4.3.4.1 Describe mode of operation. Bimorphs as well.4.3.4.2 Simulations for 7.5mm pupil with either cases.4.3.4.3 Parameters to vary:Number of actuators.Actuator size.Membrane stressWavelength.5. Control Algorithms (Li Chen)University of Rochester5.1 Configuration of lenslets and actuators5.2 Influence function measurement5.3 Control command of wavefront corrector5.3.1 Wavefront control5.3.2 Direct slope control5.3.3 Special control for different wavefront correctors5.4 Transfer function modelization of adaptive optics system5.4.1 Transfer function of adaptive optics components5.4.2 Overall system transfer function5.4.3 Adaptive optics system bandwidth analysis5.5 Temporal modelization with Transfer function5.5.1 Feedback control5.5.2 Proportional integral control5.5.3 Smith compensate control5.6 Temporal controller optimization5.6.1 Open-loop control5.6.2 Closed-loop control5.6.2 Time delay effect on the adaptive optics system5.6.3 Real time considerations5.7 Summary6. Software/User Interface/Operational Requirements (Ben Singer) University of Rochester6.1 Introduction6.2 Hardware setup6.2.1 Imaging6.2.1.1 Hartmann-Shack Spots6.2.1.2 Pupil Monitoring6.2.1.3 Retinal Imaging6.2.2 Triggered devices: Shutters, lasers, LEDs6.2.3 Serial devices: Defocusing slide, custom devices6.2.4 AO Mirror control6.3 Image processing setup6.3.1 Setting regions of interest: search boxes6.3.2 Preparing the image6.3.2.1 Thresholding6.3.2.2 Averaging6.3.2.3 Background subtraction6.3.2.4 Flat-fielding6.3.3 Centroiding6.3.4 Bad data6.4 Wavefront reconstruction and visualization6.4.1 Zernike mode recovery and RMS6.4.1.1 Display of modes and RMS: traces, histograms6.4.1.2 Setting modes of interest6.4.2 Wavefront visualization6.4.2.1 Continuous grayscale image6.4.2.2 Wrapped grayscale image6.4.2.3 Three-D plots6.5 Adaptive optics6.5.1 Visualizing and protecting write-only mirrors6.5.2 Testing, diagnosing, calibrating6.5.3 Individual actuator control6.5.4 Update timing6.5.5 Bad actuators6.6 Lessons learned, future goals6.6.1 Case studies from existing systems at CVS and B&L6.6.1.1 One-shot wavefront sensing vs realtime AO6.6.1.2 Using AO systems in experiments: Step Defocus6.6.2 Engineering trade-offs6.6.2.1 Transparency vs Simplicity6.6.2.2 Extensibility vs Stability6.6.3 How to please everyone6.6.3.1 Subject6.6.3.2 Operator6.6.3.3 Experimenter6.6.3.4 Programmer6.6.4 Software tools6.7 Summary7. AO Assembly, Integration and Troubleshooting (Brian Bauman) Lawrence Livermore7.1 Introduction and Philosophy7.2 Optical alignment7.2.1 General remarks7.2.2 Understanding the penalties for misalignments7.2.3 Having the right knobs: optomechanics7.2.4 Common alignment practices7.2.4.1 Tools7.2.4.2 Off-line alignment of sub-systems7.2.4.3 Aligning optical components7.2.4.4 Sample procedures (taken from the AO phoropter project)7.3 Wavefront sensor checkout7.3.1 Wavefront sensor camera checkout7.3.2 Wavefront sensor checkout7.3.2.1 Proving that centroid measurements are repeatable.7.3.2.2 Proving that the centroid measurements do not depend on where centroids are withrespect to pixels7.3.2.3 Measuring plate scale.7.3.2.4 Proving that a known change in the wavefront produces the correct change incentroids.7.4 Wavefront Reconstruction7.4.1 Testing the reconstruction code: Prove that a known change in thewavefront produces the correct change in reconstructed wavefront.7.5 Aligning the “probe” beam into the eye7.6 Visual stimulus alignment7.7 Flood-illumination alignment7.8 DM-to-WFS Registration7.8.1 Tolerances & penalties for misregistration7.8.2 Proving that the wavefront sensor-to-SLM registration is acceptable.7.9 Generating control matrices7.9.1 System (“push”) matrix7.9.2 Obtaining the control matrix7.9.3 Checking the control matrix7.9.4 Null spaces7.10 Closing the loop7.10.1 Checking the gain parameter7.10.2 Checking the integration parameter7.11 Calibration7.11.1 Obtaining calibrated reference centroids.7.11.2 Proving that reference centroids are good7.11.3 Image-sharpening to improve Strehl performance.7.12 Science procedures7.13 Trouble-shooting algorithms8. System Performance: Testing, Procedures, Calibration and Diagnostics (Bruce Macintosh, Marcos Van Dam)Lawrence Livermore / Keck Telescope8.1 Spatial and Temporal characteristics of correction8.2 Power Spectra calculations8.3 Disturbance rejection curves8.4 Strehl ratio/PSF measurements/calculations8.5 Performance vs. different parameters (beacon brightness, field angle, …)?8.6 Summary Table and Figures of above criteria8.6.1 Results from Xinetics, BMC, IrisAOIV. Retinal Imaging Applications 9. Fundamental Properties of the Retina (Ann Elsner) Schepens Eye Research Institute9.1 Shape of the retina, geometric optics9.1.1 Normal fovea, young vs. old9.1.1.1. foveal pit9.1.1.2. foveal crest9.1.2 Normal optic nerve head9.1.3 Periphery and ora serrata9.2 Two blood supplies, young vs. old9.2.1 Retinal vessels and arcades9.2.2 0 – 4 layers retinal capillaries, foveal avascular zone9.2.3 Choriocapillaris, choroidal vessels, watershed zone 9.3 Layers vs. features, young vs. old, ethnic differences9.3.1 Schlera9.3.2 Choroidal vessels, choroidal melanin9.3.3 Bruch’s membrane9.3.4 RPE, tight junctions, RPE melanin9.3.5 Photoreceptors, outer limiting membrane9.3.5.1 Outer segment9.3.5.2 Inner segment9.3.5.3 Stiles-Crawford effect9.3.5.4 Macular pigment9.3.6 Neural retina9.3.7 Glia, inner limiting membrane, matrix9.3.8 Inner limiting membrane9.3.9 Vitreo-retinal interface, vitreous floaters9.4 Spectra, layers and features9.4.1 Main absorbers in the retina9.4.2 Absorbers vs. layers9.4.3 Features in different wavelengths9.4.4 Changes with aging9.5 Light scattering, layers and features9.5.1 Directly backscattered light9.5.2 Multiply scattered light9.5.3 Geometric changes in specular light return9.5.4 Layers for specular and multiply scattered light9.5.5 Imaging techniques to benefit from light scattering properties 9.6 Polarization9.6.1 Polarization properties of the photoreceptors9.6.2 Polarization properties of the nerve fiber bundles, microtubules9.6.3 Anterior segment and other polarization artifacts9.6.4 Techniques to measure polarization properties9.7 Imaging techniques to produce contrast from specular or multiply scattered light9.7.1 Confocal imaging9.7.2 Polarization to narrow the point spread function9.7.3 Polarization as a means to separate directly backscattered light frommultiply scattered light, demonstration using the scattered light9.7.4 Coherence techniques as a means to separate directly backscattered light from multiply scattered light, with a goal of using the scattered light10. Strategies for High Resolution Retinal Imaging (Austin Roorda, Remy Tumbar, Julian Christou)University of Houston / University of Rochester / University of California, Santa Cruz10.1 Conventional Imaging (Roorda)10.1.1 Basic principlesThis will be a simple optical imaging system10.1.2 Basic system designShow a typical AO flood-illuminated imaging system for the eye10.1.3 Choice of optical componentsDiscuss the type of optical you would use (eg off axis parabolas)10.1.4 Choice of light sourceHow much energy, what bandwidth, flash duration, show typical examples10.1.5 Controlling the field sizeWhere to place a field stop and why10.1.6 Choice of cameraWhat grade of camera is required? Show properties of typical cameras that are currently used10.1.7 Implementation of wavefront sensingWhere do you place the wavefront sensor. Using different wavelengths for wfs.10.2 Scanning Laser Imaging (Roorda)10.2.1 Basic principlesThis will show how a simple scanning imaging system operates10.2.2 Basic system designThis shows the layout of a simple AOSLO10.2.3 Choice of optical componentsWhat type of optical components shoud you use and why (eg mirrors vs lenses). Where doyou want to place the components (eg raster scanning, DM etc) and why.10.2.4 Choice of light sourceHow to implement different wavelengths. How to control retinal light exposure10.2.5 Controlling the field sizeOptical methods to increase field sizeMechanical (scanning mirror) methods to increase field size10.2.6 Controlling light deliveryAcousto-optical control of the light source for various applications10.2.7 Choice of detectorPMT vs APD what are the design considerations10.2.8 Choice of frame grabbing and image acquisition hardwareWhat are the requirements for a frame grabber. What problems can you expect.10.2.9 Implementation of wavefront sensingStrategies for wavefront sensing in an AOSLO10.2.10 Other: pupil tracking, retinal tracking, image warping10.3 OCT systems (Tumbar)10.3.1 Flood illuminated vs. Scanning10.4 Future ideas (Tumbar)10.4.1 DIC (Differential Interference Contrast)10.4.2 Phase Contrast10.4.3 Polarization Techniques10.4.4 Two-photon10.4.5 Fluorescence/Auto-fluorescence10.5 Survey of post-processing/image enhancement strategies (Christou)11. Design Examples11.1 Design of Houston Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) (Krishna Venkateswaran)11.1.1 Basic optical designEffect of double pass system on psf, imaging in conjugate planes11.1.2 Light delivery opticsFiber optic source and other optics11.1.3 Raster scanningScanning speeds etc.,11.1.4 Physics of confocal imaging11.1.5 Adaptive optics in SLOWavefront sensing, Zernike polynomials, Deformable mirror, correction time scales11.1.6 Detailed optical layout of the AOSLOLens, mirrors, beam splitters with specs11.1.7 Image acquisitionBack end electronics, frame grabber details11.1.8 Software interface for the AOSLOWavefront sensing, Image acquisition11.1.9 Theoretical model of AOSLO:Limits on axial and lateral resolution11.1.10 Image registration11.1.11 Results11.1.12 Discussions on improving performance of AOSLOLight loss in optics, Deformable mirror, Wavefront sensing,11.1.13 Next generation AOSLO type systems11.2 Indiana University AO Coherence Gated System (Don Miller)11.2.1 Resolution advantages of an AO-OCT retina camera11.2.2 AO-OCT basic system design concepts11.2.2.1 Application-specific constraints−Sensitivity to weak tissue reflections−Tolerance to eye motion artifacts−Yoking focal plane to the coherence gate11.2.2.2 Integration of AO and OCT sub-systems−Generic OCT system−Specific OCT architectures−Preferred AO-OCT embodiments11.2.3 Description of the Indiana AO-OCT retina cameraOptical layout of the Indiana AO-OCT retina camera11.2.3.1 Adaptive Optics for correction of ocular aberrationsA. System descriptionB. Results11.2.3.2 1D OCT axial scanning for retina trackingA. System descriptionB. Results11.2.3.3 High speed 2D incoherent flood illumination for focusing and aligningA. System descriptionB. Results11.2.3.4 CCD-based 2D OCT for en face optical sectioning the retinaA. System descriptionB. Results11.2.4 Future developments11.2.4.1 Smart photodiode array11.2.4.2 En face and tomographic scanning11.2.4.3 Reduction of image speckle11.2.4.4 Detector sensitivity11.2.4.5 Faster image acquisition11.3 Rochester Second Generation AO System (Heidi Hofer)V. Vision Correction Applications12. Customized Vision Correction Devices (Ian Cox)Bausch & Lomb12.1 Contact Lenses12.1.1 Rigid or Soft Lenses?12.1.2 Design Considerations – More Than Just Optics12.1.3 Measurement – The Eye, the Lens or the System?12.1.4 Manufacturing Issues – Can The Correct Surfaces Be Made?12.1.5 Who Will Benefit?12.1.6 Summary12.2 Intraocular Lenses12.2.1 Which Aberrations - The Cornea, The Lens or The Eye?12.2.2 Surgical Procedures – Induced Aberrations12.2.3 Design & Manufacturing Considerations12.2.4 Future Developments & Summary13. Customized Refractive Surgery (Scott MacRae)University of Rochester / StrongVision14. Visual Psychophysics (UC Davis Team, headed by Jack Werner) UC Davis14.1 Characterizing visual performance14.1.1 Acuity14.1.2 Contrast sensitivity functions (CSFs)14.1.3 Photopic/scotopic performance (include various ways to defineluminance)14.2 What is psychophysics?14.2.1 Studying the limits of vision14.2.2 Differences between detection, discrimination and identification14.3 Psychophysical methods14.3.1 Psychometric function14.3.2 signal detection theory14.3.3 measuring threshold14.3.4 Criterion-free methods14.3.5 Method of constant stimuli, method of adjustment, adaptive methods(e.g. Quest).14.4 The visual stimulus14.4.1 Issues in selecting a display systemTemporal resolutionSpatial resolutionIntensity (maximum, bit depth)HomogeneitySpectral characteristics14.4.2 Hardware optionsCustom optical systems (LEDs, Maxwellian view)DisplaysCRTsDLPsLCDsPlasmaProjectorsDisplay generationcustom cardsVSGBits++10-bit cardsPelli attenuatorDithering/bit stealing14.4.3 SoftwareOff the shelf software is not usually flexible enough. We recommend doing it yourself. This canbe done using entirely custom software (e.g. C++) or by using software libraries such as VSG(PC) or PsychToolbox (Mac/PC).14.4.4 CalibrationGamma correctionSpatial homogeneityTemporal and spatial resolution14.5 Summary15. Wavefront to Phoropter Refraction (Larry Thibos)Indiana University15.1 Basic terminology15.1.1 Refractive error15.1.2 Refractive correction15.1.3 Lens prescriptions15.2 The goal of subjective refraction15.2.1 Definition of far point15.2.2 Elimination of astigmatism15.2.3 Using depth-of-focus to expand the range of clear vision15.2.4 Placement of far-point at hyperfocal distance15.3 Methods for estimating the monochromatic far-point from an aberration map15.3.1 Estimating center of curvature of an aberrated wavefront15.3.1.1 Least-squares fitting15.3.1.2 Paraxial curvature matching15.3.2 Estimating object distance that optimizes focus15.3.2.1 Metrics based on point objects15.3.2.2 Metrics based on grating objects15.4 Ocular chromatic aberration and the polychromatic far-point15.4.1 Polychromatic center of curvature metrics15.4.2 Polychromatic point image metrics15.4.3 Polychromatic grating image metrics15.5 Experimental evaluation of proposed methods15.5.1 Conditions for subjective refraction15.5.2. Monochromatic predictions15.5.3 Polychromatic predictions16. Design ExamplesDetailed Layouts, Numbers, Noise Analysis, Limitations for Visual Psychophysics: 16.1 LLNL/UR/B&L AO Phoroptor (Scot Olivier)16.2 UC Davis AO Phoropter (Scot Olivier)16.3 Rochester 2nd Generation AO System (Heidi Hofer)V. Appendix/Glossary of Terms (Hope Queener, JosephCarroll)• Laser safety calculations• Other ideas?• Glossary to define frequently used terms。
FDA临床试验常见词汇中译文对照Aaction letter 决定通知active comparator 活性药物对照组active control = AC 阳性对照,活性对照active ingredient 有效成分Active Substance Master File (ASMF) 欧洲药物主文件acute myocardial infarction 急性心肌梗死acute tibial fractures 急性胫骨骨折adalimumab (Humira) 阿达木单抗adaptive design 自适应设计adaptive randomization 自适应随机ADE = adverse drug event 药物不良事件Adenoviral Vectors 腺病毒载体adequate and well-controlled studies 充分严格的对照研究ADHD = Attention-deficit hyperactivity disorder注意力缺陷多动障碍; 注意力不足过动症; 多动症adhesion barrier product 防黏著产品adjuvant 助剂; 佐剂auxiliary;adjuvant therapy 佐药疗法,辅助疗法ADL = activities of daily living 日常生活活动能力ADME = absorption, distribution, metabolism, and excretion(药物)吸收、分配、代谢和排除ADR = adverse drug reaction 药物不良反应adrenal cortex 肾上腺皮质adrenal cortical hormone 肾上腺皮质激素adrenal gland 肾上腺adrenaline 肾上腺素adulterated devices 掺假器械adverse drug reaction = ADR药物不良反应adverse effect 副作用adverse event = AE 不良事件adverse medical events 不良医学事件adverse reaction (adverse event) 药物不良反应advisory 提醒advocacy and support groups 倡导和支持团体AE = adverse event 不良事件AERS = Adverse Event Reporting System 不良事件报告系统BBIMO Bioresearch Monitoring Program 生物研究监测bioavailability (F) 生物利用度biochemical drugs 生化药品biocides 生物杀灭剂; 杀生物剂biocompatibility 生物相容性biodegradable 生物分解bio-engineered, transgenic food 转基因食物bioequivalence; bioequivalent 生物等效应biofilm 细菌薄膜, 生物膜biologic 生物制品biological response modifiers BRM 生物应答调节剂biological therapeutic agents 生物治疗药剂biomarker 生物标志物biometrics 生物统计; 生物识别技术bion stimulator 生物体刺激器bionic knee 仿生膝关节biopharma: biopharmaceutical products 生物药物产品bipolar 双相燥郁症birth defect 出生缺陷, 新生儿缺陷, 先天缺陷BLA = biologic license application 生物制品许可申请blank control 空白对照blend uniformity analysis 混合均匀度分析blind 盲法blind codes 编制盲底blind review 盲态审核blinding method 盲法blinding/ masking 盲法,设盲blister packaging 泡罩包装; 水泡眼block 分段;层block size 每段的长度blocked randomization 区组随机Ccase history 病历case record form = CRF病例报告表/病例记录表case report form 病例报告表cash curve 现金曲线cash trap 现金陷阱; 现金套牢categorical variable 分类变量CLIA Clinical Laboratory Improvement Amendments临床实验室改进修订案clinical (human) data 临床数据clinical endpoint临床终点clinical equivalence 临床等效应clinical hold 临床试验暂停通知clinical investigator 临床研究者Clinical Pharmacists 临床药师Clinical Research Coordinator = CRC临床研究协调者clinical study 临床研究Clinical Study Application = CSA临床研究申请clinical study report 临床试验的总结报告clinical trial 临床试验clinical trial application = CTA 临床试验申请clinical trial exemption = CTX 临床试验免责clinical trial protocol = CTP 临床试验方案Clinical Trial Report = CTR临床试验报告clinically significant results 有临床意义cohort 队列cohort studies 队列研究co-investigator = CI合作研究者comparison 对照Compassionate Use 体恤使用competitive labeling 优越标签Complementary And Alternative Therapy 补充性和非传统治疗Complete response 完全有效compliance 遵守;对遵守法规情况的监管composite variable 复合变量Compression Test 压缩试验computer-assisted trial design= CATD计算机辅助试验设计Con Meds = concomitant medications 联合用药confidence interval 可信区间confidence level 置信水平Confidentiality Regarding Trial Participants 为试验参与者保密control对照control group 对照组controlled clinical trials 临床对照实验Controlled Trials 对照试验Critical Path 关键路径CRM = continual reassessment method 连续重新评估方法crossover design 交叉设计cross-over study 交叉研究crossover therapy 交叉治疗CRF = case report form 病例报告表dosage form 剂型dosage regimen 给药方案dose-ranging study 剂量范围研究dose-reaction relation 剂量-反应关系dose-related adverse reactions 剂量相关的不良反应double blinding 双盲double dummy 双模拟double dummy 双模拟double dummy technique 双盲双模拟技术double-blind study 双盲研究Double-Masked Study 双盲研究DRGs = Diagnosis Related Group System 疾病诊断相关分组drop out 脱落drop test 落震试验;跌落试验drug eluting coronary stents 药物洗脱支架drug product 药物产品drug substance 原料药drug-drug interaction56 药物-药物相互作用drug-food interaction 药物-食物的相互作用EEPS = Electronic Entry Processing System 电子录入处理系统effectiveness 疗效efficacy 有效性测定efficacy (Of a drug or treatment) 药效;药品疗效EEMEA = European Medical Evaluation Agency; European Agency for the Evaluation of Medicinal Products; European Medicines Agency 药物评价机构; 欧洲医药品管理局emergency envelope 应急信件Empiric Bayesian Multiple Gamma-Poisson Shrinker经验性贝氏法(伽玛泊松分布缩检法)empirical 经验性endpoint 终点endpoint criteria 终点指标factorial design 析因设计factorial trial 析因试验failure 无效,失败Fair Packaging and Labeling Act (1966) 公平包装和标签法False Claims Act 防制不实请求法false therapeutic claims 错误的疗效声明full analysis set 全分析集full factorial design 全因子试验法Iinclusion criteria 入选标准inclusion/exclusion criteria 入选/排除标准incremental exposure 食品中递增摄入量incubation period/latency period 潜伏期IND = Investigational New Drug 临床研究新药INDA = investigational new drug application NDA前申报阶段indemnity insurance 赔偿保险Independent Data Monitoring = IDM独立数据监察Independent Data Monitoring Committee = IDMC独立数据监察委员会independent ethics committee = IEC 独立伦理委员会indications 适应症investigational new drug = IND 临床研究新药investigational product 试验药物investigator 调研人员investigator's brochure = IB 研究者手册Mmasked 设盲mean absorption time = MAT(药物在体内的)平均吸收时间mean disintegration time = MDIT(药物在体内的)平均崩解时间Mean Dissolution Time = MDT (药物在体内的)平均释放时间Mean Residence Time = MRT(药物在体内的)平均滞留时间medical governance 医药治理Medicare 老年医疗保险制度;联邦老年医保medication guides (for patients) 用药指南Medicines Control Agency = MCA英国药品监督局Misbranding 错误标签; 冒牌Miscoding 编码错误missing value 缺失值mixed effect model 混合效应模式MLD = minimal lethal dose 最小致死剂量MoA = Mechanism of Action 作用机制;作用机理monitor 监查员monitoring plan监查计划monitoring report 监查报告MR = moderate response 好转MRA = Agreement on Mutual Recognition 相互承认协定MTD = maximal tolerance dose 最大耐受剂量multicenter trial 多中心试验multi-drug resistance 多药物抗药性multiple arm trials 多治疗组的试验mutual recognition procedure (EU) 相互承认程序OOS = Overall survival 总生存率Pparallel group design 平行组设计parameter estimation 参数估计parametric release 参数放行parametric statistics 参数统计方法patient file 病人档案patient global; pt global 病人总体评价patient history 病历per protocol ( PP) analysis 符合方案分析PFS = progression-free survival 无疾病进展存活率PGE = patient global evaluation 病人总体评价PHA = preliminary hazards analysis 预先危险分析pharmaceutical equivalence 药剂等效性pharmaceutics药剂学pharmacodynamics=PD 药物效应动力学; 简称药效学pharmacoepidemiology 药物流行病学pharmacokinetics = PK 药代动力学; 简称药动学pharmacology 药理学Pharmacovigilance105 药物警戒pharmacy 配药学PharMetrics claims database 索赔数据库PhRMA = Pharmaceutical Research and Manufacturers of America美国药物研究与生产商协会PIC=Pharmaceutical Inspection Convention 药品检查协定PIC/S Pharmaceutical Inspection Cooperation Scheme 药物检查合作计划pipeline assets 开发中产品PK = pharmacokinetics 药物代谢动力学; 药动学,药代动力学placebo 安慰剂placebo control 安慰剂对照placebo controlled study 安慰剂对照研究placebo effect 安慰剂效应PMA = premarket approval 上市前许可; 销售前批准PMCs = post marketing commitments 承诺药品上市后的继续研究PMDRA = Post Marketing Drug Risk Assessment 上市后药品风险评估(办公室) PMHx = Past Medical History 既往病史PMN = Premarket Notification 销售前通知PMS = Premenstrual syndrome 经前综合症POC (Proof-of-concept) Clinical Trials 概念证明POC = point-of-care testing 床旁分析polytomies 多分类pooled analysis = PA 荟萃分析postmarket surveillance 上市后监督post-marketing surveillance; postmarket safety surveillance 销售(上市)后监督power 把握度; 检验效能Pp = Process Performance 工序绩效Ppk = Process Performance Index 工序绩效指数precautions 慎用;注意事项precision 精密度preclinical (animal) data 临床前(动物实验)数据preclinical study 临床前研究predicate device = legally marketed device that is not subject to Premarket Approval (PMA)和已合法在市场上销售的且不需要做PMA“销售前批准”的Pre-market Approval (Application) = PMA上市前许可(申请)premarket notification 上市前通知pre-marketing surveillance 销售(上市)前监督preparing and submitting 起草和申报prescription drug 处方药preservation 保藏prevalence 患病率prevention trials预防试验primary (coronary) event 原位病变primary endpoint 主要终点primary mode of action = PMOA 首要作用模式primary variable 主要变量principal investigator = PI主要研究者Principles of Qualification 确认(验证)原则process controls 工艺控制process validation 工艺验证product codes 产品的号码product differentiation 产品差异化,产品特色化product license = PL 产品许可证product life cycle (PLC) 产品生命周期prognosis 预后progression-free survival = PFS 无进展生存progressive Disease PD 病情进展proof of principle study 原理循证研究propensity score 倾向性评分protocol 试验方案; 方案protocol amendment 方案补正prototype design 原型设计protozoa 原生动物门proven acceptable Range = PAR 确定可接受范围PTC = Product Technical Complaints 药品技术投诉Qqualification system for licensed pharmacist 执业药师资格准入制度qualified health claims 有保留的健康宣称Qualified Person = QP 受权人quality assurance = QA质量保证quality assurance unit = QAU质量保证部门quality control = QC 质量控制quality management systems 质量管理体系quality of life trials or supportive care trials 生存质量试验quality risk management = QRM 质量风险管理quantitative risk assessment 量化风险评估Rrandomization 随机化randomized trial 随机化试验randomized, double blinded clinical trial 随机双盲对照研究range check 范围检查rating scale 量表RCT = randomized clinical trials 随机临床试验RCT = randomized controlled trial 随机对照试验RDE: remote data entry 远距数据输入ready-to-eat foods 即食食品reagents 试剂recall 召回; 强制回收RECIST = Response Evaluation Criteria in Solid Tumors 实体瘤的疗效评价标准reconditioning 整改; 货物重整理;货物重包装recycled plastics 可循环利用塑料制品reference product 参比制剂reference samples 标准样品regulatory methodology 质量管理方法regulatory methods validation 管理用分析方法的验证(FDA对NDA提供的方法进行验证)regulatory specification 质量管理规格标准(NDA提供)rejection 排异remote monitoring system 远程监测系统; 远程监控REMS = Risk Evaluation and Mitigation Strategies 风险评估和减缓战略risk 受害risk assessment (risk analysis + risk evaluation) 风险评估,论证risk classification 风险分类;Risk Communications Advisory Committee 风险交流咨询委员会risk evaluation (part of risk assessment) 风险评价risk/ benefit analysis 风险-获益分析risk-benefit ratio 效益/风险比route of administration 给药途径royalties 专利使用费RPN = Risk Priority Number 风险优先指数RR = Response rate 缓解率RSD = (intra-day and inter-day) relative standard deviations (日内和日间) 相对标准差Ssafety advisory 安全建议safety evaluation 安全性评价safety evaluators 安全性评估人员safety set 安全性评价的数据集screening trials 筛选性试验SD = standard deviation 标准(偏)差SE = substantial equivalence 实质上的等同Seal Strength Test 密封强度试验sequence 试验次序SFDA 129= State Food And Drug Administration 国家食品药品监督管理局SG & A= Sales, General and Administration 销售、管理和一般费用shaft 传动轴SHEA = Society for Healthcare Epidemiology of America 美国医院流行病学学会sheaths 护套shelf life 保存期限; 保质期SIC codes = Standard Industrial Classification codes 标准产业分类代码side effects 副作用significance level 显著性水平Significant Risk (SR) 显著的危险性simple randomization 简单随机simulation model 仿真模型single blinding单盲single-blind study 单盲研究single-masked study 单盲研究site assessment = SA现场评估site audit 试验机构稽查SMDA = Safe Medical Devices Act of 1990 1990年安全医疗器械法SMF = Site Master File 生产场所主文件sNDA = supplemental NDA 疗效补充新药上市申请sponsor-investigator = SI 申办研究者spontaneous reports; voluntary reports 药品不良反应自愿报告SPS = Agreement on the Application Of Sanitary and Phytosanitary Measures卫生与植物卫生措施实施协议;简称SPS协议SSI = surgical site infection 手术部位感染SSOPs = Sanitation Standard Operating Procedures 卫生标准操作程序standard curve 标准曲线standard deviation 标准偏差standard drug 标准药物standard operating procedure = SOP 标准操作规程standard treatment 标准治疗Standards Of Care131 医护标准State Food and Drug Administration = SFDA国家食品药品监督管理局statistic 统计量statistical analysis plan = SAP 统计分析计划statistical model 统计模型statistical significance 统计学意义statistical tables 统计分析表Statisticians in the Pharmaceutical Industry = PSI制药业统计学家协会steady-state Area Under the Curve = AUCss稳态药时曲线下面积/稳态血药浓度-时间曲线下面积stratified 分层study audit 研究稽查study endpoint 研究终点Study Personnel List = SPL研究人员名单study site研究中心study type 研究类型subchronic toxicity studies 亚慢性毒性研究subgroup 亚组sub-investigator 助理研究者subject 受试者subject diary = SD 受试者日记subject enrollment 受试者入选subject enrollment log = SEL受试者入选表Subject Identification Code List = SIC受试者识别代码表subject recruitment 受试者招募subject screening log = SSL受试者筛选表submission 申报;递交subspecialties, internal medicine 亚专科,内科substantial equivalence to legally marketed (predicate) device 和已合法在市场上销售的且不需要做PMA“销售前批准”的相似产品有实质上的等同Ttrain-the-trainer program 培训者培训计划treatment group 试验组treatment IND 治疗性试验性新药申请treatment trials 治疗性试验trial error 试验误差trial initial meeting 试验启动会议trial master file 试验总档案trial objective 试验目的trial site 试验场所TRICARE 军队医疗系统triple blinding 三盲two one-side test 双单侧检验UAE = unexpected adverse event 预料外不良事件unblinding 破盲;揭盲under reporting bias 少报偏差unexplained syncope 不明原因晕厥unresectable 不能手术切除variability 变异variable 变量WHO International Collaborating Center for Drug Monitoring(世界卫生组织)国际药物监测合作中心WHO International Conference of Drug Regulatory Authorities= WHO-ICDRAWHO国际药品管理当局会议WHO Programme for International Drug Monitoring = PIDMWHO 国际药物监测合作计划。
(CP) ConfirmationPrototype 确认样车<FS> FinalStatus 最终状态(J1) Job1 整车投产(PT) P/TDesignComplete 动力传动系统设计结束PT(P/T)PowerTrain 动力传动系统(ST) SurfaceTransfer 表面参数传递<CC> ChangeCut-Off 更改完成<LR> LaunchReadiness 投产准备就绪<LS> LaunchSign-Off 投产验收<PA> ProgramApproval 项目批准<PH> Proportions&Hardpoints 比例与固定点<PR> ProductReadiness 产品准备就绪<PS1> Pre<SI>Milestone1 SI前里程碑 1<PS2> Pre<SI>Milestone2 SI前里程碑 2 <SC> StrategicConfirmation 策略确认<SI> StrategicIntent 策略意向<SP> StrategicPlanning 策略计划(SP) StructuralPrototype 样车结构(TTO) ToolTry-Out 工装设备试运行Global8D EightdisciplinaryActionsG8D(福特公司解决问题的标准方法)14D MoreDetailedthanGlobal8D(usedtocontainandresolvestop-shipment/recallproblems)更详细的细节(包括并解决停止运货/召回问题)1MIS OneMonthinService 投入使用1个月1PP FirstProductionProveout 第一次试生产2PP SecondProductionProveout 第二次试生产3MIS ThreeMonthsinService 投入使用3个月4P ProductionProcessProveoutProgram 生产程序验证项目AAA AmericanAutomobileAssociation 美国汽车工业联合会ABS AffordableBusinessStructure 可承受商业结构ABS Antiskidbrakesystem 防抱死制动系统AIAG AutomotiveIndustryActionGroup 机动车工业行动小组AIC AcceleratedImplementationCentre 快速实施中心AIM AutomatedIssuesMatrix 问题结构图AIMS AutomatedIssuesMatrixSystem 问题结构图系统AME AdvancedManufacturingEngineering 先进制造工艺AMPPE AdvancedManufacturingPre-ProgramEngineering先进项目前制造工艺ANOVA AnalysisofVariance 多样性分析AP AttributePrototype 设计样车APEAL AutomotivePerformanceExecutionandLayout 机动车性能实施与规划APQP AdvancedProductQualityPlanning 先进产品质量计划ASQ AmericanSocietyforQuality 美国质量协会AV AppraiserVariation 评估者的多样性AVT AdvanceVehicleTechnology 先进车辆技术AWS AnalyticalWarrantySystem 分析性的保修系统AXOD AutomaticTransaxleOverdriveTransmission 自动变速驱动桥超速档传动系B&A Body&AssemblyOperations(NewTerm:VehicleOperations)车身与组装操作(新术语:车辆操作)BCG BusinessConsumerGroup 消费者工作组BIC BestinClass 等级中的最佳BIS BodyShopInformationSystem 车身工作间信息系统BLI BusinessLeadershipInitiative 领导层初始意向BOM BillOfMaterials 零件清单BTB Bumper-to-Bumper 保险杠到保险杠BTS Build-To-Schedule 按日程建造BUR BusinessUnitReview 业务小组讨论CAS CapacityAnalysisSheet 能力分析表C/E Cause&Effect 成因及影响CA CustomerAttribute 消费者特性CAD ComputerAidedDesign 计算机辅助设计CAE ComputerAidedEngineering 计算机辅助工程CAP CorrectiveActionPlan 纠正行动计划CBG ConsumerBusinessGroup 消费者业务小组CC CriticalCharacteristic 评价特性CC CourtesyCopy 抄送CC CarbonCopy 副本CCC CustomerConcernClassification 客户问题分类CDS ComponentDesignSpecification 零件设计参数CET CampaignableEventsTeam 召回情况小组CETs CommonExternalTariff 普通关税CETP CorporateEngineeringTestProcedures 公司工程测试程序CFR ConstantFailureRate 连续故障率CIM ComputerIntegratedManufacturing 计算机综合制造CIWG ContinuousImprovementWorkGroup 持续改进工作组CL Centerline 中心线CMM CoordinateMeasuringMachine 协调测量设备CMMS CommonMaterialManagementSystem 通用材料管理系统CMMS3 CommonManufacturingManagementSystem-3 通用制造管理系统-3 CodeX Pre-buildfocusingonexteriorcomponents 制造前关注的外部零件CodeY Pre-buildfocusingoninteriorcomponents 制造前关注的内部零件CP CommonPosition 通用位置C p Relatestheallowablespreadofthespecificationlimit stothemeasureoftheactualvariationoftheprocess.将参数限制允许限度下的展开与程序实际多样性联系起来CPE ChiefProgramEngineer 首席项目工程师C pk Measurestheprocessvariationwithrespecttotheallowablespecification,andtakesintoaccountthelocationoftheprocessaverage测量程序的多样性并将其考虑到程序平均性的位置中CPU CostPerUnit 单位成本CQDC CorporateQualityDevelopmentCenter 公司质量开发中心CQIS CommonQualityIndicatorSystem 一般质量指标系统CR ConcernResponses 问题回复CRT ComponentReviewTeam 零件讨论组CSA CorporateSecurityAdministrator 公司安全管理员CSI CustomerServiceIndex 客户服务指数DCO DutyCycleOutput 责任循环结果DCP DynamicControlPlanning 动态控制计划DDL DirectDataLink 直接数据连接Df DegreesofFreedom 自由度DFA DesignforAssembly 总成设计DFM DesignforManufacturability 制造能力设计DFMEA DesignFailureModeEffectsAnalysis 故障模式影响分析设计DFR DecreasingFailureRate 故障下降率DMA DatabaseMaintenanceAdministrator 数据库维护管理人员DOE DesignofExperiment 试验设计DOM DealerOperationsManager 经销商业务经理DP DesignParameters 参数设计DQR DurabilityQualityandReliability 耐久性质量与可靠性DTD DocktoDock 码头至码头DTD DesigntoDelivery 设计到交付DV DesignVerification 设计验证DVM DesignVerificationMethod 设计验证方式DVP DesignVerificationPlan 设计验证计划DVP&PV DesignVerificationProcessandProductionValidation设计验证程序和产品验证DVP&R DesignVerificationPlan&Report 设计验证计划和结果DVPR DesignVerification&ProductReliability 设计验证和产品可靠性DVPV DesignVerificationandProcessVerification 设计验证和程序验证EAO EuropeanAutomotiveOperations 欧洲机动车协会EASI EngineeringAndSupplyInformation 工程和供应信息ECAR ElectronicConnectorAcceptabilityRating 电子连接接受比率EDI ElectronicDataInterchange 电子数据交换EESE ElectricalandElectronicSystemsEngineering 电力及电子系统工程EMM ExpandedMemoryManager 扩展内存管理器EMS EnvironmentalManagementSystem 环境管理系统EOL EndofLine 线的端点EQI ExtraordinaryQualityInitiative 特别初始质量ES EngineeringSpecifications 工程参数ESI EarlySupplierInvolvement 早期供应商参与ESP ExtendedServicePlan 延期服务计划ESTA EarlySourcingTargetAgreement 早期选点目标协议ESWP EarlySourcingWorkPlan 早期选点工作计划EV EquipmentVariation 设备变更F&T Facility&Tooling 工装设备FACT FacilitationandCertificationTraining 简易化及认证培训FASS FieldAction/StopShipment 区域行动/停止运货FA/SS FieldAction/StopShipment(PreferredAcronym) 区域行动/停止运货(优先使用缩写)FAO FordAutomotiveOperations 福特机动车协会FAP FordAutomotiveProcedure 福特机动车程序FAQ FrequentlyAskedQuestions 常见问答FCPA FordConsumerProductAudit 福特客户产品审核FCSD FordCustomerServiceDivision 福特客户售后服务分枝机构FDVS FordDesignVerificationSystem 福特设计验证系统FER FreshEyesReview 其它行业人员论证FER FinalEngineeringReview 最终工程论证FEU FieldEvaluationUnit区域评估组FIFO FirstinFirstOut 先进先出FMEA FailureModeEffectsAnalysis 故障模式影响分析FMVSS FederalMotorVehicleSafetyStandards 美国联邦机动车安全标准FPDS FordProductDevelopmentSystem 福特产品开发系统FPS FordProductionSystem 福特生产系统FPSI FordProductionSystemInstitute 福特产品系统学院FPSIT FordProductionSystemInformationTechnology 福特产品系统信息技术FOB FordofBritain 福特英国FQRs FrequentQualityRejects 经常性质量不合格品FR FunctionalRequirements 功能要求FRG FAOReliabilityGuide FAO(福特机动车运作)可靠性指导FS FinalSign-off 最终验收FSIC FordSystemIntegrationCouncil 福特系统综合委员会FSN FordSupplierNetwork 福特供应商网络FSS FullServiceSuppliers 全方位服务供应商FTDC FairlaneTrainingandDevelopmentCenter 培训和发展中心FTEP FordTechnicalEducationalProgram 福特技术培训项目FTT FirstTimeThrough 首次通过FUNC-APPRVFunctionalApprovals 功能批准FVEP FinishedVehicleEvaluationProgram 下线车辆评估项目GAP GlobalArchitectureProcess 全球建筑设计程序GC GlobalCraftsmanship 全球技术工艺GCARS GlobalCraftsmanshipAttributeRatingSystem 全球技术特性评分系统GCEQ GlobalCoreEngineeringQuality 全球核心工程质量GEM GenericElectronicModule 通用电子模块GIS1 GlobalInformationStandards 全球信息标准GPIRS GlobalPrototypeInventoryRequisitionandScheduling全球样车库存及控制安排GPP GlobalPartsPricing 全球零件定价GQRS GlobalQualityResearchSystem 全球质量调查系统GRC UN-ECEGroupdesRaporteursdeCeintures 欧盟ECE安全带规划小组GRC GovernmentRegulationsCoordinator 政府法规协调员GR&R GageRepeatabilityandReproducibility 量具重复性和再现性GRVW GrossVehicleWeight 车辆质量GSDB GlobalSupplierDatabase 全球供应商数据库GSSM GlobalSourcingStakeholdersMeeting 全球选点股东大会GYR Green-Yellow-Red 绿-黄-红HI High-Impact 重大影响HIC High-ImpactCharacteristics 重大影响特性HR HumanResources 人力资源HTFB HardTooledFunctionalBuild 成形机功能建造HVAC HeatingVentilatingandAirConditioning 加热通风和空调ICA InterimContainmentAction 过渡性补救措施ICCD IntensifiedCustomerConcernDatabase 强化的客户问题数据库ICCDCRS IntensifiedCustomerConcernDatabaseConcernResolutionSpecialist强化的客户问题数据库解决问题专员IE IndustrialEngineer 产业工程师IFR IncreasingFailureRate 故障率增长ILVS In-LineVehicleSequencing 车辆顺序IM IndustrialMaterials 工业材料IP InstrumentPanel 仪表板IPD InPlantDate 进厂日IQ IncomingQuality 进货质量IQS2 InitialQualityStudy 初始质量研究IR InternalReject 内部不合格品ISO InternationalOrganizationforStandardization 国际标准化组织ISPC In-StationProcessControls 过程质量控制JIT JustinTime 及时JPH JobsPerHour 每小时工作量JSA JobSafetyAnalysis 工作安全分析KKK PSWnotreadyforinspection PSW(零件质量合格验收)未做好检测准备KLT KeyLifeTest 关键使用寿命测试KO Kickoff 起动LCL LowerControlLimit 低控制限值LDEM LeanDesignEvaluationMatrix 设计评估表LOA LetterofAgreement 协议书LP&T LaunchPlanning&Training 投产计划和培训LR LaunchReadiness 投产准备就绪LRR LaunchReadinessReview 投产准备就绪论证LS LaunchSign-Off 投产验收LSL LowerSpecificationLimit 低参数限制LTDB LightTruckDataBase 轻型卡车数据库MBJ1 MonthsBeforeJobOne Job1(投产)前1个月MBO ManufacturingBusinessOffice 制造办公室ME ManufacturingEngineering 制造工程MIS MonthsinService 使用中的月份MMSA MaterialManagementSystemAssessment 物料管理系统评定MP&L Materials,PlanningandLogistics 材料、计划与物流MPPS ManufacturingProcessPlanningSystem 制造程序计划系统MOD Module 模块MRB MaterialReviewBoard 物料论证板MRD MaterialRequiredDate 物料要求到厂日MS MaterialSpecifications 物料参数MS3(MSIII) MaterialSupplyVersionIII 物料供应(第三版)MTC ManagetheChange 管理变更MY ModelYear 年度车型NAAO NorthAmericanAutomotiveOperations 北美汽车工业协会NFM NoiseFactorManagement 噪声管理NIST NationalInstituteofStandardsandTesting 全国标准和测试协会NMPDC NewModelProgramDevelopmentCenter 新车型项目开发中心NovaC NewOverallVehicleAudit 新车总评审NTEI NewTooledEndItems 新工具加工成品NVH Noise,Vibration,Harshness 噪声、振动、操纵平顺性OCM OperatingCommitteeMeeting 工作委员会会议OEE OverallEquipmentEfficiency 总体设备效率OEM OriginalEquipmentManufacturer 设备最初制造厂ONP OwnerNotificationProgram 车主告知程序OS OperatorSafety 操作者安全OTG OpentoGo 可进行PDiagrams ParameterDiagrams 参数图表PA ProgramApproval 项目批准PAG PremierAutomotiveGroup 首要机动车项目组PAL ProjectAttributeLeadership 项目特性领导层PAT ProgramActivityTeam,ProgramAttributeTeam,orProgramActionTeam项目促进小组、项目特性小组和项目行动小组PCA PermanentCorrectiveAction 持续改进行动PCI ProductChangeInformation 产品变更信息PD ProductDevelopment 产品开发PDL ProgramDesignLanguage 项目设计语言PDQ1 ProductDevelopmentQ1 产品开发Q1 PDSA Plan,Do,Study,Act 计划、实践、研讨、实施PFMEA ProcessFailureModeEffectsAnalysis 程序故障模式影响分析PI ProcessImprovement 程序改进PIPC PercentageofP pk IndicesProcessCapable P pk指数程序能力百分比PIST PercentageofInspectionPointThatSatisfyTolerance满足公差要求的检查点百分比PM ProgramManger 项目经理PMA ProjectManagementAnalyst 项目管理分析PMT ProgramManagementTeamorProgramModuleTeam项目管理组或项目模式组PO PurchaseOrder 采购订单POC PointofContact 联系点POT ProcessOwnershipTeam 程序所有者小组P p ProcessPotential 程序潜力PP&T ProductPlanning&Technology 产品计划和技术PPAP ProductionPartApprovalProcess 生产零件批准程序P pk ProcessCapability 程序能力PPC ProductPlanningCommittee 产品计划委员会PPL ProgramPartsList 项目零件清单PPM PartsperMillion(appliedtodefectiveSupplierparts) 零件的百万分比率(适用于供应商不合格零件)PPPM ProgramandPre-ProductionManagement 程序和投产前管理PR PublicRelations 公共关系PR ProductRequirement 产品要求PR ProductReadinessMilestone 产品就绪时间节点PSO ProductionStandardOrder 制造标准订单PSS PrivateSwitchingService 私人转接服务PST ProgramSteeringTeam 项目指导小组PSW PartSubmissionWarrant 零件质量合格验收PTO PowertrainOperations 传动系统操纵件PTR PlatinumResistanceThermometer 铂金电阻温度计PV ProductionValidation 产品验证PV ProcessVariables 程序变更PV PartVariation 零件变更PVBR PrototypeVehicleBuildRequirements 样车制造要求PVM ProductionValidationMethod 产品验证方法PVP PowertrainValidationProgram 传动系统验证程序PVT ProductVehicleTeamorPlantVehicleTeam 产品车辆组或工厂车辆组QA QualityAssurance 质量保证QC QualityControl 质量控制QCT QualityCostTiming 质量成本时机选择QFD QualityFunctionDeployment 质量功能配备QFTF QualityFocusedTestFleet 质量节点测试行动组QLS QualityLeadershipSystem 质量领导体系QMS QualityManagementSystem 质量管理体系QOS QualityOperatingSystem 质量运作体系QOE QualityofEvent 质量事件QPM QualityProgramManager 质量项目经理QPS QualityProcessSystem 质量程序系统QR QualityReject 质量不合格QS-9000 QualitySystems–9000 质量体系-9000QSA-PD QualitySystemAssessmentforProductDevelopment产品开发质量体系评估QTM QualityTeamMember 质量小组成员QVA Quality-FocusedValueAnalysisWorkshop 车间质量重点价值分析R Range 范围R&M ReliabilityandMaintainability 可靠性及可维护性RMS ResourceManagementSystem 资源管理系统R&R RepeatabilityandReproducibility 重复性和再现性R&R RolesandResponsibilities 职务与责任R&VT Research&VehicleTechnology 研究与车辆技术R/1000 Repairsperthousand 修理千分率RAP RemoteAnti-theftPersonalitymodule 防盗遥控器个性化模式REDPEPR RobustEngineeringDesignProcessEnablerProject 积极的工程设计程序计划RIE ReliabilityImprovementEngineer 可靠性改进工程师ROA ReturnonAssets 资产回报率ROCOF RateofOccurrenceofFailure 故障发生率RPN RiskPriorityNumber 优先处理风险号码RRCL ReliabilityandRobustnessCheckList 可靠性与强有力的核对表RRDM ReliabilityandRobustnessDemonstrationMatrix 可靠性与强有力的演示图表RRR PSWrejected PSW(零件质量合格验收)不合格RWUP RealWorldUsageProfile 现实生活使用记录S Standarddeviation 标准偏差s2Variance 多样性SC SignificantCharacteristics 重要特性SCs/CCs SignificantCharacteristics/CriticalCharacteristics 重要特性/评价特性SCAC SupplierCraftsmanshipAdvisoryCommittee 供应商技术顾问委员会SCTs StrategicCommodityTeams 策略性商品组SDS SystemDesignSpecifications 系统设计参数SDS SubsystemDesignSpecification 子系统设计参数SEVA SystemsEngineeringValueAnalysis 系统工程价值分析SHARP SafetyandHealthAssessmentReviewProcess 安全和健康评估讨论程序SI SystemInternationaldesUnit 国际单位制SIM SupplierImprovementMetrics 供应商改进步骤SMART SynchronousMaterialandReplenishmentTrigger 同步物料与补给触发器SME SubjectMatterExpert 主题专家SMF SynchronousMaterialFlow 同步物料流程SOW StatementofWork 工作陈述SP/AP StructuralPrototype/AttributePrototype 结构原形/特性原形SP&PI StrategicProcess&ProductImprovement 策略性程序和产品改进SPC SpecialProductCommittee 特殊产品委员会SPC StatisticalProcessControl 统计程序控制SPROM SamplePromiseDate 承诺的样品到货日SREA SupplierRequestforEngineeringApproval 供应商要求工程批准SRI SupplierResponsibleIssues 供应商责任SSI SalesSatisfactionIndex 销售满意度指标SSM StrategicSourcingMeeting 策略选点会议ST SurfaceTransfer 表面转移STA SupplierTechnicalAssistance 供应商技术支持STARS SupplierTrackingandReportingSystem 供应商跟踪及汇报系统SVC SmallVehicleCenter 小型车中心TA TargetAgreement 目标协议TAP TargetAchievementPlan 目标完成计划TCM TotalCostManagement 总成本管理TED ThingsEngineersDo 工程师任务TEG ToolingandEquipmentGroup 工装及设备组TEM TotalEquipmentManagement 全部设备管理TGR ThingsGoneRight 事态发展正确TGW ThingsGoneWrong 事态发展错误TIS TimeinService 服务期限TOC TableofContents 目录TPM TotalProductiveMaintenance 全部生产维护TPPS TorqueProcessPotentialStudy 扭矩程序潜力研究TQC TrueQualityCharacteristics 真实质量特性TRIZ(Russian) TheoryofInventiveProblemSolving创造性解决问题的理论(俄罗斯)TRMC Timing,ReleaseandMaterialControl(alsoknownasTar-Mac)时效性、发布和物料控制(同Tar-Mac)TS-16949 TechnicalSpecification–16949 技术规范-16949 TSP TechnicalSkillsProgram 技术性技能项目UCL UpperControlLimit 上限控制USL UpperSpecificationLimit 参数上限V/C VeryorCompletelySatisfied 非常或完全满意VC VehicleCenter 汽车中心VCBuyer VehicleCenterBuyer(nowConsumerBusinessGroupBuyer)车辆中心客户(现在为商务集团购买客户)VDI VehicleDependabilityIndex 车辆可靠性指标VDS VehicleDesignSpecifications 车辆设计参数VDS VehicleDescriptorSection 车辆描述组VER VehicleEvaluationRatings 车辆评估等级VFG VehicleFunctionGroup 车辆功能组VIN VehicleIdentificationNumber 车辆识别代码VLD VehicleLineDirector 车辆生产线总监VO VehicleOffice 车辆办公室VO VehicleOperations 车辆运作VOGO VehicleOperationsGeneralOffice 车辆运作综合办公室VP VicePresident 副总裁VPMC VehicleProjectManagementCoordinator 车辆项目管理协调员VPP VehicleProgramPlan 车辆项目计划VQL VehicleQualityLevel 车辆质量级别VQR VehicleQualityReview 车辆质量研讨VRT VehicleReviewTeam 车辆研讨小组VRT VariabilityReductionTeam 减少差异小组VRT VehicleReductionTeam 车辆减产小组WAS WorkAnalysisSheet 工作分析表WCR WorldwideCustomerRequirements 全球客户需求WERS WorldwideEngineeringReleaseSystem 全球工程发布系统WIP WorkInProgress 进行中的工作WMI WorldManufacturingIdentifier 世界制造商识别代码WPRC WarrantyPartsReturnCenter 维修部件回收中心YS/YC PotentialSignificantandCriticalCharacteristics 潜在的重要和评价特性Remark:Editoraddsthecontentinshadow.备注:阴影部分的内容为编者增加。
materials and design分区Materials and design can be categorized into several areas including:1. Material selection: This involves choosing the appropriate materials based on their properties, such as strength, durability, conductivity, and aesthetic appeal. Factors such as cost, availability, and environmental impact also play a role in material selection.2. Material testing and analysis: Once materials are chosen, they need to be tested to ensure they meet the required standards and specifications. This includes mechanical testing, chemical analysis, and non-destructive testing methods.3. Manufacturing processes: Designing and optimizing the manufacturing processes to efficiently and accurately produce the desired product. This covers various methods such as casting, molding, machining, and additive manufacturing (3D printing).4. Product design and development: This involves the conceptualization and creation of products while considering factors like functionality, ergonomics, aesthetics, and market demand. CAD (Computer-Aided Design) software is commonly used to create detailed product designs.5. Material characterization: This includes studying the properties and behavior of materials at different scales, such as microscopic analysis, imaging techniques, and determining material properties like hardness, tensile strength, and thermal conductivity.6. Sustainable design: Considering the environmental impact of materials and products throughout their lifecycle, with a focus on reducing waste, minimizing resource consumption, and optimizing energy efficiency.These are just a few examples of how materials and design can be categorized. Each area is interconnected and requires expertise in various disciplines like materials science, mechanical engineering, industrial design, and manufacturing engineering.。
ABC参见Activity Based CostingABM参见Activity Based ManagementAbstract Resource 抽象资源Abstraction 抽象Acceleration 加速Acceptability Criteria 验收标准Acceptable Quality Level (”AQL”)可接受质量水平Acceptance 验收Acceptance Criteria 验收标准Acceptance Letters 验收函Acceptance Number 接受数目Acceptance Review 验收评审Acceptance Test 验收测试Acquisition Methods 采购方式Acquisition Negotiations 采购谈判Acquisition Plan 采购计划Acquisition Plan Review (”APR") 采购计划评审Acquisition Planning 采购计划编制Acquisition Process 采购过程Acquisition Strategy 采购策略Action 行动Action Item 行动项Action Item Flags 行动项标记Action Plan 行动计划Activation 激活Active Listening 积极倾听Activity Arrow Net 活动箭线网络Activity Based Costing (”ABC") 基于活动的成本核算Activity Based Management (”ABM”)基于活动的管理Activity Calendar 活动日历Activity Code 活动代码Activity Definition 活动定义Activity Description 活动描述Activity Duration 活动工期活动持续时间Activity Duration Estimating 活动工期估算Activity Elaboration 活动详述Activity File 活动档案Activity ID 活动识别码Activity List 活动清单Activity Node Net 活动节点网络双代号网络Activity on Arc ("AOA”)弧线表示活动双代号网络Activity on Arrow (”AOA") 箭线表示活动双代号网络参见 Arrow Diagramming Method。
电子制造业新产品导入NPI及常用英文词汇产品定义(EVT),产品设计(DVT),定型测试(PVT)EVT (Engineer Verification Test)工程样品验证测试,DVT (Design Verification Test)设计样品验证测试,PVT(Production/Process/Pilot Verification Test)生产验证测试。
1)产品确证历程:EVT(Engineering Verification Test)---> DVT(Design Verification Test) ---> PVT(Process Verification Test);2)EVTPoduct/Engineering Specification complete(由R&D 完成,容: 一些重要的参数,重要特征)Design Verification Plan ( B-test, Compatibility-test, EMI )(由技服部作)初步之BOM(R&D完成)Cost Review(PMP 负责)Test equipment and Tooling(R&D 和工程部门)Test process documented and released测试程序或测试文件Failure analysis and corrective actions针对不良点作设计上的改善3)DVTDesign Verification Test( B-test , Compatibility-test, EMI ) complete 概念1:可靠性测试: 产品在既定的时间, 在特定的条件下完成特定功能和性能的机率概念2:B-test--- Basic test 包括:Function TestSafety TestEnvironment TestMechanical Test概念3:Safety Test 主要有:Hit-Pot 高压测试绝缘电阻测试Current Leakage(电流测试)接地测试概念4:Mechanical Test 主要有Vibration Test(振动试验)Drop Test(落体试验)概念5: Compatibility test --- 兼容性测试硬件与软件之兼容性硬件与硬件之兼容性概念6: EMI Test--- 抗静电,电磁干扰Agency Compliances complete安规承认测试,安规组负责Design Change Phased in设计变更切入MPI & TPI & QII 等等制程文件试用的制作完毕BOM 进一步修改Failure Analysis and Corrective actions形成AVL---- Acceptable Vendor List4)PVTFailure analysis / corrective actionFirst article inspection review with customer and documented制程安排好, 各种制程文件修改并正式发行Operators/ Inspectors traning / certification programC-Test----仅小变更,仅需做change-test 变可. 此测试可仅针对变更项做ORT Test (On Going Reliability Test)--- ongoing reliability test连续测试2000小时PMP 召开会议---作总结GO or STOP5)机构件的3B ApprovalTVR--- Tooling Verification Report对生产出来的产品做全尺寸测量Cpk Report Complex Process Capability index制程能力报告TVR & Cpk 由品保与工程部门共同完成Flow Chart ----流程图怎样安排制程PMP --- Process Management Plan制程安排,制程控制要点,设备,检验法, 检验频率等等Flow Chart & PMP 由IE 制作FAP ( Final Audit Program )要求图文并茂试模报告塑料成形条件, 冲压成形条件各单件之图面及组件之装配图材质证明书ECN--- Engineering Change Notice要求及时地切入工程变更工厂/设计产品测试:BVT是Build Verification Test,基本验证测试,对完成的代码进行编译和连接,产生一个构造,以检查程序的主要功能是否会像预期一样进行工作。
EVT(Engineering Verification Test)工程验证测试阶段DVT(Design Verification Test)设计验证测试阶段DMT(Design Maturity Test)成熟度验证MVT( Mass-Production Verification Test)量产验证测试PVT(Production/Process Verification Test)生产/制程验证测试阶段MP(Mass Production)量产工程师类:PE: Product Engineer 产品工程师Process Engineer 制程工程师ME: Mechanical Engineer 机构工程师IE:Industrial Engineer 工业工程师QE: Quality Engineer 品质工程师SQESupplier Quality Engineer供货商质量工程师QC quality control 品质管理人员FQC final quality control 终点质量管理人员IPQC in process quality control 制程中的质量管理人员OQC output quality control 最终出货质量管理人员IQC incoming quality control 进料质量管理人员TQC total quality control 全面质量管理POC passage quality control 段检人员QA quality assurance 质量保证人员OQA output quality assurance 出货质量保证人员QE quality engineering 品质工程人员TE Test Engineer 测试工程师AE Automatic Engineer 自动化工程师研发类:R&D Research & Design 设计开发部ID (Industry Design)工业设计MD (Mechanical Design)结构设计HW(Hardware) 硬件设计SW(Software)软件设计PDM Product Data Management 产品数据管理PLM product lifecycle management 产品生命周期管理电子设计:ICT In Circuit Test 电路测试PCB Printed Circuit Board 印刷电路板PCBA Printed Circuit Board Assembly 印刷电路板装配FPC FlexiblePrintedCircui 挠性电路板EMI Electrical Magnetic Interference 电子干扰RFI adio Frequency Interference射频干扰。
Design,production and testing of PMN–PTelectrostrictive transducersJ.Coutte a,*,B.Dubus b,J.-C.Debus b,C.Granger b,D.Jones ca LAMH,Facult e des Sciences Appliqu e es,Universit e d’Artois,Technoparc Futura,62400B e thune,Franceb IEMN/ISEN Department,UMR CNRS8520,41Boulevard Vauban,59046Lille,Francec Defence Research Establishment Atlantic,9Grove Street,P.O.Box1012,Darmouth,Canada B2Y327AbstractLead magnesium niobate ceramics(PMN)are promising materials for application in thefield of high power transducers.The advantage of PMN materials are the large strains generated under moderate electricfield and the low hysteresis.The electrostrictive effect is non-linear,the corresponding physical constants depend on temperature and frequency and a DC electrical bias is required. These difficulties must be considered at the design stage.Afinite element model has been developed and validated in the ATILA code for non-linear static and time-domain analyses.These numerical modelings are used to design and test two Langevin-type electrostrictive transducers.Thefirst transducer is made of PMN–PT–La(90–10–1%)ceramics(TRS Ceramics),the second one of ESC1ceramics(Morgan Matroc).For given static mechanical prestresses,resonance frequencies and effective coupling coefficients are measured at different DC electricfields and temperatures.Ó2002Elsevier Science B.V.All rights reserved.Keywords:Transducers;Electrostriction;PMN ceramics;Finite element method1.IntroductionPiezoelectric ceramics are the dominant transduction material in sonars and ultrasonic applications.The analysis of the power limitations of transducers has been discussed by Woollett[1,2]and Berlincourt[3].Three types of limitations exist:(i)The mechanical limits are caused by different fac-tors such as fracture in the case of ceramic transduc-ers,or metal fatigue.(ii)The electrical limits are essentially concerned with the active material,such as insulation breakdown,de-polarization of materials operating at remanence,dis-tortion resulting from ferroelectric non-linearities.(iii)The thermal limit is the consequence of energy dissipation.The thermally limited power output de-pends not only on the dielectric losses but also on the mechanical losses and the heat transfer design of the transducer.These limitations are often due to the active material,i.e. piezoelectric ceramics.Thus,the development of new materials with high coupling constants,low losses and a higher limit of failure and fatigue could be an element of progress in the relevant technology.For these various reasons,we have studied and used the lead magnesium niobate-lead titanate ceramic(PMN–PT).The aim of this paper is to determine the optimal working condi-tions for a Langevin-type electrostrictive transducer in terms of effective coupling coefficient.Following this introduction,the second part of the paper summarises the properties of electrostrictive ceramics compared to conventional piezoelectric ceramics and the constitutive laws.Numerical modelings of electrostrictive material (briefly developed in the third part)have been made, validated and used in order to design two Langevin-type electrostrictive transducers which have been tested in the last part of this article.2.Lead magnesium niobate ceramics2.1.PropertiesIn electrostrictive materials such as PMN ceramics, strain is proportional to the square of the polarization.Ultrasonics40(2002)883–888*Corresponding author.Fax:+33-3-21-63-71-23.E-mail address:jocelyne.coutte@fsa.univ-artois.fr(J.Coutte).0041-624X/02/$-see front matterÓ2002Elsevier Science B.V.All rights reserved. PII:S0041-624X(02)00231-7They present a low hysteresis if the temperature is cor-rectly chosen (above the diffuse Curie transition:ferro-electric to paraelectric)and have strains roughly of an order of magnitude larger than those of the lead zirco-nate–lead titanate PZT ceramics (Fig.1).These large strains are due to their dielectric permittivities which are a factor of 10or more larger than those of the PZT ceramics.Handling the material non-linearities,the temperature dependence and the application of the elec-trical polarization remains a challenge,both at the de-signing and technological levels,which currently limits the use of PMN in acoustic transducers.2.2.Constitutive lawsThe constitutive laws of PMN ceramics are non-linear (the strain is proportional to the square of the polarization)and six different models [5–10]have been proposed in the literature.All these models correctly describe the behaviour of electrostrictive material.We have selected Hom’s model [10]because the parameters involved in this model are easy to determine from ex-periments.(1)With a moderate electric field,the polarization is linear to the electric field.The dielectric impermeability matrix [b T ]is also a constant and diagonal matrix.The coefficients of the tensor [g ]denotes the ratio of the strain to the electrical excitation at zero stress:½g ðQ ;D Þ ¼Q 11D 1Q 12D 1Q 12D 10ðQ 11ÀQ 12ÞD 3ðQ 11ÀQ 12ÞD 2Q 12D 2Q 11D 2Q 12D 2ðQ 11ÀQ 12ÞD 30ðQ 11ÀQ 12ÞD 1Q 12D 3Q 12D 3Q 11D 3ðQ 11ÀQ 12ÞD 2ðQ 11ÀQ 12ÞD 10264375ð1ÞAs the dielectric constant of PMN–PT is very large,the polarization P and the electric displacement D are considered as equal.Q ij are the electrostrictive constants of the condensed tensor.(2)With a high electric field,the induced polarization begins to saturate and [b T ]is henceforth a function of the polarization.Following the model proposed by Hom and Shankar [10]for PMN,we write:b T P s ;k ;D ðÞ¼1k j D j atanh j D j P sð2Þj D j is the magnitude of the electric displacement and P sis the spontaneous polarization.Finally,choosing the electric displacement and the stress as the independent state variables,the constitutive equations are written:S ¼½s D T þ½g ðQ ;D Þ tD E ¼À2½g ðQ ;D Þ T þb T P s ;k ;D ðÞÂÃD&ð3Þ[s D ]is the elastic compliance tensor at constant excita-tion,S and T are the strain and stress condensed tensors,E and D are the electric field and electric displacement vectors.k and P s are constants depending on the tem-perature.3.Finite element formulation 3.1.FormulationTwo models are developed in the ATILA code to model electrostrictive materials.Non-linear static [11]and time-domain analyses [12]are considered.The prin-ciple of virtual work is used to get the finite element formulation.The set of equations for an electrostrictive structure can be written for transient analysis as follows:½M ½0 ½0 ½0 !€U€/&'þ½K uu ðD Þ ½K u /ðD Þ 2½K t u /ðD Þ ½K //ðD Þ !U /&'¼F ÀQ &'ð4ÞFor static analysis,the second order time derivative must be eliminated from Eq.(4).This equation is non-linear,because D is a function of U and /,vectors of the displacement and the electric potential respectively.[K uu ],[K u /],[K //]and [M ]are the classical stiffness,pi-ezoelectric,dielectric and consistent mass matrices of a piezoelectric finite element model.To solve Eq.(4),a direct iterative procedure is used for the static analysis and a transient analysis by time steps is used for the dynamic analysis.Time discretiza-tion is performed using a central difference scheme.The solution is obtained by iteratively solving a linear set of equations until they converge.Static analysis of an electrostrictive bar has been used to validate these numerical models [11].A goodagree-ment between numerical and measured results on a PMN–PT–La bar[13]has been obtained on the whole range of applied electricfields and prestresses.3.2.Application to electrostrictive transducer:theoretical evaluation of the effective coupling coefficientThe aforementioned formulation is used to evaluate the effective coupling coefficient of electrostrictive trans-ducers.The classical method based on eigenvalue com-putation with short-circuit and open-circuit conditions cannot be used because Eq.(4)is non-linear.Two types of excitations are considered:•A step in voltage which generates a vibration of the structure at constant electricfield E.The correspond-ing natural frequency is named f E.•A step in charge which generates a vibration of the structure at constant electric displacement D.The corresponding natural frequency is named f D.Knowing f E and f D,the effective coupling coefficient for a structure is calculated from the expression:k2 eff ¼f2DÀf2Ef2Dð5ÞFor a simple geometry of vibrator[12](e.g.length ex-pander bar with parallelfield),Eq.(5)can be seen as an extension of Ikeda’s concept developed in thefield of piezoelectric delay lines[14].4.Design of Langevin-type electrostrictive transducers 4.1.ObjectivesThese numerical models are used to design and test two Langevin-type electrostrictive transducers.The main objective is to compare the effective coupling coefficients of these two transducers with a reference piezoelectric transducer.Evaluation is made at different DC electric field,temperatures and mechanical prestresses.4.2.Geometry of the transducersThefinal geometry results from an optimization of the transducer in terms of effective coupling coefficient and radiating acoustic power for in-air or in-water ap-plication[15].Several points should be emphasized:(i)the material constituting the end-masses must bestiffenough to keep a high effective coupling coeffi-cient;(ii)the radiated power is mechanically limited and therefore the prestress must be as large as possible (this compressive stress remains limited by mechani-cal failure of the active material during prestress application);(iii)for a given prestress,the optimum bias voltage varies between0.8and1.2MV/m,the corresponding effective coupling coefficient being around0.45.Consequently,two Langevin-type transducers have been built.Thefirst transducer is made of ESC1ce-ramics manufactured by the Morgan Matroc company (Fig.2a),the second one of PMN–PT–La(90–10–1%) ceramics manufactured by TRS Ceramics(Fig.2b).They consist of four rings and a central supporting elec-trode prestressed by a bolt between two steel-made end-masses.Part of the rod has been kept visible in order to modify the prestress value.The two electrostrictive transducers and the reference piezoelectric transducer have the same volume of active material and the same size.4.3.Experimental set-upTo measure the f p and f s frequencies(used to calcu-late the effective effective coupling coefficient)at various static electricfield,temperatures and prestresses,the experimental procedure is asfollows:Fig.2.(a)Langevin-type transducer with ESC1ceramics(Morgan Matroc).(b)Langevin-type transducer with PMN–PT–La(90–10–1%) ceramics(TRS Ceramics).J.Coutte et al./Ultrasonics40(2002)883–888885(i)Application of the mechanical prestress.(ii)Immersion of the transducer in an oil bath to avoid flashover.Note that in this set-up,the transducer is not perfectly isolated (acoustic energy is radiated into oil).The experimental conditions for determination of the effective coupling coefficient are therefore not exactly verified.(iii)Installation in an oven to regulate the tempera-ture of the bath.(iv)Frequencies of maximum conductance and of maximum resistance are measured for several values of electric field at different temperatures.Mea-surements on the transducer are made with an im-pedancemeter (protection circuitry is required for impedancemeter).(v)Repeat the procedure with increased prestress.Fig.3shows the scheme of the experimental set-up.4.4.ResultsFigs.4and 5show respectively the conductance (de-noted G )and the resistance (denoted R )of ESC1trans-ducer for different static electric fields.f s and f p are defined respectively as the frequencies of maximum conductance and of maximum resistance.The relative difference in the frequencies f s and f p depends on both the material coupling factor and the resonator geometry.These two frequencies allow the calculation of the ef-fective coupling coefficient from the equation:k 02eff¼f 2p Àf 2s f 2p ð6ÞAn increase in the DC electric field produces a decrease in the f s frequency and a slight increase of the f p fre-quency.This result is consistent with the initial hy-pothesis (Eq.(3)):s D is constant rather than s E .Figs.6and 7display the small-signal effective cou-pling coefficient versus the DC electric field at different temperatures.The effective coupling coefficient of the reference PZT transducer is equal to 0.156.The highest effective coupling coefficient is obtained at ambient temperature for the ESC1transducer with a maximum of 0.27and at 0°C for the TRS transducer with amaximum of 0.32.At 10MPa prestress,a saturation of the effective coupling coefficient appears below 24°C for the ESC1transducer,10°C for the TRS transducer.The different behaviour in temperature between bothtran-886J.Coutte et al./Ultrasonics 40(2002)883–888ducers can be attributed to the composition of the active material,as the temperature of maximum permittivity is controlled by the PT content in the PMN–PT material. Fig.8shows the effective coupling coefficient for theTRS transducer with a prestress of20MPa.The de-crease of the effective coupling coefficient with increased prestress predicted by models[15,16]is verified,partic-ularly for high electricfield.No saturation is observed at 20MPa prestress.Fig.9displays a comparison between the experi-mental and numerical results on the electrostrictive transducers at ambient temperature.For the numerical results,no prestress is taken into account.A good match is obtained for TRS transducer considering that mea-surement made with10MPa prestress should provide higher effective coupling coefficient[16].The data set used in this case were extracted from a complete char-acterization of the material made at various electrical field and mechanical prestresses.For ESC1material, only partial data from the manufacturer were available. The numerical computation of ESC1transducer effec-tive coupling coefficient does not provide satisfactory results even if the general trend is predicted:computed values should be higher than measured ones because prestress is not taken into account,saturation appears with a lower electricfield than expected.This last comparison emphasizes the need for a complete char-acterization of PMN–PT ceramics(under DC electric field and mechanical prestress)to enable quantitative numerical computation of transducercharacteristics.5.ConclusionAs the coupling coefficient of PMN–PT ceramics in 33mode saturates at around0.45,the effective coupling factor of electrostrictive ultrasonic transducers is ex-pected to be a key problem.If the choices of constitutive materials,mechanical prestress,DC electrical bias and temperature are optimized,effective coupling factors around0.3can be obtained.However,the design of such transducers will remain difficult as long as the complete characterization of PMN–PT materials from manufac-turers,under combined high stress and high electric field,are unavailable.References[1]R.S.Woollett,Theoretical power limits of sonar transducers,I.R.E.Int.Con.Rec.6(1962)90–94.[2]R.S.Woollett,Power limitations of sonic transducers,IEEE SU15(1968)218.[3]D.A.Berlincourt,D.R.Curran,H.Jaffe,in:W.P.Mason(Ed.),Physical Acoustics Principles and Methods1(A),Ed.Academic Press,New York,1964.[4]D.Damajanovic,R.E.Newhnam,Electrostrictive and piezoelec-tric materials for actuator applications,J.Intel.Mat.Struct.3 (1992)190–208.[5]ngevin,J.Phys.(France)4(1905)678.[6]W.P.Mason,Piezoelectric Crystals and Their Application toUltrasonics,D.Van Nostrand Company,Princeton,1964.[7]X.D.Zhang,A.Rodgers,A macroscopic phenomological formu-lation for coupled electromechanical effects in piezoelectricity, J.Intell.Mater.Syst.Struct.4(1993)307–316.[8]J.C.Piquette,S.E.Forsythe,Generalized material model for leadmagnesium niobate(PMN),J.Acoust.Soc.Am.104(1998) 2763–2772.[9]S.Sherrit,G.Catoiu,R.B.Stimpson,B.K.Mukherjee,Modelingand characterization of electrostrictive ceramics,S.P.I.E.3324 (1998)161–172.[10]C.L.Hom,N.Shankar,A fully coupled constitutive model forelectrostrictive ceramic materials,J.Intel.Mat.Struct.5(1994) 795–801.[11]J.-C.Debus,B.Dubus,J.Coutte,Finite-element modeling of leadmagnesium niobate electrostrictive materials:static analysis,J.Acoust.Soc.Am.103(6)(1998)3336–3343.[12]J.Coutte,J.-C.Debus, B.Dubus,R.Bossut,Finite-elementmodeling of lead magnesium niobate electrostrictive materi-als:dynamic analysis,J.Acoust.Soc.Am.109(4)(2001)1403–1411.[13]E.A.McLaughlin,J.M.Powers,M.B.Moffett,R.S.Janus,Characterization of PMN–PT–La for use in high-power electro-strictive projectors,J.Acoust.Soc.Am.100(1996)2729. [14]T.Ikeda,On the relations between electromechanical couplingcoefficients and elastic constants in piezoelectric crystals,Jpn.J.Appl.Phys.11(1972)463.[15]J.Coutte,J.-C.Debus,B.Dubus,R.Bossut,G.Granger,G.Haw,Finite-element modeling of PMN electrostrictive materials and application to the design of transducers,in:IEEE International Frequency Control Symposium,1998,pp.703–708.[16]C.L.Hom,S.M.Pilgrim,N.Shankar,K.Bridger,M.Massuda,S.R.Winzer,Calculation of quasi-static electromechanical cou-pling coefficients for electrostrictive ceramic materials,IEEE Trans.Ultrason.Ferroelectr.Freq.Control41(1994)542–551.888J.Coutte et al./Ultrasonics40(2002)883–888。