最新青岛版九年级数学下册优秀课件 6.1 随机事件
- 格式:ppt
- 大小:1.14 MB
- 文档页数:11
6.1随机事件总课时授课班级授课时间主备人审阅人送检时间课标要求:在具体情境中,通过感受简单的随即现象经历,能列出简单的随机现象中所有可能发生的结果教学目标1.了解随机事件、必然事件、不可能事件的基本概念和特点。
2.能根据随机事件、必然事件、不可能事件判断一件事情属于哪种事件。
3.能举出简单的随机事件、必然事件、不可能事件。
教学重点 :随机事件的特点并能对生活中的随机事件作出准确判断。
教学难点:随机事件的特点并能对生活中的随机事件作出准确判断。
教学用具一、自主学习任务:1.阅读文本,完成下列任务。
任务一:学习课本72——73页内容,记住概念(按要求回答下列各题)在一定条件下必然发生的事件,叫做 ;在一定条件下不可能发生的事件,叫做 ;在一定条件下可能发生也可能不发生的事件,叫做 ;任务二:学习课本73页例1,会判断随机事件、必然事件、不可能事件(按要求回答下列问题)下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山; (2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数) (4)水往低处流;(5)酸和碱反应生成盐和水;;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
学习收获与困惑:二、教学过程:(一)情景引入:活动:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(二)自学检测(自主完成题目)1、指出下列事件中,哪些是必然事件,是不可能事件有,是随机事件的有。
(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球2、下面事件是随机事件的有( )①连续两次掷一枚硬币,两次都出现正面朝上②异性电荷,相互吸引③在标准大气压下,水在1℃时结冰A.②B.③C.①D.②③2.小组合作交流、展示:3.归纳总结:(三)题组训练:题组训练一、1、下列事件是随机事件的是( )A: 人长生不老B: 2016年奥运会中国队获100枚金牌C: 掷两枚质地均匀的正方体骰子朝上一面的点数之积为21D: 一个星期为七天.2、指出下列事件是必然事件、不可能事件,还是随机事件(1)在标准大气压下且温度低于0℃时,冰融化;(2)在常温下,焊锡熔化;(3)掷一枚硬币,出现正面;(4)某地12月12日下雨;(5)如果a>b,那么a-b>0题组训练二、1、下列事件中,是随机事件的是( )①从10个玻璃杯(其中8个正品,2个次品)中,任取3个,3个都是次品②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码④异性电荷,相互吸引⑤某体操运动员将在2016年奥运会上夺得冠军⑥某人购买福利彩票中得大奖A.②③④ﻩﻩﻩﻩB.①③⑤⑥ C.②③⑤⑥ﻩﻩﻩ D.②③⑤2、.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均不正确2.小组合作交流展示3. 归纳总结三、达标测试:1.下列事件是必然发生事件的是( )(A)打开电视机,正在转播足球比赛 (B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球(D)农历十五的晚上一定能看到圆月2.下列事件中是必然事件的是 ( )A、早晨的太阳一定从东方升起B.安阳的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目 D·小红今年14岁了她一定是初中生3.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破 ( )A.可能性很小 B.绝对不可能 C.有可能 D.不太可能4.下列说法正确的是 ( )A、可能性很小的事件在一次实验中一定不会发生B、可能性很小的事件在一次实验中一定发生 C、可能性很小的事件在一次实验中有可能发生D、不可能事件在一次实验中也可能发生5.下列事件:A.袋中有5个红球,能摸到红球B.袋中有4个红球,1个白球,能摸到红球C.袋中有2个红球,3个白球,能摸到红球D.袋中有5个白球,能摸到红球问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?四、课堂小结五、教学反思:。
章节测试题1.【答题】下列事件中不是随机事件的是()A. 打开电视机正好正播《极限挑战》B. 从书包中任意拿一本书正好是英语书C. 掷两次骰子,骰子向上的一面的点数之积为14D. 射击运动员射击一次,命中靶心【答案】C【分析】根据随机事件的定义解答即可.【解答】解:根据骰子的点数可得两个数相乘不可能为14,则骰子向上的一面的点数之积为14是不可能事件,选C.2.【答题】下列事件是必然事件的是()A. 今年6月20日双柏的天气一定是晴天B. 2008年奥运会刘翔一定能夺得110米跨栏冠军C. 在学校操场上抛出的篮球会下落D. 打开电视,正在播广告【答案】C【分析】根据必然事件的定义解答即可.【解答】解: A.今年6月20日双柏的天气一定是晴天是随机事件,不符合题意;B.2008年奥运会刘翔一定能夺得110米跨栏冠军项是随机事件,不符合题意;C.在学校操场上抛出的篮球会下落是必然事件,符合题意;D.打开电视,正在播广告,是随机事件,不符合题意.选C.3.【答题】下列事件发生的概率为0的是()A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上B. 今年冬天黑龙江会下雪C. 随意掷两个均匀的骰子,朝上面的点数之和为1D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域【答案】C【分析】根据不可能事件的定义解答即可.【解答】A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上,是随机事件,故错误;B. 今年冬天黑龙江会下雪,是随机事件,故错误;C. 随意掷两个均匀的骰子,朝上面的点数之和为1,是不可能事件,故概率为0,正确;D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域,是随机事件,故错误,选C.4.【答题】在下列事件中,是必然事件的是()A. 买一张电影票,座位号一定是偶数B. 随时打开电视机,正在播新闻C. 将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等D. 阴天就一定会下雨【答案】C【分析】根据必然事件的定义解答即可.【解答】选项A,任意买一张电影票,座位号是偶数,是随机事件;选项B,随时打开电视机,正在播新闻,是随机事件;选项C,将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等,是必然事件;选项D,阴天就一定会下雨,是随机事件;选C.5.【答题】下列事件中,属于不可能事件的是()A. 射击运动员射击一次,命中9环B. 今天是星期六,明天就是星期一C. 某种彩票中奖率为10%,买十张有一张中奖D. 在只装有10个红球的布袋中摸出一球,这个球一定是红球【答案】B【分析】根据不可能事件的定义解答即可.【解答】A选项中,因为“射击运动员射击一次,命中9环”是“随机事件”,所以不能选A.;B选项中,因为“今天是星期六,明天就是星期一”是“不可能事件”,所以可以选B.;C选项中,因为“某种彩票中奖率为10%,买十张有一张中奖”是“随机事件”,所以不能选C.;D选项中,因为“在只装有10个红色球的布袋中摸出一球,这个球一定是红球”是“必然事件”,所以不能选D.选B.6.【答题】一个黑色不透明的袋子里装有除颜色外其余都相同的7个红球和3个白球,那么从这个袋子中摸出一个红球的可能性和摸出一个白球的可能性相比()A. 摸出一个红球的可能性大B. 摸出一个白球的可能性大C. 两种可能性一样大D. 无法确定【答案】A【分析】根据随机事件的可能性解答即可.【解答】因为红球的个数比白球的个数多,所以从这个袋子中摸出一个红球的可能性比摸出一个白球的可能性要大,选A.7.【答题】下列事件是不可能事件的是()A. 买一张电影票,座位号是奇数B. 从一个只装有红球的袋子里摸出白球C. 三角形两边之和大于第三边D. 明天会下雨【答案】B【分析】根据不可能事件的定义解答即可.【解答】A.买一张电影票,座位号是奇数是随机事件,故A错误;B.从一个只装有红球的袋子里摸出白球是不可能事件,故B正确;C.三角形两边之和大于第三边是必然事件,故C错误;D.明天会下雨是随机事件,故D错误;选B.8.【答题】下列事件中,属于随机事件的是()A. 买1张彩票,中500万大奖B. 通常温度降到0 ℃以下,纯净的水结冰C. 367人中有2人是同月同日出生D. 从装有黑球、白球的袋里摸出红球【答案】A【分析】根据随机事件的定义解答即可.【解答】A.买1张彩票,中500万大奖是随机事件;B.通常温度降到0 ℃以下,纯净的水结冰是必然事件;C. 367人中有2人是同月同日出生是必然事件;D.从装有黑球、白球的袋里摸出红球是不可能事件.选A.9.【答题】下列说法中,正确的是()A. “明天降雨的概率是80%”表示明天有80%的时间在降雨B. “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C. “彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D. 在同一年出生的367名学生中,至少有两人的生日是同一天【答案】D【分析】根据概率的意义解答即可.【解答】解:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.选D.10.【答题】下列事件中是必然事件的是()A. 小明买一张体育彩票中奖B. 某人的体温是100 ℃C. 抛掷一枚骰子朝上的面的点数是偶数D. 我们小组的十三位同学中至少有两位同学是同月出生的【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A. 小明买一张体育彩票中奖,是随机事件,故该选项错误;B. 某人的体温是100 ℃,是不可能事件,故该选项错误;C. 抛掷一枚骰子朝上的面的点数是偶数,是随机事件,故该选项错误;D. 我们小组的十三位同学中至少有两位同学是同月出生的,是必然事件,故该选项正确.选D.11.【答题】下列事件中属于随机事件的是()A. 任意画一个圆都是中心对称图形B. 掷两次骰子,向上一面的点数差为6C. 从圆外任意一点引两条切线,所得切线长相等D. 任意写的一个一元二次方程有两个不相等的实数根【答案】D【分析】根据随机事件的定义解答即可.【解答】A、是必然事件;B、是不可能事件;C、是必然事件;D、是随机事件,选D.12.【答题】下列事件中是不可能事件的是()A. 三角形内角和小于180°B. 两实数之和为正C. 买体育彩票中奖D. 抛一枚硬币2次都正面朝上【答案】A【分析】根据不可能事件的定义解答即可.【解答】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.选A.13.【答题】下列事件是必然事件的是()A. 通常加热到100℃,水沸腾B. 抛一枚硬币,正面朝上C. 明天会下雨D. 经过城市中某一有交通信号灯的路口,恰好遇到红灯【答案】A【分析】根据必然事件的定义解答即可.【解答】解: A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.选A.14.【答题】下列事件中属于随机事件的是()A. 任意画一个圆都是中心对称图形B. 掷两次骰子,向上一面的点数差为6C. 从圆外任意一点引两条切线,所得切线长相等D. 任意写的一个一元二次方程有两个不相等的实数根【答案】D【分析】根据随机事件的定义解答即可.【解答】A、是必然事件;B、是不可能事件;C、是必然事件;D、是随机事件,选D.15.【答题】下列事件中,是确定性事件的是()A. 买一张电影票,座位号是奇数B. 射击运动员射击一次,命中10环C. 明天会下雨D. 度量三角形的内角和,结果是【答案】D【分析】根据确定事件的定义解答即可.【解答】A选项:买一张电影票,座位号是奇数,也可能是偶数,故是随机事件,故此选项错误;B选项:射击运动员射击一次,命中10环,也可能是9、7、6、5、4、3、2、1、0环,故是随机事件,故此选项错误;C选项:明天会下雨,也可能不会下,故是随机事件,故此选项错误;D选项:度量三角形的内角和,结果是360°,是不可能事件,故是确定事件,故此选项正确.选D.16.【答题】下列事件是必然事件的是()A. 明天气温会升高B. 随意翻到一本书的某页,这页的页码是奇数C. 早晨太阳会从东方升起D. 某射击运动员射击一次,命中靶心【答案】C【分析】根据必然事件的定义解答即可.【解答】解:A、明天气温会升高是随机事件;B、随意翻到一本书的某页,这页的页码是奇数是随机事件;C、早晨太阳会从东方升起是必然事件;D、某射击运动员射击一次,命中靶心是随机事件,选C.方法总结:必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.【答题】下列事件是必然事件的是()A. 抛掷一枚硬币四次,有两次正面朝上B. 打开电视频道,正在播放《今日在线》C. 射击运动员射击一次,命中十环D. 方程x²-x=0必有实数根【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A.抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B.打开电视频道,正在播放《今日在线》,随机事件,故本选项错误;C.射击运动员射击一次,命中十环,随机事件,故本选项错误;D.因为在方程x²-x=0中△=1﹣0=1>0,必然事件,故本选项正确.选D.18.【答题】抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,抛掷后,观察向上的一面的点数,下列情况属必然事件的是()A. 出现的点数是偶数B. 出现的点数不会是0C. 出现的点数是2D. 出现的点数为奇数【答案】B【分析】根据必然事件的定义解答即可.【解答】解:因为正方体型骰子质地均匀且有六个面,抛掷落地后,每一个面都有可能朝上,但一定不可能出现0.选B.19.【答题】下列事件中,属于必然事件的是()A. 打开电视,正在播放《新闻联播》B. 抛掷一次硬币正面朝上C. 袋中有3个红球,从中摸出一球是红球D. 阴天一定下雨【答案】C【分析】根据必然事件的定义解答即可.【解答】解:A、打开电视,正在播放《新闻联播》是随机事件,因为也可能播放其它内容;B、抛掷一次硬币正面朝上是随机事件,也可能反面朝上;C、袋中有3个红球,从中摸出一球是红球,是必然事件,因为袋子中只有红球,无论怎么摸,只能摸出红球;D、阴天一定下雨是随机事件,也可能只阴天不下雨.选C.20.【答题】下列事件中,属于随机事件的是()A. 通常水加热到100℃时沸腾B. 测量孝感某天的最低气温,结果为﹣150℃C. 一个袋中装有5个黑球,从中摸出一个是黑球D. 篮球队员在罚球线上投篮一次,未投中【答案】D【分析】根据随机事件的定义解答即可.【解答】解:结合所学的随机事件与必然事件的意义,A必然发生,是必然事件;B一定不会发生,是必然事件;C一定会发生,是必然事件;D 罚球投篮一次未投中是可能发生的,属于随机事件.选D.。
初中数学青岛版九年级下册高效课堂资料6.1 随机事件教学设计【教学目标】1.能说出随机事件、必然事件和不可能事件的概念;2.能在具体情境中,区分必然事件、不可能事件和随机事件;3.通过亲身实践,让学生亲近数学,感受数学,喜欢数学;【教学重难点】重点:能理解必然事件、不可能事件和随机事件的概念.难点:能区分必然事件、不可能事件和随机事件.【课时安排】1课时【学习过程】一、导入环节(2分钟)(一)导入新课,板书课题1.导入语:在现实生活中我们会遇到一些事情,这些事情有的一定能发生,也有的一定不能发生,还有一些事情可能发生也不可能发生,通过本节课的学习,我们将了解这些事件的发生情况,请看本节课的学习目标.2.教师板书课题(二)出示学习目标(1)能说出随机事件、必然事件和不可能事件的概念;(2)能在具体情境中,区分必然事件、不可能事件和随机事件;(3)通过亲身实践,促进自己乐于亲近数学,感受数学,喜欢数学;过渡语:让我们带着目标,根据自主学习要求,完成以下自学任务.二、先学环节(15分钟)(一)出示自学指导要求:自主阅读课本72----73页,了解随机事件、必然事件和不可能事件的概念,并完成下列问题:1.明确随机事件、必然事件和不可能事件的概念(1)叫做随机事件,也叫 .(2)称为必然事件.(3)称为不可能事件.(4)统称确定事件.2.各举一例说明随机事件、必然事件和不可能事件.(1) .(2) .(3) .(二)自学检测反馈要求:请结合自学内容独立完成下列练习,做题要细心、规范,注意知识的运用.1.下面的事件各属于随机事件、必然事件、不可能事件中的哪一类?(1)明年8月5日广东沿海没有台风.()(2)抛掷一枚硬币,硬币落定时正面朝上.()(3)投出铅球后,经过一段时间铅球落到地面上.()(4)从一副扑克牌中任意抽出两张,都是红桃A.()(5)买一张电影票,排号和座号都是奇数.()2.下列事件中,不可能事件是()A.金鱼离开水不久就死亡B.从一个只放有6个红球的袋子中,摸出一个是黑球C.一辆行驶中的公共汽车,下一站恰有3人上车D.弟弟的个子比哥哥高点拨:1.随机事件、随机事件、必然事件、不可能事件、随机事件;2.B.注意引导学生分析随机事件、必然事件、不可能事件的概念,理解概念的内涵,把握区分随机事件、必然事件、不可能事件的本质.(三)质疑问难:学生将自学和检测中的疑惑记录在学案上,准备共同解答.过渡语:你在学习中还有什么疑惑?请把你的疑惑记录在学案上,准备交流释疑.三、后教环节(15分钟)第一、生生合作,互相纠错要求:组内交流,将自主学习和自学检测中的疑难问题进行交流,组长掌握组内情况,记录没能解决的问题.第二、合作探究,展示交流要求:先独立思考,并记录下自己的疑问,然后小组内交流释疑,最后个人整理解题过程.探究一:将标有数字1,2,3,4,5的五个乒乓球放进一个不透明的袋子中,从中任意摸出一个球,叫做一个实验,读出这个球上所标的数字.分别指出下列事件是随机事件、必然事件、还是不可能事件?(1)球上所标的数字不大于5.();(2)球上所标的数字大于5.();(3)球上所标的数字是3.();(4)球上所标的数字是偶数.();(5)同时摸出两个球,球上所标的数字之和等于6.();探究二:用所学的知识,帮小华解决能否中奖?游戏规则:小组同学每人自制一张大小、形状都相同的彩票,从数字1---6中选取自己的幸运数字写在上面,不能重复,写完后一起放入一个纸盒内,摇匀后从中任取一张,恰好抽到自己幸运数字的就能获奖.问题1:小华说:“我的手气好,我抽一次,一定能中奖?”小华说的对吗?问题2:利用小游戏,说明下列事件是随机事件、必然事件、还是不可能事件?(1)从中抽取1张放回再抽取1张,两张数字之和是10.(2)从中任意抽取一张不放回,再抽取1张,数字之和是12.(3)从中一次抽取2张数字之和是12.(4)从中任意抽取两张数字之积大于10.点拨:1.小话说的不对,因为从中任取一张恰好是自己幸运数字的这个事件属于随机事件,所以抽一次不一定能中奖;2.随机事件、不可能事件、不可能事件、随机事件.过渡语:通过本节课的学习,我们理解了随机事件、必然事件和不可能事件,下面我们通过下面几个题目来检测我们本节课的学习成果.四、训练环节(13分钟)要求:认真规范完成训练题目,书写认真,步骤规范,成绩计入小组量化.1.下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)小明骑车经过某个十字路口时遇到红灯. (2)三角形的内角和是180°.(3)用长度为2,3,6的三条线段能组成一个三角形.(4)两条直线被第三条直线所截,同位角相等.(5)在13个人中有2人的出生月份相同.(6)黑暗中我从一大串钥匙中随便选中一把,用它打开了门.2.下列事件中,是随机事件的为()A.水涨船高 B.冬天下雪 C.水中捞月 D.冬去春来3.下列事件中,属必然事件的是( )(A)男生的身高一定超过女生的身高;(B)方程042=+在实数范围内无解;x4(C)明天数学考试,小明一定得满分;(D)两个无理数相加一定是无理数.点拨:1. 随机事件、必然事件、不可能事件、随机事件、随机事件、随机事件;2.B;3.B.课堂小结:本节课主要学习必然事件、随机事件和不可能事件的概念,以及必然事件、随机事件和不可能事件的区分,让学生根据生活中的示例判断,引领学生参与课堂教学,充分让学生展示发现问题,进而通过学生小组内和班内交流释疑,已完成本节课的教学任务.附:板书设计课题: 6.1随机事件1.概念2.例题分析3.归纳总结【教学反思】。
章节测试题1.【答题】下列事件中,必然事件是()A. 抛掷枚质地均匀的骰子,向上的点数为B. 两直线被第三条直线所截,同位角相等C. 抛一枚硬币,落地后正面朝上D. 实数的绝对值是非负数【答案】D【分析】根据必然事件的定义解答即可.【解答】解:A、抛掷1枚质地均匀的骰子,向上的点数可能为6,也可能不为6,故此事件为随机事件;B、两直线被第三条直线所截,当两直线平行时同位角相等,两直线不平行时同位角不相等,故此事件为随机事件;C、抛一枚硬币,落地后可能正面朝上,也可能正面不朝上,故此事件是随机事件;D、任何实数的绝对值都是是非负数,故此事件是必然事件.选D.2.【答题】下列事件中,必然事件是()A. 抛物线y=ax2的开口向上B. 投掷一枚质地均匀的硬币100次,正面向上的次数为50次C. 任意一个一元二次方程都有实数根D. 三角形三个内角的和等于180【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意;选D.3.【答题】下列事件是随机事件的是()A. 在标准大气压下,水加热到100°时沸腾B. 小明购买1张彩票,中奖C. 在一个装有红球和黄球的袋中,摸出蓝球D. 一名运动员的速度为30米/秒【答案】B【分析】根据随机事件的定义解答即可.【解答】选项A、在标准大气压下,水加热到100°时沸腾是必然事件;选项B、小明购买1张彩票,中奖是随机事件;选项C、在一个装有红球和黄球的袋中,摸出蓝球是不可能事件;选项D、一名运动员的速度为30米/秒是不可能事件.选B.4.【答题】掷一枚质地均匀的硬币10次,下列说法正确的是()A. 必有5次正面朝上B. 可能有5次正面朝上C. 掷2次必有1次正面朝上D. 不可能10次正面朝上【答案】B【分析】根据确定事件和随机事件的定义解答即可.【解答】A.不是必然事件,故B错误;B.是随机事件,故C正确;C.不是必然事件,故A错误;D.是随机事件,故D错误;选B.5.【答题】下列说法中,正确的是()A. 随机事件发生的概率为1B. 概率很小的事件不可能发生C. 不可能事件发生的概率为0D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【答案】C【分析】本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解: A.随机事件发生的概率P为0<P<1,故本选项错误;B.概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;C.不可能事件发生的概率为0,故本选项正确;D.投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误.选C.6.【答题】下列事件中,确定事件是()A. 早晨太阳从西方升起B. 打开电视机,它正在播动画片C. 掷一枚硬币,正面向上D. 任意买一张电影票,座位号是2的倍数【答案】A【分析】根据确定事件的定义解答即可.【解答】A、早晨太阳从西方升起一定不会发生,是不可能事件,是确定事件;B、打开电视机,它正在播动画片可能发生,也可能不发生,是随机事件;C、掷一枚硬币,正面向上可能发生,也可能不发生,是随机事件;D、任意买一张电影票,座位号是2的倍数可能发生,也可能不发生,是随机事件,选A.7.【答题】下列说法中,正确的是()A. 打开电视机,正在播广告,是必然事件B. 在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C. 某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D. 从一个只装有白球的缸里摸出一个球,摸出的球是白球【答案】D【分析】根据随机事件的定义解答即可.【解答】A、打开电视机,正在播广告,是随机事件,不是必然事件,故该选项错误;B、在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩不稳定,而不是稳定,故该选项错误;C、某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是,不是30%,故该选项错误;D、从一个只装有白球的缸里摸出一个球,摸出的球是白球,是必然事件,故该选项正确,故该选项错误;选D.8.【答题】下列事件属于随机事件的是()A. 任意画一个三角形,其内角和为B. 经过有交通信号灯的路口,遇到红灯C. 掷一次骰子,向上一面点数是7D. 明天的太阳从东方升起【答案】B【分析】根据随机事件的定义解答即可.【解答】选项A、D是必然事件;选项C是不可能事件;选项B是随机事件.选B.9.【答题】下列事件是必然事件的是()A. 抛掷一枚硬币四次,有两次正面朝上B. 打开电视频道,正在播放《十二在线》C. 射击运动员射击一次,命中十环D. 方程x2﹣2x﹣1=0必有实数根【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A.抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B.打开电视频道,正在播放《十二在线》,随机事件,故本选项错误;C.射击运动员射击一次,命中十环,随机事件,故本选项错误;D.因为在方程x2﹣2x﹣1=0中△=4﹣4×1×(﹣1)=8>0,故本选项正确.选D.10.【答题】下列说法正确的是().A. “购买1张彩票就中奖”是不可能事件B. “概率为0.0001的事件”是不可能事件C. “任意画一个三角形,它的内角和等于180°”是必然事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【分析】根据确定事件和随机事件的定义解答即可.【解答】解:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.选C.11.【答题】连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A. 必然事件B. 不可能事件C. 随机事件D. 概率为1的事件【答案】C【分析】根据随机事件的定义解答即可.【解答】硬币落地时,只有正面朝上和反面朝上两种情况,所以第五次抛掷正面朝上是随机事件,选C.12.【答题】下列事件是不确定事件的是().A. 在一个装着白球和黑球的袋中摸球,摸出红球B. 三角形内角和C. 杭州今年元旦节当天的最高气温是℃D. 任取两个正整数,其和大于【答案】C【分析】根据随机事件的定义解答即可.【解答】解: A.不可能事件,是确定事件.B.必然事件,是确定事件.C.不确定事件.D.必然事件,是确定事件.选C.13.【答题】2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A. 科比罚球投篮2次,一定全部命中B. 科比罚球投篮2次,不一定全部命中C. 科比罚球投篮1次,命中的可能性较大D. 科比罚球投篮1次,不命中的可能性较小【答案】A【分析】根据概率的意义解答即可.【解答】解:A、科比罚球投篮2次,不一定全部命中,故本选项错误;B、科比罚球投篮2次,不一定全部命中,故本选项正确;C、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,故本选项正确;D、科比罚球投篮1次,不命中的可能性较小,故本选项正确.选A.14.【答题】一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A. 至少有1个球是白球B. 至少有1个球是黑球C. 至少有2个球是黑球D. 至少有2个球是白球【答案】B【分析】根据必然事件的定义解答即可.【解答】任意摸3个球,可能出现3黑、1白2黑、2白1黑,所以摸出至少一个黑球是必然事件.选B.15.【答题】下列事件中是必然事件的是()A. 打开电视机,正在播广告B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球C. 明天,涿州的天气一定是晴天D. 从一定高度落下的图钉,落地后针尖朝上【答案】B【分析】根据必然事件的定义解答即可.【解答】解:A,C,D三项都是可能发生,也可能不发生,属于不确定事件.是必然事件的是:从一个只装有白球的缸里摸出一个球,摸出的球是白球.选B.16.【答题】布袋中装有大小一样的3个白球、2个黑球,从布袋中任意摸出一个球,则下列事件中是必然事件的是()A. 摸出的是白球或黑球B. 摸出的是黑球C. 摸出的是白球D. 摸出的是红球【答案】A【分析】根据必然事件的定义解答即可.【解答】解:A、摸出的是白球或黑球,是必然事件;B、C是随机事件,D、没有红球,所以摸出红球是不可能事件;选A.17.【答题】下列事件中,是必然事件的是()A. 抛掷一枚质地均匀的硬币,落地后正面朝上B. 某人身高达到5.5米C. 通常加热到100°C时,水沸腾D. 打开电视,正在播放综艺节目《一站到底》【答案】C【分析】根据必然事件的定义解答即可.【解答】A. 抛掷一枚质地均匀的硬币,落地后正面朝上,随机事件;B. 某人身高达到5.5米,不可能事件;C. 通常加热到100°C时,水沸腾,必然事件;D. 打开电视,正在播放综艺节目《一站到底》,随机事件,选C.18.【答题】“抛一枚均匀硬币,落地后正面朝上”这一事件是()A. 必然事件B. 随机事件C. 确定事件D. 不可能事件【答案】B【分析】根据随机事件的定义解答即可.【解答】根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.选B.19.【答题】下列事件中,为必然事件的是()A. 购买一张彩票,中奖B. 在标准状况下,加热到100℃时,水沸腾C. 任意画一个三角形,其内角和是360°D. 射击运动员射击一次,命中靶心【答案】B【分析】根据必然事件的定义解答即可.【解答】A购买一张彩票,中奖是可能事件;B在标准情况下,水加热到100℃必然会沸腾,是必然事件;C因为三角形内角和是180°,所以任意画一个三角形,其内角和是360°是不可能事件;D射击运动员射击一次,命中靶心为可能事件.选B.20.【答题】下列事件中,属于必然事件的是()A. 掷一枚硬币,正面朝下B. 三角形两边之和大于第三边C. 一个三角形三个内角的和小于180°D. 在一个没有红球的盒子里,摸到红球【答案】B【分析】根据必然事件的定义解答即可.【解答】A. 掷一枚硬币,正面朝下,随机事件;B. 三角形两边之和大于第三边,必然事件;C. 一个三角形三个内角的和小于180° ,不可能事件;D. 在一个没有红球的盒子里,摸到红球,不可能事件,选B.。
28.1随机事件【教学目标】知识与技能:1.了解必然事件、不可能事件、随机事件的概念以及随机事件的发生存在规律性.2.理解随机事件的概率的统计定义.过程与方法:通过概率统计定义的形成过程,提高探究问题、分析问题的能力,体会归纳过程,掌握对实验数据进行有效的分析和处理的方式和方法.情感态度价值观:通过概念的形成过程,渗透归纳思想,优化思维品质,体会“实践出真知”的含义,了解偶然性寓于必然性之中的辩证唯物主义思想.教学重点:了解随机现象及其概率的意义.教学难点:概率定义的形成过程.【教学方法】教学方法:引导发现法直观演示法学习指导:学会学习【教学手段】通过多媒体辅助教学【教学过程】一、课题引入咏雪并请同学们判断事件“北京,六月飞雪”是否可能发生.(新闻播报)近20年来,由于气候异常,出现在6月份并被气象部门记载的“六月飞雪”有3次;1981年6月1日,山西管涔山林区普降大雪,雪深达25厘米.1987年农历闰六月二十四日,上海市区飘起了小雪花.同年6月5日,河北张家口地区降了一场大雪,最低气温降至零下7摄氏度.近的两次“六月飞雪”,一次是2007年6月20日,甘肃降大雪;还有一次就是2007年7月30日下午6点,北京降大雪.引入课题《随机事件》例1试判断以下事件发生的可能性(必然发生?不可能发生?有可能发生?)(1)木柴燃烧,产生热量;(2)明天,地球仍会转动;(3)实心铁块丢入水中,铁块飘浮;(4)在标准大气压00C以下,雪融化;(5)转动转盘后,指针指向黄色区域;(6)两人各买1张彩票,均中奖.二、概念提炼我们将(1)(2)称作必然事件.(3)(4)称作不可能事件.(5)(6)称作随机事件.请学生归纳出这三种事件的定义.强调“在一定条件下”.必然事件:在一定条件下必然要发生的事件叫必然事件.不可能事件:在一定条件下不可能发生的事件叫不可能事件.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件.分析事件(5)的条件和结果,给出试验的定义:在数学里对于某个事件让它的条件实现一次就称为做了一次试验.引导学生分析随机事件和试验结果的关系:一个随机事件包括试验结果的一个或多个但不是全部.三、试验研究随机事件发生的频率随机事件可能发生也可能不发生,它的可能性有多大能指导人们的生活生产实践.那么如何数学地刻画随机事件发生的可能性的大小?要研究这个问题,我们通常从频率入手.先回忆一下初中学习的两个描述性概念:频数和频率.频数:总数据按某种标准分组,统计出各个组内含个体的个数.频率:每个小组的频数与数据总数的比值.试验一:掷骰子通过这个试验研究随机事件A“掷一枚均匀的骰子,3朝上”发生的频率.试验分五步.第一步:将全班分成三个大组,同学们每两人分成一小组做掷骰子试验.分别掷骰子20次,一个同学掷骰子另一个同学记下3朝上的频数和频率.注意摇的次数、力度保持一致,力图保证在同一条件下做同一实验.并请每个小组将试验结果汇总到组长那里.将结果填写到黑板上的表格中.第二步:通过设问:每个小组做试验20次,3朝上的频率相同吗?为什么试验次数相同然而3朝上的频率不相同?这反映了频率的什么特性呢?引导学生了解频率的偶然性.第三步:观察黑板上的表格中的数据猜想:大量重复试验中随机事件A的频率会有什么变化趋势.第四步:电脑模拟掷骰子试验请同学们一边观察一边根据数据填写试验报告(见下表)试验次数3朝上的频数3朝上的频率(处理数据)再请同学们根据表中的数据完成“频率折线图”:在平面直角坐标系中描出这样的点,横坐标为试验的总次数,纵坐标为3朝上的频率.并用线段从左到右依次将这些点连接起来.环看并帮助同学们处理数据,展示较好的图表.第五步:形成结论.(阐明稳定性)大量重复做抛掷骰子试验,随机事件A发生的频率逐渐在1/6附近稳定下来,并在常数1/6附近摆动.对于其他随机事件是否都有类似的结论?我们再来看另外一个试验试验二:电脑演示:抛掷硬币试验实验人抛掷次数出现正面频率狄摩更2048 1006 0.5181布丰4040 2048 0.5069皮尔逊12000 6019 0.5016皮尔逊24000 12012 0.5005通过这个试验我们来研究随机事件B“抛一枚均匀的硬币,正面朝上”的频率.分析根据他们的试验结果绘制的频率折线图.大量的重复抛掷硬币试验,正面朝上的频率稳定在0.5事实上,当大量重复同一试验时,随机事件的频率在某个常数附近摆动的事例不胜枚举.例如生物学中著名的孟得尔豌豆遗传性状试验:试验三:孟得尔豌豆遗传性状试验孟得尔是一位著名的生物学家,他为了研究豌豆遗传性状分离作了大量的试验,如第二栏:孟得尔将纯种的高径豌豆和纯种的矮径豌豆杂交得到子一代,子一代F1全部呈显性性状高径,接着他将子一代自交发现:F2即子二代发生性状分离,并且显性性状与隐性性状之比约为3:1.通过这个试验演示研究在大量重复试验时事件C“子一代自交,子二代表现显性性状” 的频率.性状子一代的表现子二代的表现显性隐性显性:隐性种子的形状 全部圆粒圆粒5474皱粒18502.96:1茎的高度 全部高茎高茎787矮茎2772.84:1子叶的颜色 全部黄色黄色6022绿色20013.01:1豆荚的形状 全部饱满饱满882不饱满2992.95:1根据以上数据绘制的频率折线图回答“子一代自交,子二代表现显性性状”发生的频率有什么变化规律. 四、概率定义的形成分析这三个试验的共同点(①试验的次数如何?②它们都研究什么?③频率有何变化规律?)在大量重复实验时,随机事件发生的频率表现出稳定性.并引导学生结合这个常数发生的过程讨论归纳出概率的定义.一般地,在大量重复进行同一实验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作().m P A n≈证明概率的范围:∵0m n ≤≤,∴01mn≤≤,0() 1.P A ≤≤ 什么事件的概率为0?什么事件的概率为1? 学生讨论并概括频率和概率的联系与区别.联系:随着试验次数的增加, 频率会在概率的附近摆动,并趋于稳定.在实际问题中,若事件的概率未知,常用频率作为它的估计值.区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的.重复试验得到的事件的频率都可能不同.而概率是一个确定数,是客观存在的,与每次试验无关.五、应用概率知识解决实际问题数学的研究对象大致可分为对不确定性现象的研究和对确定性现象的研究.概率论就是从数量的侧面研究不确定现象的方式之一.概率论起源于十七世纪中叶,当时由于对赌博中的随机现象的研究而提出了概率论的基本概念,随后经贝努利、贝叶斯、拉格朗日等数学家的工作其内容日渐增多,到拉普拉斯时古典概率的结构已完成,但他的基本概念还缺乏严格定义,直到二十世纪三十年代,柯尔莫哥洛夫奠定了概率论严格的公理体系,才使概率论有了足够的逻辑基础.至此概率论十分方便的应用于自然科学、技术科学、社会科学、统计学、物理学、社会保障事业和大规模工业生产中.【例2】2005年11月,吉林石化公司双苯厂发生爆炸,松花江受到严重污染,环保部门发布了松花江水质的情况,多次提到一种化学物质硝基苯,有些专家认为硝基苯在动物中有致癌作用,我国的地表水环境质量标准中集中式生活用水地表水源地特定的项目限值硝基苯为0.017mg/L.这与美国的标准一致.专家说,0.017mg/L的标准值,本身已经考虑了硝基苯的直接和富集在鱼体中的影响,能够保证人终生饮水及同时正常食用所产鱼类安全,不会产生有害影响.即只要水中的硝基苯浓度低于0.017mg/L,即可饮用,也可以按正常数量食用该水体中生长的鱼类但是,如果鱼类生长的水体曾受到污染,能否正常食用应通过农业或卫生部门的检测才能做出判断.专家们如何判定松花江里的鱼类受污染的程度呢?专家在松花江采取并检测分析了五百尾鱼类,包括不同江段,不同习性,不同种类的鱼以及松花江沿岸2公里以内养鱼鱼塘的鱼类的硝基苯残量发现这些鱼中只有一条鱼的硝基苯含量略微超过安全标准.那么,从江里捞起一条鱼恰好硝基苯超标的概率有多大呢?专家通过抽样500条,用检测超标鱼出现的频率1/500来估计出整个松花江的鱼中硝基苯超标的概率为1/500.【例3】在数学史上也有这样的例子.祖冲之将圆周率算到 3.1415926 到 3.1415927之间,比西方早了1000年,这是我们中华民族数学史上的骄傲.十九世纪英国人威廉向克思花了二十年将圆周率算至小数点后707位,他死后,人们在他的墓碑上刻下了他毕生的心血结晶----圆周率的707位小数.许多年后,数学家法格逊对这些数据产生了疑虑:在小数点后的大量数码中为什么有的数码出现的次数过多而有的数码出现的次数过少?每个数码出现的概率都应该是1/10.是不是向克思的计算有误呢?,他用当时最先进的计算设备整整算了一年,得出结论:向克思的圆周率的707位小数中前527位是正确的,法格逊的猜想是事实吗?只是当时的数据太少了,不过事情很快有了转机 ,计算机的发明使这成为可能.1973年法国学者让盖尤和他的助手统计了圆周率的前100万位小数中各数码出现的频率,如图,在圆周率的数值式中,任何数码出现的频率均在0.1附近,可见在圆周率的数值式中,各数码出现的概率为1/10.六、小结与作业:1.课本: 练习第1、2题2.设计一个求某个随机事件概率的实验方案,并体会随机事件的概率与哪些因素有关.3.理性分析抛硬币时正面向上的概率是1/2板书设计随机事件(1)事件第二步:电脑模拟实验试验与事件频率≈1/6(2)试验研究随机事件的频率 2."抛硬币,正面朝上"1."掷骰子,3朝上" 频率≈1/2第一步:小组实验 3."子一代自交,子二代表现显性性状"频率≈3/4(3)概率定义: 大量重复实验;频率≈常数1. 概率的范围2. 概率与频率的区别与联系(4)知识应用。
初中数学青岛版九年级下册高效课堂资料6.1随机事件学案一、学习目标1.明确随机事件、必然事件、不可能事件的含义.2. 通过学习会识别事件是属于哪种事件,能给事件进行分类,体会事件来源于生活.二、自主学习(一)自学指导自学课本72-73页的内容,完成以下内容.本环节用时7分钟.1.随机事件的定义,也叫 .2.必然事件的定义是 .3. 不可能事件的定义是 .4.确定事件的概念是 .(二)自学检测请同学们结合自学情况完成下列练习,做题要细心、规范.用时5分钟.1.下面的事件各属于随机事件、必然事件、不可能事件中的哪一类?(1)明年8月5日广东沿海没有台风()(2)抛掷一枚硬币,硬币落定时正面朝上()(3)投出铅球后,经过一段时间铅球落到地面上()(4)从一副扑克牌中任意抽出两张,都是红桃A()(5)买一张电影票,排号和座号都是奇数()2.选择题下列事件中,不可能事件是()A金鱼离开水不久就死亡 B 从一个只放有6个红球的袋子中,摸出一个是黑球C一辆行驶中的公共汽车,下一站恰有3人上车 D 弟弟的个子比哥哥高(三)针对前面的学习,你还有什么疑惑,请写下来:三、合作探究组内交流环节一中的问题,时间:2分钟,组长掌握组内的情况,记录没能解决的问题.发言要求:起立讨论、声音洪亮、言简意赅、明确清晰.探究一:将标有数字1,2,3,4,5的五个乒乓球放进一个不透明的袋子中,从中任意摸出一个球,叫做一个实验,读出这个球上所标的数字.分别指出下列事件是随机事件、必然事件、还是不可能事件?(1)球上所标的数字不大于5()(2)球上所标的数字大于5()(3)球上所标的数字是3()(4))球上所标的数字是偶数,()(5) 同时摸出两个球,球上所标的数字之和等于6()探究二:从长度分别为1,2,3,4,5,6,7,8的8条线段中随机的抽出3条,用它们能够组成一个三角形是什么事件,为什么?展示要求:根据小组交流情况,小组长确定人员到黑板展示.时间:10分钟.四、当堂训练认真规范完成训练题目,书写认真,步骤规范,成绩计入小组量化,本环节不超过15分钟.1.下列成语,哪些刻画的是必然事件?哪些刻画的是不可能事件?哪些刻画的是随机事件?(1)万无一失()(2)胜败乃兵家常事()(3)水中捞月()(4)十拿九稳()(5)海枯石烂()(6)守株待兔()(7)九死一生()(8)百战百胜()2.下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)小明骑车经过某个十字路口时遇到红灯(2)明天,地球还会转动(3)射击运动员射击一次,命中靶心(4)煮熟的鸭子会飞(5)在13个人中有2人的出生月份相同(6)黑暗中我从一大串钥匙中随便选中一把,用它打开了门3.下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)两个负数的商小于0;(2)如果a、b是有理数,那么ab=ba;(3)两条直线被第三条直线所截,同位角相等;(4)三角形的内角和是180°;(5)三条线段可以组成三角形;(6)经过两点有且只有一条直线。