Mega Process TSP draft
- 格式:pptx
- 大小:246.09 KB
- 文档页数:10
Megas临床应用培训教程ESAOTE S.P.A.百胜集团ESAOTE CHINA LIMITED百胜(中国)有限公司全国市场技术部Megas超声应用培训大纲序目内容说明基本知识培训一) Megas1) Megas超声功能介绍见大纲控制面板简介见大纲2) Megas3)测量菜单见Megas 中文操作手册4)超声参数缩语和临床作用见大纲5)彩超图像优化方法一览表见大纲6)数据存储和档案管理见Megas 中文操作手册高级功能培训见Megas 高级操作手册二) MegasCnTI™ 新 一 代 实 时 超 声 对 比 造 影 技 术最初使用超声造影剂主要是为了增加血管内血细胞的声阻抗,以获得基波频段内增强了的血流信号;后来发展到利用谐波信号,提高信噪比,但由于造影剂和超声设备谐波技术的限制,只能进行造影剂气泡的爆破间歇成像。
但目前应用的重点已经转到了实时显示超声造影剂在组织中的灌注程度或过程。
超声对比造影技术,就是更敏感地区分造影剂微泡和组织结构。
新的实时超声对比造影技术,可根据对不同临床病理的诊断要求,选择性放大微泡和组织的回波信号强度。
超声波在人体组织中传播,由于存在非线性效应,导致了波形的变形,即产生了谐波信息。
象组织一样,超声波作用于造影剂气泡,也产生谐波信号。
第二代造影剂Array有厚而脆的外膜,提高了超声回波信号的强度,但是波形的变化较小,直到很大的超声压力使气泡破裂。
因此,第一代造影剂在超声波的作用下,要么气泡存在,但没有谐波信号;要么有很多谐波信号,但气泡已破裂。
另外,当达到击破气泡的声压水平时,组织也会产生丰富的谐波信号。
新的造影剂,即使在极小超声波声压的作用下,就会产生很强的谐波信号。
在这种声压强度的水平下,与微泡产生的谐波信号相比,来自组织的谐波信号可以忽略不计。
第三代造影剂有薄而软的外膜,即使在很低的声压作用下,也能振动而产生具有气泡特征的谐波信号,从而得到“低声压对比灌注”成像。
MegaWizardPlug-In⼯具⽣成altera三速以太⽹IP核并编译仿真虽然很艰⾟,出了⼤堆问题,但总算⼀⼀解决了,即使是别⼈提供现成的IP核和testbench,说起来容易,但是做起来难,版本差别,软件设置,总有这些问题在困扰⼀穷⼆⽩的初学者,并阻挡前进的步伐,现在总结⼀下我做altera triple speed Ethernet 这个IP核⽣成和编译仿真的全过程:(附操作图⽚)1、⽣成IP core:新建⼀个⼯程,选中你将来需要运⾏这个IP core 的器件,在这⾥我选择的是EP4CE115F29C7,然后做⼀个⼩⼩的设置:即⽣成IP核后⾃动添加到当前⼯程->toos ->option ->如图:偏好改为verilog。
然后tools ->MegaWizard Plug-In->选中第⼀项create a new megafunction->如下界⾯注意⼀般应⽤IP核选择第⼀项Installed Plug-Ins,不要选中第⼆项IP MegaStore,原因在于第⼆项中多是altea合作伙伴开发的IP核,⼀般需要license 才能仿真试⽤,⽐较⿇烦,第⼀项⼏乎全都是随quartus II装好的IP核,所以可以⽀持opencore-plus功能,这样⽅便试⽤和仿真,只要通过下载电缆和相应⽀持的开发板连接就可以再开发板上⾯运⾏IP核,⼀般⽀持1⼩时的有效时间,已经够⽤。
接下来指定IP核输出路径,并指定IP核⽂件输出名称(加在路径后⾯),例如命名为tri_megacore,点击next->如图是我的设置,因FPGA内部MAC与PHY连接接⼝选⽤RGMII,故选⽤该设置,使⽤内部FIFO,点击next->⼀般按照默认设置既可,因仿真或者设计需要,另外选中第⼆项、第四项(包括64-bit counter)、第七项,同时选中包含MDIO module,将时钟分频改为50,MAC使⽤125MHz时钟,分频50得到2.5MHz时钟,极为MDIO的⼯作时钟。
cmame审稿(原创版)目录1.审稿背景介绍2.CMame 游戏的特点和历史3.审稿过程和标准4.CMame 游戏的未来发展正文一、审稿背景介绍在电子竞技行业日益发展的今天,游戏审稿成为了保证游戏质量和玩家体验的重要环节。
本文将以 CMame 游戏为例,介绍审稿的过程和标准。
二、CMame 游戏的特点和历史CMame 是一款经典的街机模拟游戏,最早可以追溯到 1990 年代。
其特点是高度还原了当时的街机游戏,让玩家可以在电脑上体验到原汁原味的街机游戏。
CMame 游戏涵盖了众多经典游戏,如《街头霸王》、《合金弹头》等,吸引了大量玩家的关注。
三、审稿过程和标准CMame 游戏的审稿过程主要分为以下几个步骤:1.初审:主要检查游戏的可玩性、兼容性和完整性。
游戏需要能够在多种操作系统和设备上正常运行,且游戏文件完整无损。
2.复审:重点评估游戏的质量,包括画面、音效、操作流畅度等方面。
同时,还要检查游戏中的文字、语言是否存在问题,如错别字、翻译错误等。
3.终审:从整体上对游戏进行评价,确保游戏符合 CMame 的一贯风格和品质要求。
四、CMame 游戏的未来发展随着科技的发展和玩家需求的变化,CMame 游戏在未来还需要不断改进和完善。
首先,游戏需要在画面和音效上继续优化,提升玩家的沉浸感。
其次,游戏需要不断更新,加入更多经典和新颖的游戏,满足玩家的需求。
最后,CMame 游戏可以尝试与其他游戏平台进行合作,拓宽玩家的游戏渠道。
总之,CMame 游戏审稿过程严谨,旨在保证游戏的质量和玩家体验。
MEGA软件——系统发育树构建方法1)序列文本构树之前先将每个样品的序列都分别保存为txt文本文件中,序列只包含序列字母(ATCG或氨基酸简写字母)。
文件名名称可以已经您的想法随意编辑。
2)序列导入MEGA 5首先打开MEGA 5软件,界面如下:然后,导入需要构建系统进化树的序列:点击OK出现新的对话框,创建新的数据文件导入成功3)序列比对分析点击W,开始比对。
比对完成后删除序列两端不能完全对其的碱基。
系统分析然后,关闭该窗口,在弹出的对话框中选择保存文件,文件名随便去,比如保存为1。
4)系统发育树构建以NJ为例Bootstrap选择1000,点Computer,开始计算计算完毕后,生成系统发育树。
以下“系统发育树树的修饰”方法沿用斑竹brightfuture01的方法5)树的修饰建好树之后,往往需要对树做一些美化。
这个工作完全可以在word中完成,达到发表文章的要求。
点击image,copy to clipboard。
新建一个word文档,选择粘贴。
见下图:在图上点击右键-编辑图片,就可以对文字的字体大小,倾斜等做出修饰。
见下图:这个时候可以通过Adobe professional 对其进行图像导出:先将此word文档打印成PDF,见下图:将打印出来的PDF保存在桌面上,打开,如下图:此时,点击工具,高级编辑工具,裁剪工具,如下图所示:选择需要的区域以删除周围的空白区,双击发育树,会出现下图:点击确定,出现下图(把空边切掉了):点击文件,另存为,在保存类型一栏中选择TIFF格式,点击确定后会生成下面这个图片,所生成图片绝对可以满足文章的发表:OK,结束了,自己玩一把吧。
一、介绍Megadepth数据集是一个大规模的深度图像数据集,包含了来自互联网上的数百万张图像以及它们的深度信息。
它被广泛应用于计算机视觉领域的深度估计和三维重建任务中。
而D2-Net是一个基于深度学习的深度图像特征提取器,能够从图像中提取具有高判别性的局部特征。
在实际应用中,我们需要对Megadepth数据集进行一些预处理操作,以便与D2-Net模型进行训练和评估。
二、数据集下载1. 我们需要从Megadepth冠方全球信息站上下载原始数据集。
这个过程可能需要一定的时间,因为该数据集非常庞大。
2. 下载完成后,我们需要将数据集解压缩到本地存储设备中,以便后续的处理。
三、数据集预处理1. 数据集结构整理对于Megadepth数据集来说,它的文件结构可能比较混乱,包含了大量的图像和深度信息文件。
我们需要将它们按照一定的规则整理成统一的文件夹结构,以方便后续的处理。
可以按照场景或者类别对图像进行分类存储。
2. 图像和深度信息处理对于图像和深度信息文件,我们需要进行一些预处理操作,以适配D2-Net模型的输入要求。
这包括图像的尺寸统一化、色彩空间转换、深度信息的格式转换等操作。
3. 数据集分割在进行训练和评估时,我们通常需要将数据集划分为训练集、验证集和测试集。
这有助于评估模型的泛化能力和性能表现。
我们需要对Megadepth数据集进行分割操作,并将不同的子集保存到不同的文件夹中。
四、数据集标注在实际应用中,有时候我们还需要对数据集进行标注操作,以使用监督学习的方法训练深度学习模型。
对于Megadepth数据集来说,可能需要添加场景、物体或者深度信息的标注,以辅助模型学习。
五、总结对于Megadepth数据集的预处理工作,需要我们对数据集的结构进行整理,对图像和深度信息进行处理,对数据集进行分割和标注等操作。
这些预处理步骤有助于提高数据集的质量和适配D2-Net模型的训练和评估需求。
合理的预处理操作也有利于提高深度学习模型的性能和泛化能力。
Technical SpecificationMEF 3Circuit Emulation Service Definitions, Framework and Requirements in Metro Ethernet NetworksApril 13, 2004MEF 3 ©The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 1 of 65Requirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 2 of 65DisclaimerThe information in this publication is freely available for reproduction and use by any recipient and is believed to be accurate as of its publication date. Such information is subject to change without notice and the Metro Ethernet Forum (MEF) is not responsible for any errors. The MEF does not assume responsibility to update or correct any information in this publication. No representation or warranty, expressed or implied, is made by the MEF concerning the completeness, accuracy, or applicability of any information contained herein and no liability of any kind shall be assumed by the MEF as a result of reliance upon such information.The information contained herein is intended to be used without modification by the recipient or user of this document. The MEF is not responsible or liable for any modifications to this document made by any other party. The receipt or any use of this document or its contents does not in any way create, by implication or otherwise:(a) any express or implied license or right to or under any patent, copyright, trademark or trade secret rights held orclaimed by any MEF member company which are or may be associated with the ideas, techniques, concepts or expressions contained herein; nor(b) any warranty or representation that any MEF member companies will announce any product(s) and/or service(s)related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor(c) any form of relationship between any MEF member companies and the recipient or user of this document.Implementation or use of specific Metro Ethernet standards or recommendations and MEF specifications will be voluntary, and no company shall be obliged to implement them by virtue of participation in the Metro Ethernet Forum. The MEF is a non-profit international organization accelerating industry cooperation on Metro Ethernet technology. The MEF does not, expressly or otherwise, endorse or promote any specific products or services. © The Metro Ethernet Forum 2004. All Rights Reserved.Requirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 3 of 65Table of Contents1.ABSTRACT.................................................................................................................................................................8 2.TERMINOLOGY.......................................................................................................................................................8 3.SCOPE........................................................................................................................................................................10 4.COMPLIANCE LEVELS.......................................................................................................................................10 5.MEF DOCUMENT ROADMAP............................................................................................................................10 6. CIRCUIT EMULATION SERVICE DEFINITION. (11)6.1 TDM L INE S ERVICE (T-L INE ) (11)6.1.1 Operational Modes of a T-Line Service (12)6.1.1.1 Unstructured Emulation mode (12)6.1.1.2 Structured Emulation mode (13)6.1.1.3 Multiplexing mode (13)6.1.2 Bandwidth Provisioning for a T-Line Service (14)6.1.2.1 Bandwidth allocation at 100 kbit/s granularity (14)6.1.2.2 TDM multiplexing (14)6.1.2.3 Ethernet multiplexing (15)6.2 TDM A CCESS L INE S ERVICE (TALS) (15)6.2.1 Operational Modes of a TALS Service (16)6.3C USTOMER O PERATED CES...............................................................................................................................17 6.4M IXED -M ODE CES O PERATION .........................................................................................................................18 7. CIRCUIT EMULATION SERVICE FRAMEWORK (19)7.1 G ENERAL P RINCIPLES (19)7.1.1 Use of External Standards (19)7.2 S ERVICE I NTERFACE T YPES (19)7.2.1 Examples of TDM Service Interfaces (20)7.2.2 TDM Service Processor (TSP) (20)7.2.3 Circuit Emulation Inter-working Function (CES IWF) (21)7.2.3.1 PDH Circuit Emulation Service (22)7.2.3.2 SONET/SDH Circuit Emulation Service (22)7.2.4 Emulated Circuit De/Multiplexing Function (ECDX) (23)7.2.5 Ethernet Flow Termination Function (EFT) (23)7.2.6 Direction terminology (23)7.3 S YNCHRONIZATION (23)7.3.1 CES Interworking Function- Synchronization Description (25)7.3.2 Synchronous IWF and Associated Tributaries (27)7.3.2.1 Synchronous IWF and Tributaries (27)7.3.2.2 Synchronous IWF and Asynchronous Tributaries (27)7.3.3 Asynchronous IWF and Associated Tributaries (27)7.3.3.1 Asynchronous IWF, Asynchronous Tributaries (28)7.3.3.2 Asynchronous IWF, Synchronous Tributaries (28)Requirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 4 of 657.3.4 Synchronization Administration (28)7.3.4.1 Single Service-Provider Owned Network (29)7.3.4.2 Multi Service-Provider Owned Network (31)7.3.4.3 Private (customer owned) Network (34)7.4 P ERFORMANCE M ONITORING AND A LARMS (35)7.4.1 Facility Data Link (35)7.4.2 Alarms (35)7.4.2.1 Unstructured Service (35)7.4.2.2 Structured Service (36)7.4.2.3 Buffer Underflow and Overflow (36)7.4.2.4 Alarms in CCS Signaling (36)7.4.3 End-to-End Delay (36)7.5 S ERVICE I MPAIRMENT (36)7.5.1 Errors within the MEN causing TDM service impairment (37)7.5.1.1 Frame Loss (37)7.5.1.2 Frame Delay and Frame Jitter (37)7.5.1.3 Bit Errors (37)7.5.1.4 Frame Error Ratio and IWF behaviour (37)7.5.2 Relationship to TDM service impairment metrics (38)7.5.3 Errored Seconds Requirement for PDH Circuits (38)7.5.4 Severely Errored Seconds Requirement for PDH Circuits (39)7.5.5 Service Impairments for SONET/SDH Circuits (41)7.5.5.1 Performance Objectives for the SONET/SDH network (41)7.5.5.2 MEN Performance Objectives (42)7.5.5.3 Summary & Discussion (45)7.5.6 Availability Requirements (45)7.6 TDM S IGNALING (46)7.7 L OOPBACKS (46)7.7.1 Provider Controlled Loopbacks (46)7.7.2 Customer Controlled Loopbacks (47)7.8 P ROTECTION (48)7.8.1 Scenario 1 – dual unprotected services (48)7.8.2 Scenario 2 – dual protected services (48)7.8.3 Scenario 3 – Single protected service (49)7.8.4 Scenario 4 – Single to dual interface service (49)7.9S ERVICE Q UALITY ...............................................................................................................................................50 7.10E FFICIENCY ..........................................................................................................................................................50 7.11N ON -R EQUIREMENTS ..........................................................................................................................................50 8. CIRCUIT EMULATION SERVICE REQUIREMENTS. (51)8.1 S TRUCTURED DS1/E1 N X 64 KBIT /S S ERVICE (51)8.1.1 TDM Framing (51)8.1.2 Timeslot Assignment (51)8.1.3 Multiplexing Support (51)8.1.4 Clocking (52)8.1.5 Jitter and Wander (52)Requirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 5 of 658.1.6Facility Data Link......................................................................................................................................52 8.1.7Bit Oriented Messages...............................................................................................................................52 8.1.8Alarms.........................................................................................................................................................52 8.1.9Signaling Bits..............................................................................................................................................53 8.1.10Lost and Out of Sequence Frames............................................................................................................53 8.1.11 Buffer Overflow/Underflow.. (53)8.2 DS1/E1 U N S TRUCTURED S ERVICE (53)8.2.1 Framing (54)8.2.2 Clocking (54)8.2.3 Jitter and Wander (54)8.2.4 Facility Data Link (54)8.2.5 Alarms (54)8.2.6 Lost and Out of Sequence Frames (55)8.2.7 Buffer Overflow/Underflow (55)8.3 U NSTRUCTURED DS3/E3 S ERVICE (55)8.3.1 Framing (55)8.3.2 Clocking (56)8.3.3 Jitter and Wander (56)8.3.4 Alarms (56)8.3.5 Lost and Out of Sequence Frames (56)8.3.6 Buffer Overflow/Underflow (57)8.4 SONET/SDH I NTERFACES (57)8.4.1 Framing and Overhead Processing (57)8.4.2 Clocking (58)8.4.3 Pointer Adjustments (59)8.4.4 Jitter and Wander (60)8.4.5 Alarms (60)8.4.6 Buffer Overflow/Underflow (60)8.5 G ENERAL R EQUIREMENTS (61)8.5.1 Loopbacks (61)8.5.2 Frame Loss and Reordering (61)8.5.3 Efficiency (61)9. MEN REQUIREMENTS (62)9.1 F RAME DELAY .....................................................................................................................................................62 9.2 E THERNET F RAME J ITTER ...................................................................................................................................62 9.3 E THERNET F RAME L OSS .....................................................................................................................................63 9.4 N ETWORK A VAILABILITY ...................................................................................................................................63 9.5B ANDWIDTH P ROVISIONING ...............................................................................................................................63 10. REFERENCES. (64)Requirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 6 of 65List of FiguresFigure 1: TDM Line Service over Metro Ethernet Networks (11)Figure 2: Possible TDM Virtual Private Line Configurations (12)Figure 3: Example Multi-point to Point T-Line Multiplexed service (14)Figure 4: Multiplexing across a single Ethernet Virtual Connection (15)Figure 5: Handoff of a multiplexed trunk to an external network (16)Figure 6: Possible TDM Handoff Configurations (17)Figure 7: Customer Operated CES over a Metropolitan Ethernet Service (e.g. E-Line) (17)Figure 8: Mixed-Mode Service (18)Figure 9: Functional Elements and Interface Types (19)Figure 10: Functional Elements of SONET/SDH emulation service (22)Figure 11: Interworking function direction (23)Figure 12: Timing distribution architecture showing clock domains (24)Figure 13: CES IWF Synchronization Reference Model (26)Figure 14: Synchronization Administration for a Single Service-Provider Network (30)Figure 15: Synchronization Administration for a Multi Service-Provider Network (31)Figure 16: Synchronization Administration for a Private Network (34)Figure 17: Allowed Frame Error Ratio to meet ES objectives (39)Figure 18: Relationship between Packing and FER for 0.01% SES................................................................................40 Figure 19: Relationship between Packing and FER for 0.01% SES based on 10-3 BER on end to end TDM datastream (41)Figure 20: Provider Controlled Loopback Points (47)Figure 21: Customer Controlled Loopback Points (47)Figure 22: Dual unprotected services (48)Figure 23: Dual protected services (49)Figure 24: Single protected service (49)Figure 25: Single to dual interface connection (49)Requirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 7 of 65List of TablesTable 1: TDM Service Interfaces (20)Table 2: CES TDM Interface Definition (22)Table 3: Timing Distribution Definitions (24)Table 4: CE Synchronization modes and Expected Timing performance (25)Table 5: CES IWF Synchronization Definitions (26)Table 6: Timing Options per Synchronization Domain (28)Table 7: CES Services and supporting Synchronization Administration Models (29)Table 8: Timing Options Single-Service Provider Owned Network (30)Table 9: Timing Options Multi-Service Provider Owned Network (32)Table 10: Timing Options for a Private Network (34)Table 11: Example conversion from ES to FER for Ethernet Virtual Circuit (38)Table 12: Sparse FER objectives for MEN [G.826] (43)Table 13: Background FER and BER objectives for MEN [G.826] (43)Table 14: Maximal FER accounted by SESR [G.826] (44)Table 15: MEN FER Requirements for SDH/SONET CES (45)Requirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 8 of 651. AbstractThe emulation of TDM circuits over a Metro Ethernet Network (known as Circuit Emulation Services, or CES) is a useful technique to allow MEN service providers to offer TDM services to customers. This document outlines the types of the TDM services that can be offered over a MEN, and the requirements of such services. It covers both PDH services (e.g. Nx64 kbit/s, T1, E1, T3, E3) and SONET/SDH services (STS-1, STS-3, STS-3c, STS-12, STS-12c and European equivalents).The document contains three sections:-a set of service definitions for Circuit Emulation Services (CES) in the Metro Ethernet Forum context, -a framework section explaining issues with the implementation of such services - a set of requirements needed for providing such services in Metro Ethernet Networks (MEN).Separate implementation agreements for PDH and SONET/SDH services will be produced which cover the implementation of these services in an inter-operable manner. This document is intended as a reference against which any Implementation Agreement can be compared to ensure that all the service requirements have been met.2. Terminology TermDefinition AISAlarm Indication Signal ANSIAmerican National Standards Institute APSAutomatic Protection Switching BERBit Error Ratio BBERBackground Block Error Ratio BLSRBi-directional Line Switched Ring CASChannel Associated Signaling CCSCommon Channel Signaling CECustomer Equipment CESCircuit Emulation Services CRClock Recovery. CRCCyclic Redundancy Check CUETCustomer Unit Edge Terminal DSTMDerived System Timing Mode. The IWF system clock is derived from the incoming Ethernet frames. DTMDerived Timing Mode. The recovered service clock is derived from the incoming Ethernet frames. E-LineEthernet Line Service ECDXEmulated Circuit De/Multiplexing Function ECIDEmulated Circuit Identifier EFTEthernet Flow Termination ESErrored Second ESRErrored Second RatioRequirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof,Page 9 of 65TermDefinition ESFExtended Super Frame EVCEthernet Virtual Circuit FDLFacility Data Link FERFrame Error Ratio HOVCHigher Order Virtual Container IAImplementation Agreement IETFInternet Engineering Task Force ITU-TInternational Telecommunication Union – Telecommunication standardization sector IWFInter-Working Function LOHLine OverHead LOPSLoss Of Packet Synchronization LOSLoss Of Signal LOVCLower Order Virtual Container LTELine Termination Equipment MIBManagement Information Base MENMetro Ethernet Networks NENetwork Equipment NNINetwork to Network Interface PDHPlesiochronous Digital Hierarchy. PDH refers to the DS1/DS2/DS3 and E1/E3/E4 family of signals PEProvider Edge PLLPhase Locked Loop PRSPrimary Reference Source PSTNPublic Switched Telephone Network PWE3Pseudo-Wire Emulation Edge to Edge (an IETF working group) RDIRemote Defect Indication SDHSynchronous Digital Hierarchy SESSeverely Errored Second SESRSeverely Errored Second Ratio SFSuper Frame SLAService Level Agreement SLSService Level Specification SONETSynchronous Optical Network SSMSynchronization Status Message TALSTDM Access Line Service TDMTime Division Multiplexing (examples of TDM services include Nx64 kbit/s, T1, T3, E1, E3, OC-3, STM-1, OC-12, STM-4) T-LineTDM Line Service TSP TDM Service ProcessingRequirements in Metro Ethernet Networks MEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 10 of 65 TermDefinition UNIUser Network Interface VCVirtual Container VTVirtual Tributary MapperA device or logic that implements a mapping function Mapping The process of associating each bit transmitted by the service into the SDH/SONET payloadstructure that carries the service. For example, mapping a DS1 service into SONET VT-1.5 /SDH VC-11 associate each bit of the DS1 with a location in the VT-1.5/VC-11Multiplex Transmit one or more channels over a single channelPointerA part of the SDH/SONET overhead that locates a floating payload structure. Frequencydifferences between SDH/SONET network elements or between the payload and theSDH/SONET equipment can be accommodated by adjusting the pointer value. 3. ScopeThe scope of this document is to address the particular requirements of transport over MEN for edge-to-edge-emulation of circuits carrying time division multiplexed (TDM) digital signals. It makes references to requirements and specifications produced by other standards organizations (notably the ITU, ANSI, IETF PWE3 and ATM Forum), and adapts these to address the specific needs of MEN. It is not in the scope of this document to duplicate any work of other related standardization bodies.The document covers the definition of such services, a framework in which the service provision can be understood, and also the requirements for the defined services. The actual implementation of these services in an inter-operable manner will be the subject of separate Implementation Agreements, and hence is outside the scope of this document.4. Compliance LevelsThe key words “MUST ”, “MUST NOT ”, “REQUIRED ”, “SHALL ”, “SHALL NOT ”, “SHOULD ”, “SHOULD NOT ”, “RECOMMENDED ”, “MAY ”, and “OPTIONAL ” in this document are to be interpreted as described in[RFC 2119]. All key words must be use upper case, bold text.5. MEF Document RoadmapMEF draft specifications and the document roadmap are available in the members area on the Metro Ethernet Forum website at /.Requirements in Metro Ethernet NetworksMEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 11 of 656. Circuit Emulation Service DefinitionEthernet CES provides emulation of TDM services, such as Nx64 kbit/s, T1, E1, T3, E3, OC-3 and OC-12, across a Metropolitan Ethernet Network. The object of this is to allow MEN service providers to offer TDM services to customers. Hence it allows MEN service providers to extend their reach and addressable customer base. For example, the use of CES enables metro Ethernet transport networks to connect to PBX ’s on customer premises and deliver TDM voice traffic along side of data traffic on Ethernet.The CES is based on a point-to-point connection between two Inter Working Functions (IWF). Essentially, CES uses the MEN as an intermediate network (or ‘virtual wire ’) between two TDM networks. This is handled as an application of the Ethernet service, using the interworking function to interface the applications layer onto the Ethernet services layer.6.1 TDM L INE S ERVICE (T-L INE )The TDM Line (T-Line) service provides TDM interfaces to customers (Nx64 kbit/s, T1, E1, T3, E3, OC-3, OC-12 etc.), but transfers the data across the Metropolitan Ethernet Network (MEN) instead of a traditional circuit switched TDM network. From the customer perspective, this TDM service is the same as any other TDM service, and the service definition is given by the relevant ITU-T and ANSI standards pertaining to that service.From the provider ’s perspective, two CES interworking functions are provided to interface the TDM service to the Ethernet network. The CES interworking functions are connected via the Metro Ethernet Network (MEN) using point-to-point Ethernet Virtual Connections (EVCs) as illustrated in Figure 1. (For the purposes of CES, the service provider owning the CES interworking functions is viewed as the “customer ” of the MEN, providing the ability to use an Ethernet UNI, and the performance and service attributes associated with this concept).The TDM Service Processor (TSP) block shown in Figure 1 consists of any TDM grooming function that may be required to convert the TDM service offered to the customer into a form that the CES IWF can accept (see section 7.2.2). For example, the TSP may be a Framer device, converting a fractional DS1 service offered to the customer into a Nx64 kbit/s service for transport over the MEN. The operation of the TSP is outside the scope of this document.The TSP and the CES IWF may physically reside in the Provider Edge (PE) unit at the provider ’s nearest point-of-presence, or in a service provider owned box in a customer location (e.g. a multi-tenant unit). From the architecture perspective, there is no difference between these alternatives.DemarcationDemarcationFigure 1: TDM Line Service over Metro Ethernet NetworksRequirements in Metro Ethernet NetworksMEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 12 of 656.1.1 Operational Modes of a T-Line ServiceThe basic T-Line service is a point to point, constant bit rate service, similar to the traditional leased line type of TDM service. However, service multiplexing may occur ahead of the CES inter-working functions, (e.g. aggregation of multiple emulated T1 lines into a single T3 or OC-3 link), creating a multi-point to point or even a multi-point to multi-point configuration (see Figure 2 below).This service multiplexing is carried out using standard TDM multiplexing techniques, and is considered as part of the TSP block, rather than the CES inter-working function. The TDM interface at the input of the CES inter-working function is the same as that output from the CES IWF at the opposite end of the emulated link. It is the TSP that may be used to multiplex (or demultiplex) that TDM service into the actual TDM service provided to the customer. This allows a TDM service to a customer to be provided as a collection of emulated services at lower rates.Figure 2: Possible TDM Virtual Private Line ConfigurationsHence there are three possible modes of operation of a T-Line service: i. Unstructured Emulation mode (also known as “structure-agnostic ” emulation) ii. Structured Emulation Mode (also known as “structure-aware ” emulation) iii.Multiplexing modeModes (i) and (ii) are point-to-point connections. Mode (iii) permits multi-point-to-point and multi-point-to-multi-point configurations, although all of these modes are operated over simple point-to-point EVCs in the MEN. 6.1.1.1 Unstructured Emulation modeIn Unstructured Emulation Mode, a service is provided between two service-end-points that use the same interface type. Traffic entering the MEN on one end-point leaves the network at the other end-point and vice-versa.The MEN must maintain the bit integrity, timing and other client-payload specific characteristics of the transported traffic without causing any degradation that would exceed the requirements for the given service as defined in the Requirements section of this document. All the management, monitoring and other functions related to that specific flow must be performed without changing or altering the service payload information or capacity.Requirements in Metro Ethernet NetworksMEF 3© The Metro Ethernet Forum 2004. Any reproduction of this document, or any portion thereof, Page 13 of 65Examples where unstructured emulation mode could be implemented are leased line services or any other transfer-delay sensitive (real time) applications. The specific transport rates and interface characteristics of this service are defined in the Requirements section of this document. 6.1.1.2 Structured Emulation modeIn Structured Emulation Mode, a service that is provided between two service-end-points that use the same interface type. Traffic entering the MEN on one end-point is handled as overhead and payload. The overhead is terminated at the near end point, while the payload traffic is transported transparently to the other end. At the far end point the payload is mapped into a new overhead of the same type as at the near end point.The MEN must maintain the bit integrity, timing information and other client-payload specific characteristics of the transported traffic without causing any degradation that would exceed the requirements for the given service as defined in the Requirements section of this document. All the management, monitoring and other functions related to that specific flow must be performed without changing or altering the service payload information or capacity. An example of such a service is the transport of OC-3 when the SOH is terminated at both ends and the STS-1 payloads are transported transparently over the MEN. A second example is a fractional DS1 service, where the framing bit and unused channels are stripped, and the used channels transported across the MEN as an Nx64 kbit/s service. The specific transport rates and interface characteristics are defined in the Requirements section of this document.6.1.1.3 Multiplexing modeIn the multiplexing mode, multiple lower rate transparent services are multiplexed at a specific service-end-point of the MEN into a higher digital hierarchy. Similarly, a higher rate service may be de-composed into several lower rate services. For example, a customer may have several sites – a head office with a full DS1 connection, and several satellites with fractional DS1 connections, as shown in Figure 3. The same architecture can be used for multiplexing of other rate services, e.g. several full DS1 services onto a single DS3, or multiplexing of VT-1.5s into an STS-1. The specific transport rates and interface characteristics are defined in the Requirements section of this document. Service multiplexing is typically performed in the TDM domain as part of a TSP, not in the Ethernet domain. A fractional TDM link going into the MEN comes out as a fractional TDM link, or at least as a payload containing solely that fractional link. Multiplexing and de-multiplexing is performed outside the CES IWF, as part of any native TDM signal processing, as shown in Figure 3. Therefore the customer service is multiplexed, but the emulated service (i.e. the service handled by the IWF) is structured.。
MEGA构建系统进化树的步骤1. 将要用于构建系统进化树的所有序列合并到同一个fasta格式文件,注意:所有序列的方向都要保持一致( 5’-3’)。
2. 打开MEGA软件,选择”Alignment” –“Alignment Explorer/CLUSTAL”,在对话框中选择Retrieve sequences from a file, 然后点OK,找到准备好的序列文件并打开。
3. 在打开的窗口中选择”Alignment”-“Align by ClustalX” 进行对齐,对齐过程需要一段时间,对齐完成后,最好将序列两端切齐,选择两端不齐的部分,单击右键,选择delete即可。
4. 关闭当前窗口,关闭的时候会提示两次否保存,第一次无所谓,保存不保存都可以,第二次一定要保存,保存的文件格式是.meg。
根据提示输入Title,然后会出现一个对话框询问是否是Protein-coding nucleotide sequence data, 根据情况选择Yes或No。
最后出现一个对话框询问是否打开,选择Yes。
5. 回到MEGA主窗口,在菜单栏中选择”Phylogeny”-“Bootstrap Test of Phylogeny”-“Neighbor-joining”,打开一个窗口,里面有很多参数可以设置,如何设置这些参数请参考详细的MEGA说明书,不会设置就暂且使用默认值,不要修改,点击下面的Compute按钮,系统进化树就画出来了。
6. 最后,使用TreeExplorer窗口中提供的一些功能可以对生成的系统进化树进行调整和美化。
另外,还可以用Word进一步编辑MEGA构建的进化树。
一般说来,MEGA适用于对少量的序列进行比对和画Tree,如需处理大量或海量的序列数据,建议使用ARB。
用BioEdit合并序列:1、打开BioEdit,点击“File”->”New Alignment”;2、“File”->”import”->”Sequence Alignment file”,将全部要合并的序列导入;3、”File“->”Save“ or “Save as”,保存为.fas格式文件。
三星手机测试代码工程命令模式安卓每只手机都有一个工程命令模式的存在,利用这些功能可以轻松的查询手机信息和调节系统功能,使用起来非常的方便。
1. *#06#:查询手机串号(IMEI)2. *#1111#:查询FTA SW版本3. *#2222#:查询FTA HW版本4. *#1234#:查询固件版本号5. *#0*#:进入工程模式6. *#0228#:电池状态7. *#12580*369#:软硬件信息、出厂日期8. *#2663#:固件信息更新等(TSP FW\TOUCH KEY FWSENSORHUB FW等):相机固件相关10. *#7353#:快速测试菜单11. *#0011#:网络信息、信号强度等12. *#0283# :looback 测试13. *#0808#:USB设置14. *#9090#:service 模式15. *#9900#:SysDump*#0*#:进入工程模式(测试菜单)Red:红色屏幕显示,Green:绿色屏幕显示,Blue:蓝色屏幕显示,Receiver:警告音(全白,用于检查外放声音,按一下有嘟的长音),Vibration:振动(全黑,用于检查振动功能),Dimming:红绿蓝(颜色光暗渐变),Mega Cam:后置摄像头设置,Sensor:传感器测试(屏幕上弹出测试页面,然后将手掌置于手机屏幕上方,此刻测试页面中将呈现一片透亮的草绿色,并伴有手机轻微的震动,有此震动则表明手机的震动功能良好。
此则证明该手机感光功能尚好。
Touch:触屏测试(将所有格子涂满,就能PASS通过。
测试触屏!)。
TSP Hovering:手势感应测试(手指悬停在屏幕上方,方格就会变成绿色,并且画出手指轨迹,全部变成绿色就通过),Sleep:锁屏待机测试,Speaker:喇叭测试,Sub key:按键测试(点击实体按键和触摸按键,成功的话屏幕会变色),Front cam:前置摄像头测试,LED:LED指示灯测试(点击屏幕,LED指示灯会变换不同颜色),Wacom Test:测试电磁笔感应,LOW FREQUENCY:低频测试,Black:黑色屏幕显示,SPEN HOVERING:测试电磁笔感应。
超表达植株构建原理赛思基因,专注遗传转化技术的应用和开发,致力于打破基因型限制,助力基因编辑育种。
基因过表达是指将一目标基因克隆到一个携带有强启动子和抗性筛选标记等元件的载体上,然后导入植物体内,这样宿主细胞会获得较高量的目标mRNA转录水平和蛋白表达水平,从而通过表型等分析可以研究该基因的功能。
它适用于基因功能有冗余或基因敲除后致死的情况。
过量表达的载体(超表达)过表达载体主要是将目的基因的编码区(CDS)构建到相应的质粒或者病毒载体中,达到在目的基因过量表达的作用。
过表达载体的主要元件:Promoter—gene—linker—Fluorescent gene—抗药筛选gene。
花椰菜花叶病毒(CaMV) 35S是组成型启动子,具多种顺式作用元件。
其转录起始位点上游-343~-46bp是转录增强区,-343~-208和-208~-90bp是转录激活区,-90~-46bp是进一步增强转录活性的区域。
Mitsuhara等利用CaMV35s核心启动子和CaMV 35S启动子的5'端不同区段与烟草花叶病毒的5'非转录区(omega序列)相连,发现两个CaMV 35S启动子-419~-90序列与omega序列串联后,将GUS构建在该启动子后面转入植株中,获得很高的GUS表达活性。
另一种高效的组成型启动子Cs-VMV是从木薯叶脉花叶病毒(cassava vein mosaic virus,CsVMV)中分离的。
该启动子-222~-173bp负责驱动基因在植物绿色组织和根尖中的表达。
在双子叶植物中过量表达某个目的基因大多采用人工改造后的CaMV 35S启动子,在单子叶植物如水稻中常采用泛素启动子。
除了上面提到的高效表达的组成型启动子外,在植物发育生物学研究中经常使用的还有组织特异性表达启动子,如根特异启动子mas2、叶肉细胞特异启动子C4Pdk和种子特异启动子napinB等。
载体构建(vectorconstruction):为把DNA分子运送到受体细胞中去,必须寻找一种能进入细胞、在装载了外来的DNA片段后仍能照样复制的运载体。
Developer 600-010 1 litre Conc. (10 litres) Etchant 600-013 Etchant 2.5 Kilos (5 litres) Etchant 600-015 Liquid Etchant (5 Litres) Etchant 600-016 Liquid Etchant (25 Litres) Fine Etch 600-014 Fine etch Crystals (5 litres) Stripper 600-019 Resist Strip 1 litre =(5 litres) Tin 600-021 Immerse Tin 450g=(5 litres) 3. Where applicable ensure all water services are connected in accordance with local water bylaws. For spray wash tanks minimum water pressure of water inlet should be 2 bars. Where applicable connect spray wash water inlet to water supply via washing machine hose and threaded washing machine type tap, designed to fit standard 15mm copper cold water mains pipe by means of a compression joint.WASTE WATER OUTLET TO MAINS WASTE IS VIA THE 32mm PUSH FIT BENDInstructions on Use4. All but the PA103 spray wash require mains power. Before inserting mains lead ENSURE ANY HEATED TANK IS FILLED WITH WATER TO 5 – 10mm below the shoulder on which the lid rests.The combined lid and basket holder enables the operator to move the PCB laminate into a separate or integral spray wash tank for cleaning without coming into contact with the chemistry. NEVER TURN ON ANY TANK WHEN IT IS EMPTY.5. Always use a Power Cut-Out (RCD) device with the tanks, (Mega part No 161053). Having read electrical safety notice on reverse (or attached) insert plug into 13amp socket. Turn on the mains switch on the front of the unit and ensure it illuminates to confirm power is on. Processing Times :The time the board is left immersed in a process tank should be determined from the relevant chemical processing instructions. As a guide, developing normally takes 30 – 60 seconds, etching 5 – 6 minutes, resist stripping 2 – 3 minutes and tinning 5+ minutes.6. Read the chemistry instructions to determine what temperature each tank should be set to. As a guide developer is normally 20 – 25ºC, Etchant 45ºC, Stripper 45ºC and Tin 20ºC. Keeping each tank filled with water, set each tank’s temperature by rotating the control knob clockwise to turn the heater on (the heater neon will then illuminate) and anti-clockwise to turn the heater off.Spray Wash :Boards should be washed in a spray wash tank for at least 60 seconds. The spray wash tanks have a solenoid valve operated by an illuminated switch on the control panel. When the switch is on water is forced out of the two spray wash bars at the top of the tank. The range of temperature the dial can be rotated covers approximately 20ºC to 50ºC. Adjust the dial to an approximate position for the appropriate chemical. Once the temperature has stabilised the liquid temperature should be checked with a thermometer and final adjustments made. When this is done, turn the heater and mains switch off and disconnect from mains. Syphon off the water and fill with the appropriate chemistry, reconnect to mains and turn heater on.Etching:The etch tank has an integral air pump operated from the front control panel. Do not operate the pump unless a lid / basket is on the tank. For optimum results panels should be inverted half-way through the etching cycle.Fault Finding:If you have a problem with your unit – Check the following:- If the problem persists, please contact Mega’s repair department quoting the model number and serial number of your unit..Problem SolutionNo power to the tank, mains switch does not light up. Check fuse in the tank and mains plug.Heater light to Developing tank does not light up. Check that room/water temperature is not already close to 25ºC Heater light is on, but liquid does not heat up. Contact Mega.Liquid becomes too hot. Check liquid level. It should be 5 – 10mm below top of tankServicing and SparesBefore cleaning or servicing any tank ensure the power is switched off and the mains cable is removed.Each time the chemistry is changed, clean and rinse the tank before replenishing.Ferric chloride (Etchant) stains can be removed with Mega’s Ferric Cleaner (Part No. 600-039). The following common spare parts can be ordered: 160001 Heater160032 Heater160056 Thermostat167004 AmberIndicator167111 Green Latching Switch167112 Yellow Latching Switch291000 Bubble Bar Assembly900-041 Lid / Basket 12” x 18” Associated ProductsA range of products available for use with this unit are detailed in our free product catalogue. The fully priced catalogue features all that is required for Printed Circuit Board and Label products. Please telephone us for your copyElectrical Safety NoticeCONNECTIONS TO MAINS ELECTRICAL SUPPLYThis equipment is designed to safety class 1Before connecting this equipment to the mains electricity supply, examine the information on the apparatus rating label.Ensure that the mains supply is single phase alternating current (a.c.) of the stated frequency (Hz), with neutral nominally at earth potential.Check the supply voltage is within the stated range.The equipment rating label states the value of the fuse fitted to the apparatus itself. Ensure that the plug or supply circuit is fitted with an appropriate fuse of higher value.WARNING THIS APPARATUS MUST BE EARTHED.The wires in the mains lead are coloured in accordance with the following code:Green/Yellow - Earth (E)Blue - Neutral (N)Brown - Live (L)If a moulded fused plug is not fitted connect the wires to a non-reversible 3 pin plug as follows:-Green/Yellow wire to terminal marked:E (earth) or G (ground) or coloured Green or coloured Green/Yellow. Blue wire to terminal marked:N (neutral) or Common or coloured blue.Brown wire to terminal marked:L (live) or Phase or coloured Brown.NO SERVICING OR MAINTENANCE SHOULD BE CARRIED OUT UNTIL THE UNIT HAS BEEN SWITCHED OFF AND ISOLATED FROM THE MAINS ELECTRICITY SUPPLY.Any spare parts which may be required, are supplied on the understanding that the replacement of these requiring the exposure of live electrical connections will be undertaken by an electrically qualified person.Mega Electronics LimitedMega House, Grip Industrial Estate, Linton, Cambridge, CB1 6NR. England. Telephone: +44 01223 893900 Fax: +44 01223 893894 email: **************** Web: 。