【高考】2018-2019学年最新人教版数学高考(文)一轮复习训练:第七章规范练35直接证明与间接证明
- 格式:doc
- 大小:155.00 KB
- 文档页数:6
真题演练集训1.[2016·北京卷]已知x,y∈R,且x>y>0,则( )A。
错误!-错误!>0B.sin x-sin y>0C.错误!x-错误!y<0D.ln x+ln y>0答案:C解析:解法一:因为x〉y〉0,选项A,取x=1,y=错误!,则错误!-错误!=1-2=-1〈0,排除A;选项B,取x=π,y=错误!,则sin x-sin y =sin π-sin 错误!=-1<0,排除B;选项D,取x=2,y=错误!,则ln x+ln y=ln(xy)=ln 1=0,排除D。
故选C.解法二:因为函数y=错误!x在R上单调递减,且x>y〉0,所以错误! x<错误!y,即错误!x-错误!y〈0,故选C。
2.[2016·新课标全国卷Ⅰ]若a>b>1,0<c〈1,则( )A.a c〈b c B.ab c<ba cC.a log b c〈b log a c D.log a c〈log b c答案:C解析:对于选项A,考虑幂函数y=x c,因为c〉0,所以y=x c为增函数,又a〉b〉1,所以a c〉b c,故A错;对于选项B,ab c〈ba c⇔错误!c〈错误!,又y=错误!x是减函数,故B错;对于选项D,由对数函数的性质可知D错,故选C.3.[2014·辽宁卷]当x∈[-2,1]时,不等式ax3-x2+4x +3≥0恒成立,则实数a的取值范围是( )A.[-5,-3]B。
错误!C.[-6,-2]D.[-4,-3]答案:C解析:当x=0时,ax3-x2+4x+3≥0变为3≥0恒成立,即a∈R,当x∈(0,1]时,ax3≥x2-4x-3,a≥错误!,∴a≥错误!max。
设φ(x)=错误!,φ′(x)=错误!=-错误!=-错误!>0,∴φ(x)在(0,1]上递增,φ(x)max=φ(1)=-6.∴a≥-6。
当x∈[-2,0)时,a≤错误!,∴a≤错误!min.仍设φ(x)=错误!,φ′(x)=-x-9x+1x4,当x∈[-2,-1)时,φ′(x)<0;当x∈(-1,0)时,φ′(x)>0。
真题演练集训1.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12答案:C解析:作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则x 2+y 2表示|OP |2.显然,当点P 与点A 重合时,x 2+y 2取得最大值,由⎩⎪⎨⎪⎧ x +y =2,2x -3y =9, 解得⎩⎪⎨⎪⎧x =3,y =-1,故A (3,-1).所以x 2+y 2的最大值为32+(-1)2=10.故选C.2.若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案:C解析:不等式组⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0表示的可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A (1,2)时,z 取得最大值,z max =2×1+2=4.故选C.3.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元 D .18万元答案:D解析:设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有 ⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y ,作出可行域如图中阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18(万元).4.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3答案:C解析:作出不等式组表示的可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧x +y =1,x -2y =4,得交点A (2,-1). 目标函数的斜率k =-12>-1,观察直线x +y =1与直线x +2y =0的倾斜程度,可知u =x +2y 过点A 时取得最小值0⎝ ⎛⎭⎪⎫y =-x 2+u 2,u 2表示纵截距.结合题意知p 1,p 2正确.5.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.答案:32解析:约束条件对应的平面区域是以点⎝ ⎛⎭⎪⎫1,12,(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z 经过点⎝ ⎛⎭⎪⎫1,12时,z 取得最大值32.课外拓展阅读 非线性目标函数最值的求解类型1 斜率型非线性规划问题的最值(值域)目标函数形式一般为z =ay +bcx d(ac ≠0),求解步骤为(1)需先弄清其几何意义,z =a c ·y -⎝ ⎛⎭⎪⎫-b a x -⎝ ⎛⎭⎪⎫-d c 表示的是可行域内的点(x ,y )与点⎝ ⎛⎭⎪⎫-dc,-b a 所连直线的斜率的a c 倍.(2)数形结合,确定定点⎝ ⎛⎭⎪⎫-dc,-b a ,观察可行域的范围.(3)确定可行域内的点(x ,y ),看(x ,y )取何值时,斜率最大(注意若可行域不含边界点,有可能取不到最大值);(x ,y )取何值时,斜率最小(注意若可行域不含边界点,有可能取不到最小值);通常在三角形或四边形的边界交点处取得最值.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -4≥0,x -y +2≥0,2x -y -5≤0,则f (x ,y )=x +2y2x +y的取值范围是________.作出不等式组表示的平面区域,如图中阴影部分所示,f(x,y)=x+2y2x+y=1+2·yx 2+yx.令yx=k,则g(k)=1+2k2+k=2-32+k.而k=yx表示可行域内的点P(x,y)与坐标原点O的连线的斜率,观察图形可知,kOA≤k≤k OB,而k OA=1-03-0=13,k OB=3-01-0=3,所以13≤k≤3,即57≤f(x,y)≤75. ⎣⎢⎡⎦⎥⎤57,75类型2 距离型非线性规划问题的最值(值域)1.目标函数形式为z=(x-a)2+(y-b)2时,求解步骤为:(1)其表示的是可行域内的点(x,y)与点(a,b)之间的距离的平方.(2)数形结合,确定定点(a,b),观察可行域的范围.(3)确定可行域内的点(x,y),看(x,y)取何值时,距离最大(注意若可行域不含边界点,有可能取不到最大值);(x,y)取何值时,距离最小(注意若可行域不含边界点,有可能取不到最小值);通常在三角形、四边形的边界交点处或定点(a,b)到可行域边界直线的垂足处取得.2.目标函数形如z =|Ax +By +C |时,一般步骤为:(1)将z =|Ax +By +C |=A 2+B 2·|Ax +By +C |A 2+B 2,问题转化为求可行域内的点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍的最值.(2)确定可行域,通过数形结合的方法求出所求的最值.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为( )A .80B .4 5C .25 D.172作出可行域→结合目标函数的几何意义:两点间距离的平方→数形结合,求得z 的最大值作出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图中阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知,可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得点A 的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80. A实数x ,y满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解法一:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何意义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 的坐标为(7,9), 显然点B 到直线x +2y -4=0的距离最大, 此时z max =21.解法二:由图可知,阴影区域内的点都在直线x +2y -4=0的上方,显然此时有x +2y -4>0,于是目标函数等价于z =x +2y -4,即转化为简单的线性规划问题,显然当直线经过点B 时,目标函数取得最大值,z max =21.21 技巧点拨解决这类问题时,需充分把握好目标函数的几何意义,在几何意义的基础上加以处理.。
`一、选择题1.空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系为 ( )A .共线B .共面C .不共面D .无法确定解析:可在空间直角坐标系中作图分析,知A 、B 、C 、D 不共面. 答案:C2.如图,在底面ABCD 为平行四边形的四棱柱ABCD -A 1B 1C 1D 1中,M 是AC 与BD 的交点,若1A A =a ,11A D =b ,1A A=c 则下列向量中与B 1M ―→相等的向量是 ( )A .-12a +12b +cB.12a +12b +c C.12a -12b +cD .-12a -12b +c解析:1B M =1B A +AM =1B B +BA +AM=-12a +12b +c .答案:A3.设空间四点O ,A ,B ,P 满足OP =AC+t AB ,其中0<t <1,则有 ( )A .点P 在线段AB 上 B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上解析:∵0<t <1,∴P 点在线段AB 上. 答案:A4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于 ( )A.627 B.637 C.607D.657解析:∵a 、b 、c 三向量共面,所以存在实数m 、n ,使得c =ma +nb .即⎩⎪⎨⎪⎧7=2m -n ,5=-m +4n ,λ=3m -2n .∴λ=657. 答案:D5.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM =12 1MC,N 为B 1B的中点,则| MN|为( )A.216aB.66aC.156aD.153a 解析:如图设AB=a , AD=b , 1AA=c , 则|MN |=|MA +AB +BN |=|-13 1AC+AB +121BB |=|-13(a +b +c )+a +12c |=|23a -13b +16c | ∴|MN |I 2=(23a -13b +16c )I 2可求|MN |=216a . 答案:A 二、填空题6.若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ=________.解析:由cos 〈a ,b 〉=89⇒λ=-2或255.答案:-2或255 7.已知ABCD -A 1B 1C 1D 1为正方体,①(1A A +11A D +11A B )I 2=311A BI 2;②1A C ·(11A B -1A A )=0;③向量1AD 与向量1A B 的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为| AB ·1AA ·AD |.其中正确命题的序号是________.解析:由1AA ⊥11A D ,1AA ⊥11A B ,11A D ⊥1AB 得(1A A +11A D +11A B )I 2=3(11A B )I 2,故①正确;②中11A B -1A A =1AB,由于AB 1⊥A 1C ,故②正确;③中A 1B与AD 1两异面直线所成角为60°,但AD 1―→与A 1B ―→的夹角为120°,故③不正确;④中|AB ·1AA ·AD|=0.故④也不正确.答案:①② 三、解答题8.已知非零向量e 1,e 2不共线,如果AB =e 1+e 2,AC =2e 1+8e 2,AD=3e 1-3e 2,求证:A 、B 、C 、D 共面.证明:令λ(e 1+e 2)+μ(2e 1+8e 2)+v (3e 1-3e 2)=0. 则(λ+2μ+3v )e 1+(λ+8μ-3v )e 2=0.∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧λ+2μ+3v =0,λ+8μ-3v =0.易知⎩⎪⎨⎪⎧λ=-5,μ=1,v =1是其中一组解,则-5AB +AC +AD=0.∴A 、B 、C 、D 共面.9.设向量a =(3,5,-4),b =(2,1,8),计算2a +3b,3a -2b ,a ·b 以及a 与b 所成角的余弦值,并确定λ,μ应满足的条件,使λa +μb 与z 轴垂直.解:2a +3b =2×(3,5,-4)+3×(2,1,8) =(6,10,-8)+(6,3,24)=(12,13,16). 3a -2b =3×(3,5,-4)-2×(2,1,8) =(9,15,-12)-(4,2,16)=(5,13,-28). a ·b =(3,5,-4)·(2,1,8)=6+5-32=-21. ∵|a |=3I 2+5I 2+-4 I 2=50, |b |=2I 2+1I 2+8I 2=69, ∴cos 〈a ,b 〉=a ·b|a ||b |=-2150·69=-7138230.∵λa +μb 与z 轴垂直,∴(3λ+2μ,5λ+μ,-4λ+8μ)·(0,0,1)=-4λ+8μ=0,即λ=2μ.∴当λ,μ满足λ=2μ时,可使λa +μb 与z 轴垂直. 10.直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.解:(1)证明:设CA =a ,CB =b ,CC=c ,根据题意,|a |=|b |=|c |且a·b =b ·c =c ·a =0.∴CE =b +12c ,A D ' =-c +12b -12a .∴CE ·A D ' =-12cI 2+12bI 2=0.∴CE ⊥A D ',即CE ⊥A ′D .(2) AC ' =-a +c ,∴| AC ' |=2|a |,|CE |=52|a |.AC ' ·CE =(-a +c )·(b +12c )=12c 2=12|a |2, ∴cos 〈AC ' ,CE 〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010.。
真题演练集训1.[2016·北京卷]已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y >0B .sin x -sin y >0C.⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0 D .ln x +ln y >0答案:C解析:解法一:因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sinπ-sin π2=-1<0,排除B ;选项D ,取x =2,y =12,则ln x +ln y =ln(xy )=ln 1=0,排除D.故选C.解法二:因为函数y =⎝ ⎛⎭⎪⎫12x 在R 上单调递减,且x >y >0,所以⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0,故选C. 2.[2016·新课标全国卷Ⅰ]若a >b >1,0<c <1,则( )A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c 答案:C解析:对于选项A ,考虑幂函数y =x c ,因为c >0,所以y =x c 为增函数,又a >b >1,所以a c >b c ,故A 错;对于选项B ,ab c <ba c⇔⎝ ⎛⎭⎪⎫b a c <b a ,又y =⎝ ⎛⎭⎪⎫b a x 是减函数,故B 错;对于选项D ,由对数函数的性质可知D 错,故选C.3.[2014·辽宁卷]当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a∈R ,当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0,∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6.∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4,当x ∈[-2,-1)时,φ′(x )<0;当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2, ∴a ≤-2.综上可知a 的取值范围为[-6,-2].4.[2015·辽宁卷]不等式2x 2-x <4的解集为________. 答案:{x |-1<x <2}(或(-1,2))解析:∵<4,∴<22,∴ x 2-x <2,即x 2-x -2<0,∴ -1<x <2.5.[2014·江苏卷]已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-22,0 解析:由题可得,f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0, 解得-22<m <0.。
2024届高考一轮总复习章末检测卷:第七章 电路高效提分物理试题一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,高速摄像机记录了一名魔术师的发牌过程,虚线是飞出的扑克牌的运动轨迹。
则扑克牌在图示位置所受合力F与速度v的方向关系正确的是( )A.B.C.D.第(2)题芯片制作关键在于光刻机的技术突破,光刻机利用光源发出的紫外线,将精细图投影在硅片上,再经技术处理制成芯片。
为提高投影精细图的能力,在光刻胶和投影物镜之间填充液体提高分辨率。
若浸没液体的折射率为1.6。
当不加液体时光刻胶的曝光波长为180nm,则加上液体后()A.紫外线进入液体后光子能量增加B.传播相等的距离,在液体中所需的时间变为原来的C.紫外线在液体中比在空气中更容易发生衍射,能提高分辨率D.在液体中的曝光波长为112.5mm第(3)题某款机械表中有两个相互咬合的齿轮A、B,如图所示,齿轮A、B的齿数之比为,齿轮匀速转动时,则A、B齿轮的()A.周期之比B.角速度之比为C.边缘各点的线速度大小之比D.转速之比为第(4)题1907年起,美国物理学家密立根开始以精湛的技术测量光电效应中几个重要的物理量,检验爱因斯坦光电效应方程的正确性。
按照密立根的方法进行实验时得到了某金属的U c和的几组数据,并作出如图所示的图线,电子的电荷量大小为e=1.6×10-19 C。
由图线可知,以下说法不正确的是( )A.该金属的截止频率约为4.27×1014 HzB.该金属的逸出功约为0.48 eVC.可以求得普朗克常量h约为6.24×10-34 J sD.若用波长为500 nm的紫光照射该金属,能使该金属发生光电效应第(5)题在匀强磁场中有粗细均匀的同种导线制成的直角三角形线框abc,∠a=90°,∠c=37°,磁场方向垂直于线框平面,a、c两点接一直流电源,电流方向如图所示。
[基础题组练]1.(2020·安徽省六校联考)若正实数x ,y 满足x +y =2,则1xy 的最小值为( )A .1B .2C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy≥1.2.下列选项中,正确的是( ) A .x +1x的最小值为2B .sin x +4sin x 的最小值为4,x ∈(0,π)C .x 2+1的最小值为2D .4x (1-x )的最大值为1解析:选D.对于A ,当x <0时,x +1x <0,错误;对于B ,当x ∈(0,π)时,0<sin x ≤1,由基本不等式可得sin x +4sin x≥2sin x ·4sin x =4,当且仅当sin x =4sin x,即当sin x =2时,等号成立,这与0<sin x ≤1矛盾,错误;对于C ,因为x 2≥0,x 2+1≥1,当且仅当x =0时取等号,所以,x 2+1的最小值为1;对于D ,由基本不等式可得4x (1-x )≤4·⎝⎛⎭⎫x +1-x 22=1,当且仅当x =1-x 时,即当x =12时,等号成立,正确. 3.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D .32解析:选A.y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x+12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A. 4.若a >0,b >0,a +b =ab ,则a +b 的最小值为( ) A .2 B .4 C .6D .8解析:选B.法一:由于a +b =ab ≤(a +b )24,因此a +b ≥4或a +b ≤0(舍去),当且仅当a =b =2时取等号,故选B.法二:由题意,得1a +1b =1,所以a +b =(a +b )(1a +1b )=2+a b +ba ≥2+2=4,当且仅当a=b =2时取等号,故选B.法三:由题意知a =b b -1(b >1),所以a +b =b b -1+b =2+b -1+1b -1≥2+2=4,当且仅当a =b =2时取等号,故选B.5.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 .解析:一年购买600x 次,则总运费与总存储费用之和为600x×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:306.函数y =x 2x +1(x >-1)的最小值为 .解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:07.(2020·湖南岳阳期末改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为 ,1a +2b的最小值为 . 解析:因为a >0,b >0,且a +2b -4=0,所以a +2b =4,所以ab =12a ·2b ≤12×⎝⎛⎭⎫a +2b 22=2,当且仅当a =2b ,即a =2,b =1时等号成立,所以ab 的最大值为2,因为1a +2b=⎝⎛⎭⎫1a +2b ·a +2b 4=14⎝⎛⎭⎫5+2b a +2a b ≥14⎝⎛⎭⎫5+2·2b a ·2a b =94,当且仅当a =b 时等号成立,所以1a +2b 的最小值为94.答案:2 948.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A .16B .9C .4D .2解析:选C.在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5,所以a ≥4.2.(2020·陕西铜川一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A .3B .5C .7D .9解析:选C.因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝⎛⎭⎫1x +1+1y (x +1+y )=2(1+1+y x +1+x +1y )≥2⎝⎛⎭⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C.3.已知正实数x ,y 满足x +y =1,①则x 2+y 2的最小值为 ;②若1x +4y ≥a 恒成立,则实数a 的取值范围是 .解析:因为x +y =1,所以xy ≤⎝⎛⎭⎫x +y 22=14,所以x 2+y 2=(x +y )2-2xy ≥1-14×2=12,所以x 2+y 2的最小值为12.若a ≤1x +4y 恒成立,则a 小于等于⎝⎛⎭⎫1x +4y 的最小值,因为1x +4y =⎝⎛⎭⎫1x +4y (x +y )=5+y x +4x y ≥5+2y x ×4x y =9,所以1x +4y的最小值为9,所以a ≤9,故实数a 的取值范围是(-∞,9]. 答案:12(-∞,9]4.(2020·洛阳市统考)已知x >0,y >0,且1x +2y =1,则xy +x +y 的最小值为 .解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )(1x +2y )=7+6x y +2yx,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3. 答案:7+4 3。
课时规范练33 归纳与类比基础巩固组1.(2018河北衡水枣强中学期中,7)下列三句话按“三段论”模式排列顺序正确的是()①y=cos x(x∈R)是三角函数;②三角函数是周期函数;③y=cos x(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①2.(2018安徽合肥一中冲刺,7)观察下图:123 43456745678910……则第()行的各数之和等于2 0172.A.2 010B.2 018C.1 005D.1 0093.(2018河北辛集中学月考,10)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,由以上规律,则这些三角形数从小到大形成一个数列{a n},那么a10的值为()A.45B.55C.65D.664.(2018吉林梅河口五中期中,9)在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就座,且相邻座位(如1与2,2与3)上的人要有共同的体育兴趣爱好,现已知这6A.小方B.小张C.小周D.小马5.(2018黑龙江哈尔滨二模, 9)对大于或等于2的自然数的正整数幂运算有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n=()A.10B.11C.12D.136.(2018河南信阳一中模拟,9)若“*”表示一种运算,满足如下关系:(1)1*1=1;(2)(n+1)*1=3(n*1)(n∈N+),则n*1=()A.3n-2B.3n+1C.3nD.3n-17.如图,在梯形ABCD中,AB∥CD,AB=a,CD=b(a>b).若EF∥AB,EF到CD与AB的距离之比为m∶n,则可推算出:EF=.用类比的方法,推想出下面问题的结果.在上面的梯形ABCD中,分别延长梯形的两腰AD和BC交于O点,设△OAB,△ODC的面积分别为S1,S2,则△OEF的面积S0与S1,S2的关系是()A.S0=B.S0=C. D.8.(2018福建三明一中期末,11)观察图形:…则第30个图形比第27个图形中的“☆”多()A.59颗B.60颗C.87颗D.89颗9.(2018河北衡水一模,14)已知自主招生考试中,甲、乙、丙三人都恰好报考了清华大学、北京大学中的某一所大学,三人分别给出了以下说法:甲说:“我报考了清华大学,乙也报考了清华大学,丙报考了北京大学.”乙说:“我报考了清华大学,甲说得不完全对.”丙说:“我报考了北京大学,乙说得对.”已知甲、乙、丙三人中恰好有1人说得不对,则报考了北京大学的是.10.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知,四面体ABCD的四个面的面积分别为S1,S2,S3,S4,四面体ABCD的体积为V,内切球半径为R,则R= .11.(2018中山模拟,14)在△ABC中,不等式成立;在凸四边形ABCD中,不等式成立;在凸五边形ABCDE中,不等式成立…依此类推,在凸n 边形A1A2…A n中,不等式+…+≥成立.12.(2018河北保定模拟,17)数列{a n}的前n项和记为S n,已知a1=1,a n+1=S n(n∈N+).证明:(1)数列是等比数列;(2)S n+1=4a n.综合提升组13.(2018河南中原名校五联,10)老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃A,梅花A,方片A以及黑桃A,让小明、小红、小张、小李四个人进行猜测:小明说:第1个盒子里面放的是梅花A,第3个盒子里面放的是方片A;小红说:第2个盒子里面放的是梅花A,第3个盒子里放的是黑桃A;小张说:第4个盒子里面放的是黑桃A,第2个盒子里面放的是方片A;小李说:第4个盒子里面放的是红桃A,第3个盒子里面放的是方片A;老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是()A.红桃A或黑桃AB.红桃A或梅花AC.黑桃A或方片AD.黑桃A或梅花A14.(2018湖南岳阳一模,9)将棱长相等的正方体按下图所示的形状摆放,从上往下依次为第1层,第2层,第3层,…,则第2 018层正方体的个数共有()A.2 018B.4 028C.2 037 171D.2 009 01015.如图,我们知道,圆环也可以看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×.所以,圆环的面积等于以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所形成的圆的周长2π×为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积是.创新应用组16.(2018河北衡水模拟,14)将给定的一个数列{a n}:a1,a2,a3,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将a1作为第一组,将a2,a3作为第二组,将a4,a5,a6作为第三组,…,依次类推,第n组有n个元素(n∈N+),即可得到以组为单位的序列:(a1),(a2,a3),(a4,a5,a6),…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第n个括号称为第n群,从而数列{a n}称为这个分群数列的原数列.如果某一个元素在分群数列的第m个群中,且从第m个括号的左端起是第k个,则称这个元素为第m群中的第k个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,32),…,以此类推.设该数列前n项和N=a1+a2+…+a n,若使得N>14 900成立的最小a n位于第m群,则m=()A.11B.10C.9D.817.(2018黑龙江仿真模拟(四),14)已知命题:在平面直角坐标系xOy中,椭圆=1(a>b>0),△ABC的顶点B在椭圆上,顶点A,C分别为椭圆的左、右焦点,椭圆的离心率为e,则,现将该命题类比到双曲线中,△ABC的顶点B在双曲线上,顶点A、C分别为双曲线的左、右焦点,设双曲线的方程为=1(a>0,b>0),双曲线的离心率为e,则有.课时规范练33归纳与类比1.B根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cos x(x∈R)是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cos x(x∈R)是周期函数是“结论”.故“三段论”模式排列顺序为②①③.故选B.2.D由图形知,第一行各数和为1;第二行各数和为9=32;第三行各数和为25=52;第四行各数和为49=72,…,∴第n行个数之和为(2n-1)2,令(2n-1)2=2 0172⇒2n-1=2 017,解得n=1 009,故选D.3.B a1=1,a2=1+2,a3=1+2+3,a4=1+2+3+4,故a10=1+2+3+4+…+10=55,故选B.4.A依据题意可得从1~6号依次为小林、小马、小李、小方、小周、小张,则4号位置上坐的是小方,故选A.5.B∵m2=1+3+5+…+11=×6=36,∴m=6,∵23=3+5,33=7+9+11,43=13+15+17+19,∴53=21+23+25+27+29,∵n3的分解中最小的数是21,∴n3=53,n=5.∴m+n=6+5=11,故选B.6.D由题设:①1*1=1,②(n+1)*1=3(n*1),则n*1=3((n-1)*1)=3×3 ((n-2)*1)=…=3n-1(1*1)=3n-1.故选D.7.C在平面几何中类比几何性质时,一般是由平面几何中点的性质类比推理线的性质,由平面几何中线段的性质类比推理空间几何中面积的性质.故由EF=类比到关于△OEF的面积S0与S1,S2的关系是.8.C设第n个图形“☆”的个数为a n,则a1=1,a2=1+2=3,a3=1+2+3=6,a n=1+2+…+n=,∴第30个图形比第27个图形中的“☆”多的个数为:=87.故选C.9.甲、丙若甲说得不对,则乙、丙说得对,即乙一定报考了清华大学,丙一定报考了北京大学,甲只可能报考了北京大学.若乙、丙说得不对,则得出与“甲、乙、丙三人中恰好有1人说得不对”矛盾,所以报考了北京大学的是甲、丙.所以填甲、丙.10.三角形的面积类比四面体的体积,三角形的边长类比四面体四个面的面积,内切圆半径类比内切球的半径,二维图形中的“2”类比三维图形中的“3”,得R=.11.(n∈N+,n≥3)∵,,,…,∴+…+(n∈N+,n≥3).12.证明 (1)∵a n+1=S n+1-S n,a n+1=S n,∴(n+2)S n=n(S n+1-S n),即nS n+1=2(n+1)S n.∴=2·,又=1≠0,(小前提)故是以1为首项,2为公比的等比数列.(结论)(2)由(1)可知=4·(n≥2),∴S n+1=4(n+1)·=4··S n-1=4a n(n≥2),(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有S n+1=4a n.(结论)13.A因为四个人都只猜对了一半,故有以下两种可能:(1)当小明猜对第1个盒子里面放的是梅花A时,第3个盒子里面放的不是方片A,则小李猜对第4个盒子里面放的是红桃A,小张猜对第2个盒子里面放的是方片A,小红猜对第3个盒子里面放的是黑桃A;(2)若小明猜对的是第3个盒子里面放的是方片A,则第1个盒子里面放的不是梅花A,小红猜对第2个盒子里面放的是梅花A,小张猜对第4个盒子里面放的是黑桃A,小李猜对第3个盒子里面放的是方片A,则第1个盒子只能是红桃A,故选A.14.C设第n层正方体的个数为a n,则a1=1,a n-a n-1=n,所以a n-a1=2+3+…+n,即a n=1+2+3+…+n=,n≥2,故a2 018=1 009×2 019=2 037 171,故选C.15.2π2r2d 平面区域M的面积为πr2,由类比知识可知:平面区域M绕y轴旋转一周得到的旋转体为实心的车轮内胎,旋转体的体积等于以圆(面积为πr2)为底,以O为圆心、d为半径、圆的周长2πd为高的圆柱的体积,所以旋转体的体积V=πr2×2πd=2π2r2d.16.B由题意得到该数列的前r组共有1+2+3+4…+r=个元素,其和为S=1+(1+3)+(1+3+32)+…+(1+3+32+…+3r-1)=,则r=9时,S(45)==14 757,r=10,S(55)=44 281>14 900,故使得N>14 900成立的最小值a位于第10群.故答案为B.点睛这个题目考查的是新定义题型,属于数列中的归纳推理求和问题;对于这类题目,可以先找一些特殊情况,总结一下规律,再进行推广,得到递推关系,或者直接从变量较小的情况开始归纳得到递推关系.17.将该命题类比到双曲线中,因为△ABC的顶点B在双曲线=1(a>0,b>0)上,顶点A、C分别是双曲线的左、右焦点,所以有|BA|-|BC|=2a,所以,由正弦定理可得,所以,故答案为.精美句子1、善思则能“从无字句处读书”。
不等关系与不等式判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ )(2)若a b >1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)一个非零实数越大,则其倒数就越小.( × )(5)a >b >0,c >d >0⇒a d >b c .( √ )(6)若ab >0,则a >b ⇔1a <1b .( √ )题型一 比较两个数(式)的大小例1 (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .不确定(2)若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 (1)B (2)B解析 (1)M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .(2)方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1,所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln x x 2, 易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .思维升华 比较大小的常用方法(1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.(1)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( )A .A ≤B B .A ≥BC .A <BD .A >B(2)若a =1816,b =1618,则a 与b 的大小关系为________.答案 (1)B (2)a <b解析 (1)∵A ≥0,B ≥0,A 2-B 2=a +2ab +b -(a +b )=2ab ≥0,∴A ≥B .(2)a b =18161618=(1816)161162=(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1,∵1816>0,1618>0,∴1816<1618,即a <b .题型二 不等式的性质例2 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是() A .ab >ac B .c (b -a )<0C .cb 2<ab 2D .ac (a -c )>0(2)若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有( )A .①②B .②③C .①④D .③④答案 (1)A (2)C解析 (1)由c <b <a 且ac <0知c <0且a >0.由b >c 得ab >ac 一定成立.(2)因为1a <1b<0,所以b <a <0,a +b <0,ab >0, 所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b ,因为b <0,所以ab <b 2.因此正确的是①④.思维升华 解决此类问题常有两种方法:一是直接利用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4答案 C解析 方法一 ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bd cd<0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),∴a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确,故选C.方法二取特殊值.题型三不等式性质的应用命题点1应用性质判断不等式是否成立例3已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a-b;④a3+b3>2a2b.其中一定成立的不等式为()A.①②③B.①②④C.①③④D.②③④答案 A解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.故选A.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立,故选A.命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是______,3x +2y 的取值范围是______. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.引申探究1.若将已知条件改为-1<x <y <3,求x -y 的取值范围.解 ∵-1<x <3,-1<y <3,∴-3<-y <1,∴-4<x -y <4.又∵x <y ,∴x -y <0,∴-4<x -y <0,故x -y 的取值范围为(-4,0).2.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围.解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧ m +n =3,m -n =2,∴⎩⎨⎧ m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232, ∴3x +2y 的取值范围为(-32,232). 思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.②在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.(2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.(1)若a <b <0,则下列不等式一定成立的是( )A.1a -b >1bB .a 2<ab C.|b ||a |<|b |+1|a |+1 D .a n >b n(2)设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是( )A .①B .①②C .②③D .①②③答案 (1)C (2)D解析 (1)(特殊值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1) ⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.(2)由不等式性质及a >b >1知1a <1b, 又c <0,∴c a >c b,①正确; 构造函数y =x c ,∵c <0,∴y =x c 在(0,+∞)上是减函数,又a >b >1,∴a c <b c ,②正确;∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧ a -b >0⇔a > b a -b =0⇔a = b a -b <0⇔a < b(a ,b ∈R ); (2)作商法⎩⎪⎨⎪⎧ a b >1⇔a > b a b =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质不等式的一些常用性质(1)倒数的性质①a >b ,ab >0⇒1a <1b. ②a <0<b ⇒1a <1b. ③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a. (2)有关分数的性质若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m(b -m >0). ②a b >a +m b +m ;a b <a -m b -m(b -m >0). 典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示解析 由已知得⎩⎪⎨⎪⎧1≤a -b ≤2, ①2≤a +b ≤4, ② ①+②得3≤2a ≤6,∴6≤4a ≤12,又由①可得-2≤-a +b ≤-1,③ ②+③得0≤2b ≤3,∴-3≤-2b ≤0,又f (-2)=4a -2b ,∴3≤4a -2b ≤12,∴f (-2)的取值范围是[3,12].答案 [3,12]现场纠错解析 方法一 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , 得⎩⎨⎧ a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4 确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A (32,12)时, 取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时,取得最大值4×3-2×1=10,∴5≤f (-2)≤10.答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.设a <b <0,则下列不等式中不成立的是( )A.1a >1bB.1a -b >1a C .|a |>-b D.-a >-b答案 B解析 由题设得a <a -b <0,所以有1a -b <1a成立, 即1a -b >1a 不成立.2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 a -b >0⇒a >b⇒a >b ⇒a 2>b 2,但由a 2-b 2>0a -b >0.3.若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是( )A .a -b >0B .a 3+b 3>0C .a 2-b 2<0D .a +b <0答案 D解析 由a +|b |<0知,a <0,且|a |>|b |,当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0成立.故选D.4.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝⎛⎭⎫a -122+12<12.即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0,∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .1.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式成立的是() A .ad >bc B .ac >bdC .a -c >b -dD .a +c >b +d答案 D解析 由不等式的同向可加性得a +c >b +d .2.若6<a <10,a 2≤b ≤2a ,c =a +b ,那么c 的取值范围是( )A .9≤c ≤18B .15<c <30C .9≤c ≤30D .9<c <30答案 D解析 ∵c =a +b ≤3a 且c =a +b ≥3a 2,∴9<3a 2≤a +b ≤3a <30.3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |答案 C解析 ∵x >y >z 且x +y +z =0,∴x >0,z <0,又y >z ,∴xy >xz .4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由(a -b )·a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立.5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( ) A .(0,5π6) B .(-π6,5π6) C .(0,π)D .(-π6,π) 答案 D解析 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0,∴-π6<2α-β3<π. 6.已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >b c,则a >b C .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b答案 C解析 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0,知a >0且b <0,所以1a >1b成立,C 正确; 当a <0且b <0时,可知D 不正确.7.若a >b >0,则下列不等式中一定成立的是( )A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b答案 A解析 取a =2,b =1,排除B ,D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A. 8.若a >b >0,则下列不等式一定不成立的是( )A.1a <1b B .log 2a >log 2bC .a 2+b 2≤2a +2b -2D .b <ab <a +b 2<a 答案 C 解析 ∵(a -1)2+(b -1)2>0(由a >b >0,得a ,b 不能同时为1),∴a 2+b 2-2a -2b +2>0,∴a 2+b 2>2a +2b -2,∴C 项一定不成立.9.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ;③若a >b ,则a ·2c >b ·2c .其中正确命题的序号是________.答案 ②③解析 ①不对,因为c 2可以为0;②对,因为c 2>0;③对,因为2c >0.10.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________. 答案 a =b >c解析 ∵a =log 23+log 23=log 233,b =log 29-log 23=log 233,∴a =b ,又a =log 233>1,c =log 32<1,∴a >c .故a =b >c .11.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b>0; ②若ab >0,c a -d b>0,则bc -ad >0;③若bc-ad>0,ca-db>0,则ab>0.其中正确的命题是________.答案①②③解析∵ab>0,bc-ad>0,∴ca-db=bc-adab>0,∴①正确;∵ab>0,又ca-db>0,即bc-adab>0,∴bc-ad>0,∴②正确;∵bc-ad>0,又ca-db>0,即bc-adab>0,∴ab>0,∴③正确.故①②③都正确.12.设a>b>c>0,x=a2+(b+c)2,y=b2+(c+a)2,z=c2+(a+b)2,则x,y,z的大小关系是________.(用“>”连接)答案z>y>x解析方法一y2-x2=2c(a-b)>0,∴y>x.同理,z>y,∴z>y>x.方法二令a=3,b=2,c=1,则x=18,y=20,z=26,故z>y>x.13.甲乙两人同时从宿舍到教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步;如果两人步行、跑步速度均相同,则谁先到教室?解设路程为s,跑步速度为v1,步行速度为v2,甲到教室所用时间为t甲,乙到教室所用时间为t乙.t甲=s2v1+s2v2=s(v1+v2)2v1v2,s =t 乙2·v 1+t 乙2·v 2⇒t 乙=2s v 1+v 2, ∴t 甲t 乙=(v 1+v 2)24v 1v 2≥(2v 1v 2)24v 1v 2=1. ∴t 甲≥t 乙,当且仅当v 1=v 2时“=”成立.由实际情况知v 1>v 2,∴t 甲>t 乙.∴乙先到教室.*14.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解 设该单位职工有n 人(n ∈N *),全票价为x 元/人,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1) =14x +34nx , y 2=45nx . 所以y 1-y 2=14x +34nx -45nx =14x -120nx =14x (1-n 5). 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费同等优惠;当单位去的人数多于5人时,甲车队收费更优惠;当单位去的人数少于5人时,乙车队收费更优惠.。
真题演练集训1.已知x ,y ∈R ,且x >y >0,则( )A.1x -1y >0 B .sin x -sin y >0C.⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0 D .ln x +ln y >0 答案:C解析:解法一:因为x >y >0,选项A ,取x =1,y =12,则1x -1y=1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y =12,则ln x +ln y =ln(xy )=ln 1=0,排除D.故选C. 解法二:因为函数y =⎝ ⎛⎭⎪⎫12x 在R 上单调递减,且x >y >0,所以⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0,故选C. 2.若a >b >1,0<c <1,则( )A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c答案:C解析:对于选项A ,考虑幂函数y =x c ,因为c >0,所以y =x c 为增函数,又a >b >1,所以a c >b c ,故A 错;对于选项B ,ab c <ba c ⇔⎝ ⎛⎭⎪⎫b a c <b a ,又y =⎝ ⎛⎭⎪⎫b a x 是减函数,故B 错;对于选项D ,由对数函数的性质可知D 错,故选C.3.不等式2x 2-x <4的解集为________.答案:{x |-1<x <2}解析:∵ 2x 2-x <4,∴ 2x 2-x <22,∴ x 2-x <2,即x 2-x -2<0,∴ -1<x <2.课外拓展阅读转化与化归思想在不等式中的应用已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为 考虑“三个二次”间的关系;(1)由题意知,f (x )=x 2+ax +b =⎝ ⎛⎭⎪⎫x +a 22+b -a 24. ∵f (x )的值域为 9已知函数f (x )=x 2+2x +a x,若对任意x ∈ 将恒成立问题转化为最值问题求解.∵x ∈ {a |a >-3}方法点睛本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题.。
高考数学一轮复习 第七章 不等式、推理与证明7.5 基本不等式的综合应用题型一 基本不等式与其他知识交汇的最值问题例1 (1)(2022·成都模拟)已知直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切,则log 2a +log 2b 的最大值为( )A .3B .2C .-2D .-3答案 D解析 因为直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切, 所以1a 2+b 2=2,即a 2+b 2=14,因为a 2+b 2≥2ab ,所以ab ≤18(当且仅当a =b 时,等号成立),所以log 2a +log 2b =log 2(ab )≤log 218=-3,所以log 2a +log 2b 的最大值为-3.(2)(2022·合肥质检)若△ABC 的内角满足sin B +sin C =2sin A ,则( )A .A 的最大值为π3B .A 的最大值为2π3C .A 的最小值为π3D .A 的最小值为π6答案 A解析 ∵sin B +sin C =2sin A .∴b +c =2a .由余弦定理知cos A =b 2+c 2-a 22bc =b 2+c 2-b +c242bc=3b 2+c 2-2bc 8bc ≥6bc -2bc 8bc =12, 当且仅当b =c 时取等号.又A ∈(0,π), ∴0<A ≤π3,即A 的最大值为π3. 教师备选已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点分别为F 1,F 2.若椭圆上有一点P ,使PF 1⊥PF 2,则b a的取值范围是( )A.⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤0,22 C.⎣⎡⎦⎤12,22 D.⎣⎡⎭⎫22,1 答案 B解析 设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,m 2+n 2=4c 2,∴2mn =4a 2-4c 2=4b 2,又2mn ≤2⎝⎛⎭⎫m +n 22, 即4b 2≤2⎝⎛⎭⎫2a 22,∴2b 2≤a 2,∴0<b a ≤22. 思维升华 基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,一般利用常数代换法求最值,要注意最值成立的条件.跟踪训练1 (1)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则1a +4b 的最小值等于( ) A .2 B.32 C.12D .1 答案 B解析 ∵函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,∴f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,即a +b =6,又a >0,b >0.∴1a +4b =16⎝⎛⎭⎫1a +4b (a +b ) =56+16⎝⎛⎭⎫b a +4a b ≥56+16×2b a ·4a b =32, 当且仅当2a =b =4时,等号成立.此时满足在x =1处有极值.∴1a +4b 的最小值等于32. (2)已知数列{a n }是等比数列,若a 2a 5a 8=-8,则a 9+9a 1的最大值为________.答案 -12解析 ∵a 2a 5a 8=-8,∴a 35=-8,∴a 5=-2,∴a 1<0,a 9<0,a 9+9a 1=-(-a 9-9a 1)≤-2-a 9-9a 1=-29a 1a 9 =-29·a 25=-12,当且仅当-a 9=-9a 1时取等号.题型二 求参数值或取值范围例2 (1)已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a 等于( )A .6B .8C .16D .36答案 D解析 因为f (x )=4x +ax (x >0,a >0),故4x +a x ≥24x ·ax =4a ,当且仅当4x =ax ,即x =a2时取等号,故a2=3,a =36.(2)已知x ,y 属于正实数,若不等式4x +9y ≥mx +y 恒成立,则实数m 的取值范围是() A .(-∞,9] B .(-∞,16]C .(-∞,25]D .(-∞,36]答案 C解析 因为x ,y 属于正实数,所以不等式4x +9y ≥mx +y 恒成立,即m ≤⎣⎡⎦⎤⎝⎛⎭⎫4x +9y x +y min ,因为⎝⎛⎭⎫4x +9y (x +y )=13+4y x +9x y≥13+24y x ·9x y=25, 当且仅当4y x =9x y,即3x =2y 时,等号成立, 所以m ≤25.教师备选(2022·沙坪坝模拟)已知函数f (x )=2x 3+3x (x ∈R ),若不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则实数m 的取值范围为( )A .(-∞,-2)∪(2,+∞)B.⎝⎛⎭⎫-∞,43 C .(-∞,-2)D .(-2,-2)答案 C解析 ∵f (x )的定义域为R ,且f (-x )=-2x 3-3x =-f (x ),∴f (x )是奇函数,且f (x )在R 上单调递增,则不等式f (2m +mt 2)+f (4t )<0等价于f (2m +mt 2)<-f (4t )=f (-4t ),∴2m +mt 2<-4t ,即m <-4t t 2+2对t ≥1恒成立, ∵-4t t 2+2=-4t +2t ≥-42t ·2t=-2, 当且仅当t =2t,即t =2时等号成立, ∴m <- 2.思维升华 求参数的值或取值范围时,要观察题目的特点.利用基本不等式确定等号成立的条件,从而得到参数的值或范围.跟踪训练2 (1)(2022·杭州模拟)已知k ∈R ,则“对任意a ,b ∈R ,a 2+b 2≥kab ”是“k ≤2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 因为对任意a ,b ∈R ,有a 2+b 2≥2ab ,而对任意a ,b ∈R ,a 2+b 2≥kab ,所以-2≤k ≤2,因为[-2,2]是(-∞,2]的真子集,所以“对任意a ,b ∈R ,a 2+b 2≥kab ”是“k ≤2”的充分不必要条件.(2)(2022·济宁质检)命题p :∃x ∈(0,+∞),x 2-λx +1=0,当p 是真命题时,则λ的取值范围是________.答案 [2,+∞)解析 依题意,方程x 2-λx +1=0有正解,即λ=x +1x有正解, 又x >0时,x +1x≥2, ∴λ≥2.题型三 基本不等式的实际应用例3 小王于年初用50万元购买了一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)解 (1)设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50=-x 2+20x -50(0<x ≤10,x ∈N *),由-x 2+20x -50>0,可得10-52<x ≤10. 因为2<10-52<3,所以大货车运输到第3年年底,该车运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以二手车出售后,小王的年平均利润为y +25-x x =19-⎝⎛⎭⎫x +25x ≤19-225=9,当且仅当x =25x,即x =5时,等号成立,所以小王应当在第5年年底将大货车出售,能使小王获得的年平均利润最大.教师备选某高级中学高二年级部为了更好的督促本年级学生养成节约用水、珍惜粮食、爱护公物的良好习惯,现要设计如图所示的一张矩形宣传海报,该海报含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60 000 cm 2,四周空白的宽度为10 cm ,栏与栏之间的中缝空白的宽度为 5 cm.怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,其最小值是________ cm 2.答案 72 600解析 设矩形栏目的高为a cm ,宽为b cm ,由题意可得3ab =60 000,所以ab =20 000,即b =20 000a, 所以该海报的高为(a +20)cm ,宽为(3b +10×2+5×2)cm ,即(3b +30)cm ,所以整个矩形海报面积S =(a +20)(3b +30)=3ab +30a +60b +600=30(a +2b )+60 600=30⎝⎛⎭⎫a +40 000a +60 600 ≥30×2a ·40 000a+60 600 =30×400+60 600=72 600, 当且仅当a =40 000a,即a =200时等号成立, 所以当广告栏目的高为200 cm ,宽为100 cm 时,能使整个矩形海报面积最小,其最小值是72 600 cm 2.思维升华 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值. 跟踪训练3 网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2021年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是______万元.答案 37.5解析 由题意知t =23-x -1(1<x <3),设该公司的月利润为y 万元,则y =⎝⎛⎭⎫32×150%+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎡⎦⎤163-x +13-x ≤45.5-216=37.5,当且仅当x =114时取等号, 即最大月利润为37.5万元. 课时精练1.(2022·苏州模拟)设直线l 与曲线y =x 3-2x+1相切,则l 斜率的最小值为( ) A. 6 B .4 C .2 6 D .3 2答案 C解析 因为x ≠0,所以x 2>0,因为y ′=3x 2+2x 2≥26⎝⎛⎭⎫当且仅当3x 2=2x 2,等号成立, 所以l 斜率的最小值为2 6.2.(2021·新高考全国Ⅰ)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A .13B .12C .9D .6答案 C解析 由椭圆C :x 29+y 24=1, 得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.3.(2022·北京人大附中模拟)数列{a n }是等差数列 ,{b n }是各项均为正数的等比数列,公比q >1,且a 5=b 5,则( )A .a 3+a 7>b 4+b 6B .a 3+a 7≥b 4+b 6C .a 3+a 7<b 4+b 6D .a 3+a 7=b 4+b 6 答案 C解析 因为数列{a n }是等差数列,{b n }是各项均为正数的等比数列,所以a 3+a 7=2a 5=2b 5,b 4+b 6≥2b 4b 6=2b 5,所以a 3+a 7≤b 4+b 6,又因为公比q >1,所以a 3+a 7<b 4+b 6.4.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B解析 已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +a y 的最小值大于或等于9,∵(x +y )⎝⎛⎭⎫1x +a y =1+a +y x +ax y≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9, ∴a ≥2或a ≤-4(舍去),∴a ≥4,即正实数a 的最小值为4.5.(2022·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案 B解析 设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则方案一:两次加油平均价格为40x +40y 80=x +y 2>xy , 方案二:两次加油平均价格为400200x +200y=2xy x +y <xy , 故无论油价如何起伏,方案二比方案一更划算.6.已知p :存在实数x ,使4x +2x ·m +1=0成立,若綈p 是假命题,则实数m 的取值范围是( )A .(-∞,-2]B .(-∞,-2)C .(0,+∞)D .(1,+∞)答案 A解析 ∵綈p 为假命题,∴p 为真命题,即关于x 的方程4x +2x ·m +1=0有解.由4x +2x ·m +1=0,得m =-2x -12x =-⎝⎛⎭⎫2x +12x ≤-22x ·12x =-2, 当且仅当2x =12x ,即x =0时,取等号.∴m 的取值范围为(-∞,-2].7.(2022·焦作质检)若数列{a n }满足a 2=9,a n -1+n =a n +1(n ≥2且n ∈N *),则a n n 的最小值为( ) A.72 B.185 C.113 D.92答案 A解析 因为数列{a n }满足a 2=9,a n -1+n =a n +1(n ≥2且n ∈N *),所以a 1+2=a 2+1,解得a 1=8,所以a n =a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1+a 1=1+2+3+…+n -1+8=n 2-n +162, 则a n n =n 2-n +162n=12⎝⎛⎭⎫n +16n -1 ≥12⎝⎛⎭⎫2n ·16n -1=72, 当且仅当n =16n,即n =4时,等号成立, 所以a n n 的最小值为72. 8. 如图,在半径为4(单位:cm)的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点A ,B 在直径上,顶点C ,D 在圆周上,则矩形ABCD 面积的最大值为(单位:cm 2)( )A .8B .10C .16D .20答案 C解析 连接OC ,如图,设BC =x ,则OB =16-x 2,所以AB =216-x 2,所以矩形ABCD 的面积S =2x 16-x 2,x ∈(0,4),S =2x 16-x 2=2x 216-x 2≤x 2+16-x 2=16,当且仅当x 2=16-x 2,即x =22时取等号,此时S max =16.9.已知向量m =(x ,2),n =⎝⎛⎭⎫3,y -12(x >0,y >0),若m ⊥n ,则xy 的最大值为________. 答案 124 解析 因为向量m =(x ,2),n =⎝⎛⎭⎫3,y -12, 且m ⊥n ,所以3x +2⎝⎛⎭⎫y -12=0,即3x +2y =1. 因为x >0,y >0,所以1=3x +2y ≥23x ×2y ,即xy ≤124, 当且仅当3x =2y =12, 即x =16,y =14时取等号. 10.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于5,则这个直角三角形周长的最大值为________.答案 52+5解析 设直角三角形的两条直角边边长分别为a ,b ,则a 2+b 2=25.因为(a +b )2=25+2ab ≤25+2×a +b 24, 所以(a +b )2≤50,所以5<a +b ≤52,当且仅当a =b =522时,等号成立. 故这个直角三角形周长的最大值为52+5.11.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________. 答案 9解析 因为圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线, 所以两圆相内切,其中C 1(-2a ,0),r 1=2;C 2(0,b ),r 2=1,故|C 1C 2|=4a 2+b 2,由题设可知4a 2+b 2=2-1⇒4a 2+b 2=1,所以(4a 2+b 2)⎝⎛⎭⎫1a 2+1b 2=4a 2b 2+b 2a 2+5 ≥24a 2b 2·b 2a 2+5=9, 当且仅当b 2=2a 2时等号成立.12.(2022·北京朝阳区模拟)李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型m =3-2x +1.若要使这次促销活动获利最多,则广告费用x 应投入________万元.答案 3解析 设李明获得的利润为f (x )万元,则x ≥0,则f (x )=8m -x =8⎝⎛⎭⎫3-2x +1-x=24-16x +1-x=25-⎣⎡⎦⎤16x +1+x +1≤25-216x +1x +1=25-8=17,当且仅当x +1=16x +1, 因为x ≥0,即当x =3时,等号成立.13.(2022·柳州模拟)已知△ABC 中,a 2+b 2-c 2=ab ≥c 2,则△ABC 一定是() A .等边三角形 B .钝角三角形C .直角三角形D .等腰三角形答案 A解析 由a 2+b 2-c 2=ab ,则cos C =a 2+b 2-c 22ab =ab 2ab =12,又因为0°<C <180°,所以C =60°,因为a 2+b 2-c 2≥2ab -c 2,当且仅当a =b 时取等号,即ab ≥2ab -c 2,解得ab ≤c 2,又因为ab ≥c 2,所以ab =c 2,且a =b 时取等号,因为C =60°,所以△ABC 一定是等边三角形.14.(2022·武汉模拟)已知平面向量OA →,OB →,OC →为三个单位向量,且〈OA →,OB →〉=120°,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的取值范围为________.答案 [-2,2]解析 由OC →=xOA →+yOB →,两边同时平方得OC →2=(xOA →+yOB →)2,即OC →2=x 2OA →2+y 2OB →2+2xyOA →·OB →,∵平面向量OA →,OB →,OC →为三个单位向量,且〈OA →,OB →〉=120°,∴x 2+y 2-xy =1,∴(x +y )2=1+3xy ≤1+3⎝⎛⎭⎫x +y 22,即(x +y )2≤4,即-2≤x +y ≤2.15.(2022·大庆模拟)设函数f (x )=|lg x |,若存在实数0<a <b ,满足f (a )=f (b ),则M =log 2a 2+b 28,N =log 2⎝ ⎛⎭⎪⎫1a +b 2,Q =ln 1e 2的关系为( ) A .M >N >Q B .M >Q >NC .N >Q >MD .N >M >Q 答案 B解析 ∵f (a )=f (b ),∴|lg a |=|lg b |,∴lg a +lg b =0,即ab =1, ⎝ ⎛⎭⎪⎫1a +b 2=1a +b +2=1a +1a +2<12+2=14,∴N =log 2⎝ ⎛⎭⎪⎫1a +b 2<-2,又a 2+b 28>ab 4=14,∴a 2+b 28>14,∴M =log 2a 2+b 28>-2,又∵Q =ln 1e 2=-2,∴M >Q >N .16.设0<t <12,若1t +21-2t ≥k 2+2k 恒成立,则k 的取值范围为() A .[-4,2] B .[-2,4]C .[-4,0)∪(0,2]D .[-2,0)∪(0,4] 答案 A解析 依题意k 2+2k ≤1t +21-2t 对∀t ∈⎝⎛⎭⎫0,12恒成立,所以k 2+2k ≤⎝⎛⎭⎫1t +21-2t min ,因为t ∈⎝⎛⎭⎫0,12,所以1-2t >0,所以1t +21-2t =⎝⎛⎭⎫1t +21-2t (2t +1-2t )=2+2+1-2t t +4t1-2t≥4+21-2t t ·4t 1-2t=8, 当且仅当1-2t t =4t 1-2t时取“=”, 即t =14时取得最小值, 所以k 2+2k ≤8,所以(k -2)(k +4)≤0,解得-4≤k ≤2,即k ∈[-4,2].。
考点规范练35 直接证明与间接证明
基础巩固
1.要证a2+b2-1-a2b2≤0,只需证明()
A.2ab-1-a2b2≤0
B.a2+b2-1-≤0
C.-1-a2b2≤0
D.(a2-1)(b2-1)≥0
2.分析法又称执果索因法,若用分析法证明“设a>b>c,且a+b+c=0,求证:a”索的因应是()
A.a-b>0
B.a-c>0
C.(a-b)(a-c)>0
D.(a-b)(a-c)<0
3.(2017河南郑州模拟)设x>0,P=2x+2-x,Q=(sin x+cos x)2,则()
A.P>Q
B.P<Q
C.P≤Q
D.P≥Q
4.已知不相等的三个正数a,b,c成等差数列,且x是a,b的等比中项,y是b,c的等比中项,则
x2,b2,y2()
A.成等比数列而非等差数列
B.成等差数列而非等比数列
C.既成等差数列又成等比数列
D.既非等差数列又非等比数列
5.设a,b,c均为正实数,则三个数a+,b+,c+()
A.都大于2
B.都小于2
C.至少有一个不大于2
D.至少有一个不小于2
6.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()
A.恒为负值
B.恒等于零
C.恒为正值
D.无法确定正负
7.(2017山东烟台模拟)设a>b>0,m=,n=,则m,n的大小关系是.
8.与2的大小关系为.
9.若a,b,c是不全相等的正数,求证:
lg+lg+lg>lg a+lg b+lg c.
1。