2.1向量的加法
- 格式:ppt
- 大小:1.04 MB
- 文档页数:16
高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
《向量的加法》教案完美版第一章:向量的概念回顾1.1 向量的定义:向量是有大小和方向的量,通常用箭头表示。
1.2 向量的表示方法:在坐标系中,向量可以用有序数对表示,即(x, y)。
1.3 向量的模:向量的模是指向量的大小,可以用|v|表示,计算公式为|v| = √(x^2 + y^2)。
第二章:向量的加法运算2.1 向量加法的定义:两个向量a和b的加法运算,记作a + b,结果是一个新的向量,其大小等于a和b大小的和,方向等于a和b方向的矢量和。
2.2 向量加法的表示方法:在坐标系中,向量加法可以通过将两个向量的坐标分别相加得到结果向量的坐标。
2.3 向量加法的性质:向量加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
第三章:向量加法的几何解释3.1 向量加法的几何图形:在坐标系中,向量加法可以通过将两个向量的箭头首尾相接,得到结果向量的箭头。
3.2 平行向量的加法:当两个向量平行时,它们的加法运算结果是它们的模的和(或差,取决于它们的方向是否相同)。
3.3 非平行向量的加法:当两个向量不平行时,它们的加法运算结果是一个新的向量,其大小和方向由平行四边形法则确定。
第四章:向量加法的应用4.1 力的合成:在物理学中,向量加法可以用来计算两个力的合力,即力的合成。
4.2 位移的计算:在物理学中,向量加法可以用来计算物体的位移,即起点到终点的位移向量。
4.3 速度和加速度的合成:在物理学中,向量加法可以用来计算物体的速度和加速度的合成。
第五章:向量加法的练习题第六章:向量加法在坐标系中的运算规则6.1 直角坐标系:在直角坐标系中,向量的加法可以通过对应坐标轴上的坐标值进行运算。
6.2 斜坐标系:在斜坐标系中,向量的加法需要考虑角度和半径的变化。
6.3 空间坐标系:在空间坐标系中,向量的加法涉及到三个坐标轴的运算规则。
第七章:向量加法在实际问题中的应用7.1 力学问题:在力学中,向量加法可以用来计算物体所受多力的合力。
平面向量题型归类及解题方法1. 平面向量的定义和性质平面向量是指在平面上具有大小和方向的量,用箭头来表示。
平面向量通常用一个字母加上一个箭头(如a→)来表示。
平面向量有以下性质: - 零向量的方向是任意的,大小为0。
- 向量的大小等于其模长,记作∥a∥。
- 向量可以相等,相等的向量有相同的大小和方向。
- 向量可以相反,相反的向量大小相等,方向相反。
- 向量可以相加,向量相加满足三角形法则。
- 向量可以缩放,即乘以一个标量。
- 向量可以平移,即使原点发生变化。
2. 平面向量的基本运算2.1 向量的加法向量a和b的和记作a + b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的终点。
2.2 向量的减法向量a和b的差记作a - b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的起点。
2.3 向量的数乘向量a与一个实数k的积记作k a,其几何意义是将向量a的长度缩放为原来的k 倍,方向不变(当k>0时)或反向(当k<0时)。
2.4 平行向量和共线向量如果两个向量的方向相同(可能大小不同),那么它们是平行向量。
如果两个向量共线,即一个向量是另一个向量的倍数,那么它们是共线向量。
2.5 两个向量的数量积(点积)设a = (x1, y1)和b = (x2, y2),则向量a和b的数量积(点积)定义为:a·b= x1x2 + y1y2。
2.6 向量的模长和方向角设向量a = (x, y),则向量a的模长定义为∥a∥= √(x^2 + y^2)。
向量a的方向角定义为与x轴的正方向之间的夹角θ,其中tanθ = y / x。
3. 平面向量的题型归类及解题方法平面向量的题型主要包括平面向量的加减法、数量积、平行向量和共线向量、模长和方向角等。
3.1 平面向量的加减法题型•已知两个向量,求其和或差向量。
•已知一个向量和其和或差向量,求另一个向量。
2020-2021学年新教材人教A版数学必修第二册教师用书:第6章6.2 6.2.1向量的加法运算含解析6.2平面向量的运算6.2.1向量的加法运算学习目标核心素养1.理解并掌握向量加法的概念,了解向量加法的几何意义及运算律.(难点)2.掌握向量加法运算法则,能熟练地进行向量加法运算.(重点)3.能区分数的加法与向量的加法的联系与区别.(易混点)1。
教材从几何角度给出向量加法的三角形法则和平行四边形法则,结合了对应的物理模型,提升直观想象和数学建模的核心素养.2.对比数的加法,给出了向量的加法运算律,培养数学运算的核心素养。
有一名台湾商人想去拉萨游玩,但是由于台湾没有直达拉萨的航班,因此他选择了这样一个出行方案:乘飞机要先从台北到香港,再从香港到拉萨.问题:这两次位移之和是什么?1.向量加法的定义(1)定义:求两个向量和的运算,叫做向量的加法.(2)对于零向量与任意向量a,规定0+a=a +0=a.2.向量求和的法则三角形法则已知非零向量a,b,在平面内任取一点A,作错误!=a,错误!=b,则向量错误!叫做a与b的和,记作a+b,即a+b=错误!+错误!=错误!.平行四边形法则已知两个不共线向量a,b,作错误!=a,错误!=b,以错误!,错误!为邻边作▱ABCD,则对角线上的向量错误!=a+b.[提示]不是,向量相加要考虑大小及方向,而模相加是数量的加法.3.|a+b|与|a|、|b|之间的关系一般地,我们有|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.4.向量加法的运算律(1)交换律:a+b=b+a。
(2)结合律:(a+b)+c=a+(b+c).1.思考辨析(正确的画“√”,错误的画“×”)(1)任意两个向量的和仍然是一个向量.()(2)两个向量相加实际上就是两个向量的模相加.()(3)任意两个向量的和向量不可能与这两个向量共线.()(4)|a|+|b|>|a+b|. ()[答案](1)√(2)×(3)×(4)×2。
向量的运算法则公式向量的运算法则公式包括向量的加法、向量的减法、向量的数乘、向量的数量积、向量的向量积、三向量的混合积等。
以下是向量运算法则的具体内容:一、向量的加法1.1向量的加法向量的加法满足平行四边形法则和三角形法则。
向量的加法OB+OA=OC.a+b=(x+x',y+y').a+0=0+a=a.1.2向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).二、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0。
2.1向量的减法AB-AC=CB.即“共同起点,指向被向量的减法减”a=(x,y)b=(x',y') 则a-b=(x-x',y-y').三、、向量的数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.3.1数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.3.2数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.四、向量的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.4.1向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);4.2向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)4.3向量的数量积与实数运算的主要不同点4.3.1向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.4.3.2向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.4.3.3|a·b|≠|a|·|b|4.3.4由 |a|=|b| ,推不出 a=b或a=-b.五、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a 和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.5.1向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a垂直b〈=〉a×b=|a||b|.5.2向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);a×(b+c)=a×b+a×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.六、三向量的混合积6.1向量的混合积定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,向量的混合积所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c6.2混合积具有下列性质:6.2.1三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)6.2.2上性质的推论:三向量a、b、c共面的充要条件是(abc)=06.2.3(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)6.2.4(a×b)·c=a·(b×c)。
§2从位移的合成到向量的加法2.1向量的加法学习目标核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点) 1.通过学习向量加法的定义及三角形法则与平行四边形法则,体会数学直观素养.2.通过运用交换律、结合律进行向量加法运算,提升数学运算素养.向量求和法则及运算律类别图示几何意义向量求和的法则三角形法则已知向量a,b,在平面内任取一点A,作AB→=a,BC→=b,再作向量AC→,则向量AC→叫作a与b的和,记作a+b,即a+b=AB→+BC→=AC→平行四边形法则已知向量a,b,作AB→=a,AD→=b,再作平行AD→的BC→=b,连接DC,则四边形ABCD为平行四边形,向量AC→叫作向量a与b的和,表示为AC→=a+b向量加法的运算律交换律a+b=b+a结合律(a+b)+c=a+(b+c)思考:根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ),∴(a +b )+c =a +(b +c ).1.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A.30 N B .60 N C.90 N D .120 N[答案] B2.在△ABC 中,必有AB →+CA →+BC →等于( ) A.0 B .0C.任一向量 D .与三角形形状有关[答案] B3.化简下列各向量: (1)AB →+BC →=________. (2)PQ →+OM →+QO →=________.(1)AC → (2)PM →[根据向量加法的三角形法则及运算律得: (1)AB →+BC →=AC →.(2)PQ →+OM →+QO →=PQ →+QO →+OM →=PO →+OM →=PM →.] 4.在正方形ABCD 中,|AB →|=1,则|AB →+AD →|=________.[答案] 2向量加法法则的应用【例1】 (1)如图①,用向量加法的三角形法则作出a +b ; (2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求向量和,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.[思路探究] 所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A → =0.向量加法运算律的应用原则及注意点(1)应用原则:利用代数方法通过向量加法的交换律,使各向量“首尾相接”,通过向量加法的结合律调整向量相加的顺序.(2)注意点:①三角形法则强调“首尾相接”,平行四边形法则强调“起点相同”; ②向量的和仍是向量;③利用相等向量转化,达到“首尾相连”的目的.2.如图:在平行四边形ABCD 中.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD →(4)0 [(1)由平行四边形法则知 AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.]向量加法的实际应用 [探究问题]1.如何计算两个向量的和?[提示] 两个向量相加,其和仍是一个向量.计算两个向量的和需利用三角形法则或平行四边形法则,在使用三角形法则时,应注意“首尾相连”;在使用平行四边形法则时,应注意范围的限制及和向量与两向量起点相同.2.共线的两向量相加,其结果怎样?[提示] (1)向量a 与b 同向(如图①所示),即向量a +b 与a (或b )方向相同,且|a +b |=|a |+|b |.① ②(2)向量a 与b 反向(如图②所示),且|a |<|b |时,a +b 与b 方向相同(与a 方向相反),且|a +b |=|b |-|a |.【例3】 在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.[思路探究] 速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角.故船行进的方向是与水流的方向成120°的角的方向.1.(变结论)若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.(变结论)若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的.当两个向量首尾相连时,常选用三角形法则,当两个向量共始点时,常选用平行四边形法则.2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.3.使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.1.判断(正确的打“√”,错误的打“×”) (1)两向量的和,可能是一个数量. ( ) (2)两向量相加,就是两向量的模相加. ( ) (3)CD →+DE →=CE →.( ) (4)矩形ABCD 中,BA →+BC →=BD →.( )[答案] (1)× (2)× (3)√ (4)√2.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A.AB →+BC →=CA →B .AB →+AC →=BC → C.AC →+BA →=AD →D .AC →+AD →=DC → C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]3.据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]4.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,求: (1)|a +b |;(2)指出向量a +b 的方向.[解] (1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2.(2)因为∠AOB =45°,所以a +b 的方向是北偏东45°.。
2.1向量的加法导学案
一、情境引入
情境1:2019年1月13日,梧州市西江机场开通,新增了梧州直飞北京的航班,结束了梧州至首都无直航的历史,大大方便了市民的出行。
问题:飞机从梧州飞往广州,再从广州飞往北京,这两次位移的结果与飞机直接从梧州飞往北京的位移是相同的吗?
二、新课讲解
向量的加法:求两个向量和的运算;
课堂探究1:向量加法的三角形法则
例1:如下图,已知向量b a
, ,作这两个向量的和。
三角形法则作图关键: ;
练习1:已知向量b a
, ,请用三角形法则作b a ;
课堂探究2:向量加法的平行四边形法则
平行四边形法则作图关键: ;
例2:已知向量b a
,,请用平行四边形法则作b a +;
思考:当两个向量b a
,共线时,b a +如何做出来?
有何关系?,与共线,则,)两向量(讨论||||||1:b a b a b a
+的方向有何关系?,的方向与共线,则,)两向量(b a b a b a
+2
练习2:已知向量b a
,,分别用向量加法的三角形法则和平行四边形法则作出
b a 。
例3:如图所示,O 为正六边形
6
54321A A A A A A 的中心,化简下列式子:
6
A 3
A
推广:n个向量顺次相接,前一个向量的终点与后一个向量的起点重合,组成一个向量曲线,则这个向量的和等于,即
能力提升
课堂小结
本节课学习了哪些内容?
1、向量加法的三角形法则
2、向量加法的平行四边形法则
3.向量加法满足交换律
作业:课本
P78 练习 1 P81 习题2-2 5(1)(2)。
向量章节知识点总结1. 向量的基本概念1.1 向量的定义向量是表示物理量的一种数学工具,它有大小和方向两个基本特征。
常用符号表示向量,例如a→。
向量常用箭头表示法表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
1.2 向量的表示向量常用坐标表示法表示,例如a→=(a1,a2,a3)。
向量也可以用分量和方向角表示,例如a→=(a cos a,a cos a,a cos a)。
不同的表示方法都可以用来描述向量的大小和方向,选择合适的表示方法便于计算和分析。
1.3 向量的相等两个向量相等的条件是它们的大小和方向都相同,即a→=a→。
向量相等可以用坐标或分量表示法进行判断。
2. 向量的性质2.1 向量的加法向量的加法满足交换律和结合律,即a→+a→=a→+a→,(a→+a→)+a→=a→+(a→+a→)。
向量的加法可以用三角形法则或平行四边形法则进行图解,方便进行向量的几何解释。
2.2 向量的数量积向量的数量积,也称为点积或内积,是向量的一种运算。
两个向量的数量积定义为它们的模的乘积与它们的夹角的余弦值,即a→⋅a→=aa cos a。
数量积有交换律和分配律,是一个标量。
2.3 向量的矢量积向量的矢量积,也称为叉积或外积,是向量的一种运算。
两个向量的矢量积定义为它们的模的乘积与它们的夹角的正弦值,即a→×a→=aa sin aa→。
矢量积有右手定则和反交换律,是一个向量。
3. 向量的运算3.1 向量的数乘向量的数乘是向量与标量的乘法,即aa→。
向量的数乘改变了向量的大小,但不改变它的方向。
向量的数乘有分配律和结合律。
3.2 向量的夹角向量的夹角是指两个向量之间的角度,可以通过数量积的定义求解。
两个向量的夹角满足余弦定理,即a→⋅a→=aa cos a。
根据夹角的大小,可以判断向量的方向和位置关系。
4. 向量的应用4.1 向量在几何中的应用向量在几何中有广泛的应用,例如描述线段、平面、直线等几何图形,求解距离、角度、面积等几何性质,进行向量方程的几何解释等。
理解向量的基本概念与性质向量是物理学和数学中一个重要的概念,它有着广泛的应用。
本文将详细介绍向量的基本概念和主要性质。
一、向量的基本概念1.1 向量的定义在数学中,向量可定义为拥有大小和方向的量。
向量通常用箭头表示,箭头的方向表示向量的方向,箭头的长度表示向量的大小。
举例来说,一个向量记作A,可以表示为A=(a1,a2,⋯,an),其中ai是向量在第i个方向上的分量。
1.2 向量的表示方法向量可以用不同的表示方法来进行表达,包括:(1)几何矢量表示法:通过箭头的长度和方向来表示。
(2)坐标表示法:使用一组有序数来表示向量的分量。
例如,在二维空间中,一个向量A可以用(Ax, Ay)表示,其中Ax和Ay分别表示向量在x和y方向上的分量。
(3)分解表示法:将一个向量分解为两个或多个分量的和。
例如,一个向量A可以分解为A = A1 + A2 + ⋯ + An,其中A1、A2等为向量的分量。
二、向量的性质2.1 向量的加法与减法(1)向量的加法:两个向量相加的结果是一个新向量,其大小等于两个向量的大小之和,方向与两个向量之间的夹角有关。
(2)向量的减法:两个向量相减的结果是一个新向量,其大小等于两个向量的大小之差,方向与两个向量之间的夹角有关。
2.2 向量的数量积与矢积(1)数量积:也称为点积或内积,是两个向量相乘得到的一个标量。
数量积的结果等于两个向量的模的乘积与它们夹角的余弦值。
(2)矢积:也称为叉积或外积,是两个向量相乘得到的一个新向量。
矢积的大小等于两个向量模的乘积与它们夹角的正弦值,方向垂直于这两个向量所张成的平面。
2.3 向量的数量与方向(1)向量的模:也称为向量的长度,用来表示向量的大小。
(2)单位向量:具有长度为1的向量,可以用来表示方向。
一个非零向量A的单位向量记作Ā,即Ā = A/|A|。
(3)平行向量:方向相同或相反、长度可以不同的向量称为平行向量。
(4)共线向量:具有相同或相反的方向的向量称为共线向量。
高中数学公式大全向量的基本运算与坐标系转换公式高中数学公式大全:向量的基本运算与坐标系转换公式向量是高中数学中的重要内容之一,它在几何、代数和物理等领域中都有广泛的应用。
本文将详细介绍向量的基本运算以及坐标系的转换公式。
1. 向量的基本运算在向量的基本运算中,常用到以下几种运算:加法、减法、数量乘法和点积。
1.1 向量的加法设有两个向量a和b,它们的加法可以表示为a + b。
向量的加法满足交换律和结合律,即a + b = b + a和(a + b) + c = a + (b + c)。
向量的加法可以简单地将它们的对应分量相加。
1.2 向量的减法向量的减法可以表示为a - b。
减法运算可以通过将被减向量b取反,即-b,然后进行加法运算来实现。
1.3 数量乘法数量乘法是指将一个标量与向量的每个分量相乘。
设有向量a和标量k,数量乘法可以表示为ka。
数量乘法满足结合律,即k(la) = (kl)a。
点积,也称为数量积或内积,在向量的运算中起着重要的作用。
设有向量a和b,它们的点积可以表示为a · b。
点积具有以下性质:- a · b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ为它们夹角的余弦。
- 点积满足交换律,即a · b = b · a。
- 如果a与b垂直,则它们的点积为0,即a · b = 0。
2. 坐标系转换公式在数学中,常用的坐标系有直角坐标系、极坐标系和球坐标系。
在进行向量运算时,有时需要在不同的坐标系之间进行转换。
下面介绍一些常见的坐标系转换公式。
2.1 直角坐标系与极坐标系的转换在直角坐标系中,一个二维向量可以由其x和y的分量表示为a = (x, y)。
在极坐标系中,向量的长度用其模长r表示,与x轴的夹角用θ表示。
直角坐标系到极坐标系的转换公式为:- r = √(x^2 + y^2)- θ = arctan(y/x) (其中arctan为反正切函数)极坐标系到直角坐标系的转换公式为:- y = rsinθ2.2 直角坐标系与球坐标系的转换在直角坐标系中,一个三维向量可以由其x、y和z的分量表示为a = (x, y, z)。
2.2.1向量加法运算及其几何意义一、学习背景:向量是近代数学中重要和基本的数学概念之一,是解决几何问题的有力工具.向量引入后,把好多图形的基本性质转化为向量的运算体系.向量是沟通代数、几何的工具。
在本章中,学生学习平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题。
二、教材分析《普高中课程标准数学教科书(必修(4))》(人教(版))。
第二章2.2平面向量的线性运算的第一节“向量的加法及其几何意义”,教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的一些基本概念,向量的加法是向量的第一运算,是最基本、最重要的运算,在本单元的教学中起着承前启后的作用,它在实际生活中也有广泛的应用,正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。
三、教学目标知识目标:1、掌握向量的加法运算,理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量。
能力目标:1、通过向量加法的运算,培养数形结合解决问题的能力;2、通过将向量运算与数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,渗透类比的数学方法。
情感目标:通过师生、生生互动,形成学生的体验性认识,体会成功的愉悦,培养学生勇于探索的精神和合作交流的科学态度。
四、重点与难点重点:理解向量加法的意义;掌握向量加法三角形法则和平行四边形法则;难点:理解向量的加法法则及其几何意义.五、教学方法启发探究、小组合作式教学和多媒体辅助教学法六、教学过程1、创设情境引入课题两个数的加法,我们早已学会。
例如“1+2=3”等,那么对于两个向量是否还能象数一样进行加法运算呢?百度搜索(中国地图)/比如大陆和台湾通航之前,从台湾到石家庄探亲,得先从台北到香港,再从香港到石家庄,这两次位移之和怎样运算?(教师在地图上一边问一边画箭头)如今通航后,我们可以直接从台湾到达石家庄,这次位移是什么?由此导入新课.2、小组探究,学习新知请思考问题1:问题1:通航之前两次位移的位置关系是什么?如何作出它们的和位移?它与通航后的直接位移是什么关系?学生讨论、探究得出结论:——两次位移首尾相连,其和位移是由起点指向终点.和位移与通航后的直接位移相等。
《向量的加法运算及其几何意义》教案完美版第一章:向量概念的复习1.1 向量的定义1.2 向量的基本性质1.3 向量的表示方法1.4 向量的模长与方向第二章:向量的加法运算2.1 向量加法的定义2.2 向量加法的基本性质2.3 向量加法的几何意义2.4 向量加法的运算规则第三章:向量的减法运算3.1 向量减法的定义3.2 向量减法与向量加法的关系3.3 向量减法的几何意义3.4 向量减法的运算规则第四章:向量的数乘运算4.1 向量数乘的定义4.2 向量数乘的基本性质4.3 向量数乘的几何意义4.4 向量数乘的运算规则第五章:向量加法运算的坐标表示5.1 坐标系的建立5.2 向量坐标的定义5.3 向量加法运算的坐标表示方法5.4 向量加法运算的坐标运算规则第六章:向量加法运算的图形验证6.1 向量加法图形的表示方法6.2 向量加法的平行四边形法则6.3 向量加法的三角形法则6.4 向量加法的图形验证练习第七章:向量的减法与数乘的图形意义7.1 向量减法的图形意义7.2 向量减法的三角形法则7.3 向量数乘的图形意义7.4 向量数乘的三角形法则第八章:向量加减法的综合应用8.1 向量加减法的混合运算8.2 向量加减法的坐标应用8.3 向量加减法的几何解释8.4 向量加减法的综合练习第九章:向量数乘的应用9.1 向量数乘与向量长度的关系9.2 向量数乘与向量方向的关系9.3 向量数乘的几何应用9.4 向量数乘的实际问题应用第十章:总结与提高10.1 向量加法、减法、数乘的总结10.2 向量运算在几何中的应用10.3 向量运算在坐标系中的应用10.4 向量运算的综合练习与提高重点和难点解析一、向量概念的复习补充说明:向量是具有大小和方向的量,可用箭头表示。
向量具有平行四边形法则、三角形法则等基本性质。
向量可用字母和箭头表示,例如→a、→b。
向量的模长表示向量的大小,方向表示向量的指向。
二、向量的加法运算补充说明:向量加法是将两个向量首尾相接,形成一个新的向量。
§2从位移的合成到向量的加法2.1向量的加法,) 1.问题导航(1)任意两个向量都可以应用向量加法的三角形法则吗?(2)向量加法的三角形法则与平行四边形法则的使用条件有何不同?2.例题导读教材P77例1,例2,P78例3.通过此三例的学习,生疏向量加法运算,学会利用向量加法解决实际生活问题.试一试:教材P81习题2-2 B组T1,T2,T3你会吗?1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知向量a,b,在平面内任取一点A 作法作AB→=a,BC→=b,再作向量AC→结论向量AC→叫做a与b的和,记作a+b,即a+b=AB→+BC→=AC→图形平行四边形法则前提已知不共线的两个向量a,b,在平面内任取一点O作法以同一点O为起点的两个已知向量a,b为邻边作▱OACB结论对角线OC→就是a与b的和图形规定零向量与任一向量a的和都有a+0=0+a=a. 2.向量加法的运算律运算律交换律a+b=b+a结合律(a+b)+c=a+(b+c)1.推断正误.(正确的打“√”,错误的打“×”)(1)任意两个向量的和仍旧是一个向量.()(2)|a+b|≤|a|+|b|等号成立的条件是a∥b.()(3)任意两个向量的和向量不行能与这两个向量共线.()解析:(1)正确.依据向量和的定义知该说法正确.(2)错误.条件应为a∥b,且a,b的方向相同.(3)错误.当两个向量共线时,两向量的和向量与这两个向量中的任意一个都共线.答案:(1)√(2)×(3)×2.若a,b为非零向量,则下列说法中不正确的是()A.若向量a与b方向相反,且|a|>|b|,则向量a+b与a的方向相同B.若向量a与b方向相反,且|a|<|b|,则向量a+b与a的方向相同C.若向量a与b方向相同,则向量a+b与a的方向相同D.若向量a与b方向相同,则向量a+b与b的方向相同解析:选B.由于a与b方向相反,|a|<|b|,所以a+b与a的方向相反,故B不正确.3.化简下列各向量:(1)AB→+BC→=________.(2)PQ→+OM→+QO→=________.解析:依据向量加法的三角形法则及运算律得:(1)AB→+BC→=AC→.(2)PQ→+OM→+QO→=PQ→+QO→+OM→=PO→+OM→=PM→.答案:(1)AC→(2)PM→4.在△ABC中,AB→=a,BC→=b,CA→=c,则a+b+c=________.解析:由向量加法的三角形法则,得AB→+BC→=AC→,即a+b+c=AB→+BC→+CA→=0.答案:01.对向量加法的三角形法则的四点说明(1)适用范围:任意向量.(2)留意事项:①两个向量肯定首尾相连;②和向量的起点是第一个向量的起点,终点是其次个向量的终点.(3)方法与步骤:第一步,将b(或a)平移,使一个向量的起点与另一个向量的终点相连;其次步:将剩下的起点与终点用有向线段相连,且有向线段的方向指向终点,则该有向线段表示的向量即为向量的和.也称“首尾相连,连首尾”.(4)图示:如图所示2.对向量加法的平行四边形法则的四点说明(1)适用范围:任意两个非零向量,且不共线.(2)留意事项:①两个非零向量肯定要有相同的起点;②平行四边形中的一条对角线所对应的向量为和向量.(3)方法与步骤:第一步:先把两个已知向量a与b的起点平移到同一点;其次步:以这两个已知向量为邻边作平行四边形,则两邻边所夹的对角线所表示的向量即为a与b的和.(4)图示:如图所示已知向量作和向量如图,已知向量a,b,c不共线,求作向量a+b+c .(链接教材P81习题2-2 A组T3)[解]法一:如图(1),在平面内作OA→=a,AB→=b,则OB→=a+b;再作BC→=c,则OC→=a+b+c.法二:如图(2),在平面内作OA→=a,OB→=b,以OA与OB为邻边作平行四边形OADB,则OD→=a+b;再作OC→=c,以OD与OC为邻边作平行四边形ODEC,则OE→=a+b+c.方法归纳已知向量求作和向量的方法(1)用三角形法则,在平面内任取一点,顺次作两个向量等于已知向量,从起点到终点的向量就是两个向量的和.(2)用平行四边形法则,在平面内任取一点,从今点动身分别作两个向量等于已知向量,以它们为邻边作平行四边形,共起点的对角线对应的向量就是这两个向量的和.1.(1)如图所示,已知向量a和b,求作a+b .(2)如图,已知a,b,c三个向量,试求作和向量a+b+c .解:(1)法一:(三角形法则)如图所示.①在平面上任取一点O,作OA→=a,AB→=b;②连接OB,则OB→=a+b.法二:(平行四边形法则)如图所示.①在平面上任取一点O,作OA→=a,OB→=b;②以OA,OB为邻边作平行四边形OACB,则OC→=a+b.(2)作出来的和向量如图,首先在平面内任取一点O,作向量OA→=a,再作向量AB→=b,则得向量OB→=a +b,然后作向量BC→=c,则向量OC→即为所求.向量的加法运算(1)下列等式不正确的是()①a+(b+c)=(a+c)+b;②AB→+BA→=0;③AC→=DC→+AB→+BD→.A.②③B.②C.①D.③(2)设A,B,C,D是平面上任意四点,试化简:①AB→+CD→+BC→;②DB→+AC→+BD→+CA→.(链接教材P81习题2-2A组T5(1)(2))[解](1)选B.由向量的加法满足结合律知①正确;由于AB→+BA→=0,故②不正确;DC→+AB→+BD→=AB→+BD→+DC→=AC→成立,故③正确.(2)①AB→+CD→+BC→=(AB→+BC→)+CD→=AC→+CD→=AD→.②DB→+AC→+BD→+CA→=(DB→+BD→)+(AC→+CA→)=0+0=0.方法归纳向量加法运算律的意义和应用原则(1)意义向量加法的运算律为向量加法供应了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以依据任意的次序、任意的组合来进行.(2)应用原则利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的挨次.2.(1)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → (2)化简下列各式:①(AD →+MB →)+(BC →+CM →)=________. ②AB →+DF →+CD →+BC →+F A →=________.解析:(1)由于AO →+OD →=AD →,AC →+CD →=AD →,所以AO →+OD →=AC →+CD →.(2)①(AD →+MB →)+(BC →+CM →)=AD →+MB →+BM →=AD →+0=AD →. ②AB →+DF →+CD →+BC →+F A →=(AB →+BC →)+(DF →+F A →)+CD →=AC →+DA →+CD →=(AC →+CD →)+DA →=AD →+DA →=0.答案:(1)C (2)①AD →②0向量加法的应用(1)已知图中电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ;绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为________N ;方向为________.(2)如图是中国象棋的部分棋盘,“马走日”是象棋中“马”的走法,假如不从原路返回,那么“马”从A 经过B 再走回到A 最少需几步?(链接教材P 77例1,例2,P 78例3) [解](1)如图,依据向量加法的平行四边形法则,得合力F 1+F 2=OC →.在△OAC 中,|F 1|=24,|AC →|=12,∠OAC =60°,所以∠OCA =90°,|OC →|=123,所以F 1与F 2的合力大小为12 3 N ,方向为竖直向上.故填123和竖直向上.(2)如图,假如不从原路返回,那么所走路线为A →B →C →D →A ,即AB →+BC →+CD →+DA →=0,所以最少需四步.本例(2)条件不变,若不限步数,那么“马”从A 经过B 再走回A 时,所走的步数有什么特点?解:若不限步数,则“马”从A 经过B 再走回A 时,不论如何走,均需走偶数步,且不少于四步. 方法归纳向量加法应用的关键及技巧(1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是娴熟找出图形中的相等向量;三是能依据三角形法则或平行四边形法则作出向量的和向量.(2)应用技巧:①精确 画出几何图形,将几何图形中的边转化为向量;②将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.3.(1)若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.(2)如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.解:(1)设OA →=a ,OB →=b ,则OC →=a +b .又由于|OA →|=8,|OB →|=8,所以|OC →|=|a +b |=8 2.又由于∠AOC =45°,所以a +b 的方向是北偏东45°.故填82和北偏东45°.(2)设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B 地按南偏东55°的方向飞行800km ,则飞机飞行的路程指的是|AB →|+|BC →|;两次飞行的位移的和指的是AB→+BC→=AC→.依题意有|AB→|+|BC→|=800+800=1 600(km),又α=35°,β=55°,∠ABC=35°+55°=90°,所以|AC→|=|AB→|2+|BC→|2=8002+8002=8002(km).易错警示未能正确理解向量加法致误小船以10 3 km/h的静水速度按垂直于对岸的方向行驶,同时河水的流速为10 km/h,则小船实际航行速度的大小为________km/h.[解析]如图,设船在静水中的速度为|v1|=10 3 km/h,河水的流速为|v2|=10 km/h,小船实际航行速度为v0,则由|v1|2+|v2|2=|v0|2,得(103)2+102=|v0|2,所以|v0|=20 km/h,即小船实际航行速度的大小为20 km/h.[答案]20[错因与防范](1)解答本题,易将船的实际速度当成河水的流速与静水速度之和,导致得不到正确的实际航速关系式而出错.(2)①向量的和一般不能直接用模作和;要留意向量的方向的合成,如本例中用两个速度不能直接作和;②船在静水中的航行速度,水流的速度,船实际的航行速度三者间当航行方向与水流方向不共线时不能直接求实际航行速度,如本例中两个方向垂直,利用勾股定理求速度的大小.4.(1)一艘船以4 km/h的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h,若船的实际航行方向与水流方向垂直,则经过3 h,该船的实际航程为________km.(2)在静水中船的速度为20 m/min,水流的速度为10 m/min,假如船从岸边动身沿垂直于水流的航线到达对岸,求船行进的方向.解:(1)由题意,如图,OA→表示水流速度,OB→表示船在静水中的速度,则OC→表示船的实际速度.由于|OA→|=2,|OB→|=4,∠AOB=120°,则∠CBO=60°,又由于∠AOC=∠BCO=90°,所以|OC→|=23,所以船的实际航行速度为2 3 km/h,则实际航程为23×3=63(km).故填6 3.(2)作出图形,如图.船速v船与岸的方向成α角,由图可知v水+v船=v实际,结合已知条件,四边形ABCD为平行四边形,在Rt△ACD中,|CD→|=|AB→|=|v水|=10 m/min,|AD→|=|v船|=20 m/min,所以cos α=|CD→||AD→|=1020=12,所以α=60°,从而船与水流方向成120°的角.故船行进的方向是与水流的方向成120°角的方向.1.已知下面的说法:①假如非零向量a与b的方向相同或相反,那么a+b的方向与a或b的方向相同;②在△ABC中,必有AB→+BC→+CA→=0;③若AB→+BC→+CA→=0,则A,B,C为一个三角形的三个顶点;④若a,b均为非零向量,则|a+b|与|a|+|b|肯定相等.其中正确的个数为()A.0B.1C.2 D.3解析:选B.①当a+b=0时,不成立;②说法正确;③当A,B,C三点共线时,也可以有AB→+BC→+CA→=0,故此说法不正确;④当a,b共线时,若a,b同向,则|a+b|=|a|+|b|;若a,b反向,则|a+b|=||a|-|b||;当a,b不共线时,|a+b|<|a|+|b|,故此说法不正确.2.如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则下列等式中正确的是()A.FD→+DA→=F A→B.FD→+DE→+FE→=0C.DE→+DA→=EB→D.DA→+DE→=FD→解析:选A.如题图,可知FD→+DA→=F A→,FD→+DE→+FE→=FE→+FE→≠0,DE→+DA→=DF→,故A正确.3.化简(AB→+MB→)+(BO→+BC→)+OM→=________.解析:原式=(AB→+BO→)+(OM→+MB→)+BC→=AO→+OB→+BC→=AB→+BC→=AC→.答案:AC →, [同学用书单独成册])[A.基础达标]1.在四边形ABCD 中,若AC →=AB →+AD →,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D.由向量加法的平行四边形法则知四边形ABCD 是平行四边形.故选D.2.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=( )A.BD → B .DB →C.BC →D .CB →解析:选C.BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.3.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的个数为( )A .5B .4C .3D .2解析:选A.依据向量加法的交换律及结合律,每个向量式均与a +b +c 相等,故选A.4.如图所示的方格中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG →C.FO →D .EO →解析:选C.设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则夹在OP ,OQ 之间的对角线对应的向量即为向量a =OP →+OQ →,则a 与FO →长度相等,方向相同,所以a =FO →.5.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( ) ①a ∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |; ⑤|a +b |=|a |+|b |.A .①②B .①③C .①③⑤D .③④⑤解析:选C.由于(AB →+CD →)+(BC →+DA →)=AB →+BC →+CD →+DA →=a =0. 所以a ∥b ,a +b =b ,即①③正确,②错误,而a =0时,|a +b |=|b |=|a |+|b |,故④错误,⑤正确.6.当非零向量a ,b 满足________时,a +b 平分以a 与b 为邻边的平行四边形的内角. 解析:由平面几何学问知,在平行四边形中,菱形的对角线平分其内角. 答案:|a |=|b |7.矩形ABCD 中,|AB |=3,|BC →|=1,则向量AB →+AD →+AC →的长度等于________. 解析:由于ABCD 为矩形,所以AB →+AD →=AC →,所以AB →+AD →+AC →=AC →+AC →,如图,过点C 作CE →=AC →,则AC →+AC →=AE →,所以|AB →+AD →+AC →|=|AE →| =2|AC →|=2|AB →|2+|BC →|2=4.答案:48.在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 是________(图形).解析:如图所示,BC →+BA →=BD →,BC →+AB →=AC →, 又|BC →+BA →|=|BC →+AB →|,所以|BD →|=|AC →|,则四边形ABCD 是矩形. 答案:矩形9.如图所示,P ,Q 是三角形ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明:AB →=AP →+PB →,AC →=AQ →+QC →,所以AB →+AC →=AP →+PB →+AQ →+QC →.由于PB →与QC →大小相等,方向相反,所以PB →+QC →=0, 故AB →+AC →=AP →+AQ →+0=AP →+AQ →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.解:如图,在平行四边形OACB 中,∠AOC =30°,∠BOC =60°,则在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体的重力,|CO →|=300 N ,所以|OA →|=|CO →|cos 30°=150 3 N , |OB →|=|CO →|cos 60°=150 N.所以与铅垂线成30°角的绳子的拉力是150 3 N , 与铅垂线成60°角的绳子的拉力是150 N. [B.力量提升]1.设A 1,A 2,A 3,A 4是平面上给定的4个不同的点,则使MA 1→+MA 2→+MA 3→+MA 4→=0成立的点M 的个数为( )A .0B .1C .2D .4解析:选B.依据所给的四个向量的和是一个零向量, 即MA 1→+MA 2→+MA 3→+MA 4→=0.当A 1,A 2,A 3,A 4是平面上给定的4个不同点确定以后,在平面上有且只有一个点满足使得四个向量的和等于零向量,故选B.2.已知|OA →|=3,|OB →|=3,∠AOB =60°,则|OA →+OB →|=( ) A. 3 B .3 C .2 3 D .3 3解析:选D.在平面内任取一点O ,作向量OA →,OB →,以OA →,OB →为邻边作▱OACB ,则OC →=OA →+OB →.由题意知四边形OACB 为菱形,又∠AOB =60°,所以|OC →|=2×3×sin 60°=3 3.3.已知G 是△ABC 的重心,则GA →+GB →+GC →=________. 解析:如图,连接AG 并延长交BC 于E ,点E 为BC 中点,延长AE 到D ,使GE =ED ,则GB →+GC →=GD →,GD →+GA →=0,所以GA →+GB →+GC →=0. 答案:04.若|AB →|=10,|AC →|=8,则|BC →|的取值范围是________.解析:如图,固定AB →,以A 为起点作AC →,则AC →的终点C 在以A 为圆心,|AC →|为半径的圆上,由图可见,当C 在C 1处时,|BC →|取最小值2,当C 在C 2处时,|BC →|取最大值18.答案:[2,18]5.一艘船在水中航行,水流速度与船在静水中航行的速度均为5 km/h.假如此船实际向南偏西30°方向行驶2 km ,然后又向西行驶2 km ,你知道此船在整个过程中的位移吗?解:如图,用AC →表示船的第一次位移, 用CD →表示船的其次次位移,依据向量加法的三角形法则知AD →=AC →+CD →,所以AD →可表示两次位移的和位移. 由题意知,在Rt △ABC 中,∠BAC =30°,所以BC =12AC =1,AB = 3.在等腰△ACD 中,AC =CD =2,所以∠D =∠DAC =12∠ACB =30°,所以∠BAD =60°,AD =2AB =23,所以两次位移的和位移的方向是南偏西60°,位移的大小为2 3 km.6.(选做题)在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12.求|DC →+BC →|与|CD →+BC →|.解:由于OA →+OC →=OB →+OD →=0,所以OA →=CO →,OB →=DO →,所以四边形ABCD 为平行四边形, 又|AB →|=|AD →|=1,知四边形ABCD 为菱形.由于cos ∠DAB =12,∠DAB ∈(0,π),所以∠DAB =π3,所以△ABD 为正三角形,所以|DC →+BC →|=|AB →+AD →|=|AC →|=2|AO →|= 3.→+BC→|=|BD→|=|AB→|=1. |CD。