向量加法的运算律
- 格式:ppt
- 大小:659.01 KB
- 文档页数:25
6.2平面向量的运算6.2.1向量的加法运算学习目标1.理解并掌握向量加法的概念.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能作图解释向量加法运算律的合理性.知识点一向量加法的定义及其运算法则1.向量加法的定义求两个向量和的运算,叫做向量的加法.2.向量求和的法则向量和的方法叫做向量加法的平行四边形法则位移的合成可以看作向量加法的三角形法则的物理模型,力的合成可以看作向量加法的平行四边形法则的物理模型.思考 |a +b |与|a |,|b |有什么关系?答案 (1)当向量a 与b 不共线时,a +b 的方向与a ,b 不同,且|a +b |<|a |+|b |.(2)当a 与b 同向时,a +b ,a ,b 同向,且|a +b |=|a |+|b |.(3)当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |. 知识点二 向量加法的运算律 向量加法的运算律交换律 a +b =b +a 结合律(a +b )+c =a +(b +c )1.0+a =a +0=a .( √ )2.AB →+BC →=AC →.( √ ) 3.AB →+BA →=0.( √ ) 4.AB →+BC →>AC →.( × ) 5.|AB →|+|BC →|=|AC →|.( × )一、向量加法法则例1(1)如图①所示,求作向量a+b.(2)如图②所示,求作向量a+b+c.→=a,然后作向量AB→=b,则向量OB→=a+b.如图③所示. 解(1)首先作向量OA(2)方法一(三角形法则)如图④所示,首先在平面内任取一点O,作向量OA→=a,再作向量AB→=b,则得向量OB→=a+b,然后作向量BC→=c,则向量OC→=(a+b)+c=a+b+c即为所求.方法二(平行四边形法则)如图⑤所示,首先在平面内任取一点O,作向量OA→=a,OB→=b,OC→=c,以OA,OB为邻边作▱OADB,连接OD,则OD→=OA→+OB→=a+b.再以OD,OC为邻边作▱ODEC,连接OE,则OE→=OD→+OC→=a+b+c即为所求.反思感悟向量加法的平行四边形法则和三角形法则的区别和联系跟踪训练1如图所示,O为正六边形ABCDEF的中心,化简下列向量.(1)OA →+OC →=________;(2)BC →+FE →=________;(3)OA →+FE →=________. 答案 (1)OB → (2)AD →(3)0解析 (1)因为四边形OABC 是以OA ,OC 为邻边的平行四边形,OB 是其对角线,故OA →+OC →=OB →.(2)因为BC →=FE →,故BC →+FE →与BC →方向相同,长度为BC →的长度的2倍,故BC →+FE →=AD →. (3)因为OD →=FE →,故OA →+FE →=OA →+OD →=0. 二、向量加法运算律的应用 例2 化简:(1)BC →+AB →;(2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →. 解 (1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.反思感悟 向量加法运算律的意义和应用原则(1)意义:向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行.(2)应用原则:通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序.跟踪训练2 已知正方形ABCD 的边长等于1,则|AB →+AD →+BC →+DC →|=________. 答案 2 2解析 |AB →+AD →+BC →+DC →|=|AB →+BC →+AD →+DC →|=|AC →+AC →|=2|AC →|=2 2. 三、向量加法的实际应用例3 河水自西向东流动的速度为10 km/h ,小船自南岸沿正北方向航行,小船在静水中的速度为10 3 km/h ,求小船的实际航行速度.解 设a ,b 分别表示水流的速度和小船在静水中的速度,过平面内一点O 作OA →=a ,OB →=b ,以OA →,OB →为邻边作矩形OACB ,连接OC →,如图,则OC →=a +b ,并且OC →即为小船的实际航行速度.∴|OC →|=|a +b |2=|a |2+|b |2=20(km/h),tan ∠AOC =10310=3,∴∠AOC =60°,∴小船的实际航行速度为20 km/h ,沿北偏东30°的方向航行. 反思感悟 应用向量解决实际问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.跟踪训练3 如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小.(绳子的重量忽略不计)解 如图所示,设CE →,CF →分别表示A ,B 所受的力,10 N 的重力用CG →表示,则CE →+CF →=CG →.由题意可得∠ECG =180°-150°=30°,∠FCG =180°-120°=60°. ∴|CE →|=|CG →|cos 30° =10×32=53(N), |CF →|=|CG →|cos 60° =10×12=5(N).∴A 处所受的力为5 3 N ,B 处所受的力为5 N.1.化简CB →+AD →+BA →等于( ) A.DB → B.CA → C.CD → D.DC → 答案 C解析 根据平面向量的加法运算,得CB →+AD →+BA →=(CB →+BA →)+AD →=CA →+AD →=CD →. 2.下列等式不正确的是( ) ①a +(b +c )=(a +c )+b ; ②AB →+BA →=0; ③AC →=DC →+AB →+BD →. A.②③ B.② C.① D.③ 答案 B解析 ②错误,AB →+BA →=0,①③正确. 3.在四边形ABCD 中,AC →=AB →+AD →,则( ) A.四边形ABCD 一定是矩形 B.四边形ABCD 一定是菱形 C.四边形ABCD 一定是正方形 D.四边形ABCD 一定是平行四边形 答案 D解析 由AC →=AB →+AD →知,A ,B ,C ,D 构成的四边形一定是平行四边形.4.如图,四边形ABCD 是梯形,AD ∥BC ,对角线AC 与BD 相交于点O ,则OA →+BC →+AB →+DO →等于( )A.CD →B.DC →C.DA →D.DO → 答案 B→+BC→+AB→+DO→=DO→+OA→+AB→+BC→=DA→+AB→+BC→=DB→+BC→=DC→.解析OA5.已知向量a表示“向东航行3 km”,b表示“向南航行3 km”,则a+b表示_________. 答案向东南航行3 2 km解析根据题意由于向量a表示“向东航行3 km”,向量b表示“向南航行3 km”,那么可知a+b表示向东南航行3 2 km.1.知识清单:(1)向量加法的三角形法则.(2)向量加法的平行四边形法则.(3)向量加法的运算律.2.方法归纳:数形结合.3.常见误区:向量加法的三角形法则要注意向量首尾相接,平行四边形法则要注意把向量移到共同起点.1.化简AE →+EB →+BC →等于( ) A.AB → B.BA → C.0 D.AC → 答案 D解析 AE →+EB →+BC →=AB →+BC →=AC →.2.如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( )A.0B.BE →C.AD →D.CF →答案 D解析 BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF →=CF →. 3.若正方形ABCD 的边长为1,则|AB →+AD →|等于( )A.1B. 2C.3D.2 2答案 B解析 在正方形ABCD 中,AB =1,可知AC =2, 所以|AB →+AD →|=|AC →|=AC = 2.4.已知四边形ABCD 为菱形,则下列等式中成立的是( ) A.AB →+BC →=CA → B.AB →+AC →=BC →C.AC →+BA →=AD →D.AC →+AD →=DC →答案 C5.(多选)下列说法错误的有( )A.如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 或b 的方向相同B.在△ABC 中,必有AB →+BC →+CA →=0C.若AB →+BC →+CA →=0,则A ,B ,C 一定为一个三角形的三个顶点 D.若a ,b 均为非零向量,则|a +b |=|a |+|b | 答案 ACD解析 A 错,若a +b =0,则a +b 的方向是任意的;B 正确;C 错,当A ,B ,C 三点共线时,也满足AB →+BC →+CA →=0;D 错,|a +b |≤|a |+|b |. 6.已知AB →=a ,BC →=b ,CD →=c ,DE →=d ,AE →=e ,则a +b +c +d =________. 答案 e解析 a +b +c +d =AB →+BC →+CD →+DE →=AE →=e .7.在菱形ABCD 中,∠BAD =60°,|AB →|=1,则|BC →+CD →|=________. 答案 1解析 如图,由题意知△ABD 为等边三角形,所以|BC →+CD →|=|BD →|=|AB →|=1.8.如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →+CD →=________; (2)AC →+BA →+DA →=________. 答案 (1)AD →(2)09.如图,已知在▱ABCD 中,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO →+AC →;(2)DE →+BA →.解 (1)延长AC ,在延长线上截取CF =AO ,则向量AF →即为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →即为所求.10.在静水中船的速度为20 m /min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向. 解 作出图形,如图所示.设船速v 船与岸的方向成α角, 由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=|v 水|=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船行进的方向与水流方向成120°角. ∴船是沿与水流方向成120°角的方向行进.11.在矩形ABCD 中,|AB →|=4,|BC →|=2,则向量AB →+AD →+AC →的长度为( ) A.2 5 B.4 5 C.12 D.6 答案 B解析 因为AB →+AD →=AC →,所以AB →+AD →+AC →的长度为AC →的模的2倍. 又|AC →|=42+22=25,所以向量AB →+AD →+AC →的长度为4 5.12.若在△ABC 中,AB =AC =1,|AB →+AC →|=2,则△ABC 的形状是( ) A.正三角形 B.锐角三角形 C.斜三角形 D.等腰直角三角形答案 D解析 以AB ,AC 为邻边作平行四边形ABDC ,∵AB =AC =1,AD =2,∴∠ABD 为直角,该四边形为正方形,∴∠BAC =90°,△ABC 为等腰直角三角形. 13.已知点G 是△ABC 的重心,则GA →+GB →+GC →=______. 答案 0解析 如图所示,连接AG 并延长交BC 于点E ,点E 为BC 的中点,延长AE 到点D ,使GE =ED ,则GB →+GC →=GD →,GD →+GA →=0,∴GA →+GB →+GC →=0.14.如图所示,已知电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ,绳BO 与墙壁垂直,所受拉力|F 2|=12 N.则F 1和F 2的合力为________ N.答案 12 3解析 如图,根据向量加法的平行四边形法则,得到合力F =F 1+F 2=OC →.在△OCA 中,|OA →|=24, |AC →|=12,∠OAC =60°, ∴∠OCA =90°,∴|OC →|=12 3.∴F 1与F 2的合力大小为12 3 N ,方向为与F 2成90°角,竖直向上.15.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明 AB →=AP →+PB →,AC →=AQ →+QC →,∴AB →+AC →=AP →+PB →+AQ →+QC →.∵PB →与QC →大小相等,方向相反,∴PB →+QC →=0,故AB →+AC →=AP →+AQ →+0=AP →+AQ →.16.如图,已知D ,E ,F 分别为△ABC 的三边BC ,AC ,AB 的中点,求证:AD →+BE →+CF →=0.证明 由题意知,AD →=AC →+CD →,BE →=BC →+CE →,CF →=CB →+BF →.由平面几何知识可知,EF→=CD→,BF→=F A→,所以AD→+BE→+CF→=(AC→+CD→)+(BC→+CE→)+(CB→+BF→) =(AC→+CD→+CE→+BF→)+(BC→+CB→)=(AE→+EC→+CD→+CE→+BF→)+0=AE→+CD→+BF→=AE→+EF→+F A→=0.。
向量运算律向量是一种有方向和大小的几何对象,广泛用于数学、物理和工程等领域。
向量运算律是向量代数中的基本概念,也是进行向量运算的基础。
本文将详细介绍向量的运算律,包括交换律、结合律、分配律、加法单位元、减法单位元、数乘单位元、数乘结合律、加法逆元、数量积、平行四边形法则、三角形法则、反向量、向量的模和向量夹角。
1.交换律交换律是指对任意两个向量a和b,有a+b=b+a。
这个定律表明,向量的加法运算满足交换性质,即不依赖于其运算顺序。
2.结合律结合律是指对任意三个向量a、b和c,有(a+b)+c=a+(b+c)。
这个定律表明,向量的加法运算满足结合性质,即不依赖于其运算顺序。
3.分配律分配律是指对任意实数r和任意两个向量a和b,有(r+a)+b=r+a+b=(r+b)+a。
这个定律表明,实数与向量的加法运算满足分配性质,即实数可以分配到向量的两边。
4.加法单位元加法单位元是指对任意向量a,有u+a=a+u=a,其中u是加法单位元。
这个概念表明,加法单位元是一个与任意向量相加都保持不变的向量。
5.减法单位元减法单位元是指对任意向量a,有v-a=-a+v=a,其中v是减法单位元。
这个概念表明,减法单位元是一个与任意向量相减都保持不变的向量。
6.数乘单位元数乘单位元是指对任意实数r和任意向量a,有ra=ar=r。
这个概念表明,实数与向量的数乘运算满足数乘单位性质,即实数可以分配到向量的两边并保持不变。
7.数乘结合律数乘结合律是指对任意实数r、s和任意向量a,有(rs)a=r(sa)=s(ra)。
这个定律表明,实数的乘积可以分配到向量的两边,并且不依赖于其运算顺序。
8.加法逆元加法逆元是指对任意向量a,有-a+b=b-a。
这个概念表明,加法逆元是一个与任意向量相加都等于另一个向量的向量。
9.数量积数量积是指对任意两个向量a和b,有a·b=|a||b|cosθ,其中θ是两个向量的夹角。
这个概念表明,两个向量的数量积等于它们的模长乘积与它们夹角的余弦值之积。
向量的加法口诀: 首尾相连,首连尾,方向指向末向量。
以第一个向量的起点为起点,以第二个向量的终点为终点的向量是两向量的和向量。
二、向量的减法两向量做减法运算,图像如下图所示:向量的减法口诀: 首首相连,尾连尾,方向指向被减向量。
以第一个向量的终点为起点,以第二个向量的终点为终点的向量是两向量的差向量。
向量的学习是高一数学必修四第二章的内容,要求同学们会向量的基本运算,其中就包括加法、减法、数乘。
要求大家能根据运算法则解决基本的向量运算,学会运用图像解决向量加减法,向量的数乘等问题。
向量的相关题目难度也不是很大,只要大家认真学习,认真做好笔记,认真做做题目,总结做题规律,那么当我们遇到类似题目时就会似曾相识,做起来也很顺手,再细心点的话,得满分也没有问题。
学习方法很多,重要的事找到适合自己的方法,当然适合自己方法就是最好的方法。
附一;三角形定则解决向量加减的方法将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
注:两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。
平行四边形定则解决向量加法的方法实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ 3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.。
ABabbaa a O =−→−OBA B O B a abb=−→−OB a +b ABAa +b向量的线性运算(一)1.向量的加法向量的加法:求两个向量和的运算叫做向量的加法。
表示:→--AB −→−+BC =→--AC .规定:零向量与任一向量a ,都有00a a a +=+=.【注意】:两个向量的和仍旧是向量(简称和向量)作法:在平面内任意取一点O ,作→--OA =a →--→--OB =→--OA +→--AB a +b2.向量的加法法则(1)共线向量的加法:同向向量反向向量(2)不共线向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)。
三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。
表示:→--AB −→−+BC=→--AC .平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线→--AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。
如图,已知向量a 、b 在平面内任取一点A ,作→--AB =a ,=−→−BC b ,则向量−→−AC 叫做a与b 的和,记作a +b ,即a +b +=−→−AB =−→−BC −→−AC【说明】:教材中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的 特殊情况:探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.(4)“向量平移”:使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.向量加法的运算律(1)向量加法的交换律:a +b =b +a(2)向量加法的结合律:(a +b ) +c =a +(b +c ) 证明:如图:使=−→−AB a , =−→−BC b , =−→−CD c 则(a +b )+c =−→−AC +=−→−CD −→−AD ,a + (b +c )=−→−AB −→−+BD −→−=AD ,∴(a +b )+c =a +(b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行例如:()()()()a b c d b d a c +++=+++;[()]()a b c d e d a c b e ++++=++++.例题:例1. O 为正六边形的中心,作出下列向量:(1)−→−OA +−→−OC (2)−→−BC +−→−FE (3)−→−OA +−→−FE例2.如图,一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时水aaab bba +ba +b ABC ABCD三角形法则平行四边形法则的流速为h km /2,求船实际航行的速度的大小与方向。