自控原理第四章
- 格式:ppt
- 大小:1.80 MB
- 文档页数:65
自动控制理论是研究自动控制共同规律的技术科学。
它的发展初期,是以反馈理论为基础的自动调节原理,主要用于工业控制,二战期间为了设计和制造飞机及船用自动驾驶仪,火炮定位系统,雷达跟踪系统以及其他基于反馈原理的军用设备,进一步促进并完善了自动控制理论的发展。
到战后,以形成完整的自动控制理论体系,这就是以传递函数为基础的经典控制理论,它主要研究单输入-单输出,线形定常数系统的分析和设计问题。
20世纪60年代初期,随着现代应用数学新成果的推出和电子计算机的应用,为适应宇航技术的发展,自动控制理论跨入了一个新阶段——现代控制理论。
他主要研究具有高性能,高精度的多变量变参数的最优控制问题,主要采用的方法是以状态为基础的状态空间法。
目前,自动控制理论还在继续发展,正向以控制论,信息论,仿生学为基础的智能控制理论深入。
为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。
在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。
在反馈控制系统中,控制装置对被控装置施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量和控制量之间的偏差从而实现对被控量进行控制的任务,这就是反馈控制的原理。
同时自动控制原理也是现在高校自动化专业的一门主干课程,是学习后续专业课的重要基础,也是自动化专业硕士研究生入学必考的专业课。
该课不仅是自动控制专业的基础理论课,也是其他专业的基础理论课,目前信息科学与工程学院开设本课程的专业有计算机、电子信息、检测技术。
该课程不仅跟踪国际一流大学有关课程内容与体系,而且根据科研与学术的发展不断更新课程内容,从而提高自动化及相关专业的整体学术水平。
普通高等教育“十一五”国家级规划教材全国高等专科教育自动化类专业规划教材《自动控制原理》习题答案主编:陈铁牛机械工业出版社1-11-21-3闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。
被控对象:指要进行控制的设备和过程。
给定装置:设定与被控量相对应给定量的装置。
比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。
执行装置:直接作用于控制对象的传动装置和调节机构。
测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。
校正装置:用以改善原系统控制性能的装置。
题1-4答:(图略)题1-5答:该系统是随动系统。
(图略)题1-6答:(图略)题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s es sπ(4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint (2) f(t)=e -4t(cost-4sint)(3) f(t)=t t t te e e 101091811811----- (4) f(t)= -tt t te e e ----+-3118195214(5) f(t)= -tt e e t 4181312123--+++题2-3 解:a)dtdu u C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r r r c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121 题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 )题2-5 解:(图略)题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C += 题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+= (2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。
4-1 根轨迹法使用于哪类系统的分析?4-2 为什么可以利用系统开环零点和开环极点绘制闭环系统的根轨迹?4-3 绘制根轨迹的依据是什么?4-4 为什么说幅角条件是绘制根轨迹的充分必要条件?4-5 系统开零环、极点对根轨迹形状有什么影响?4-6 求下列各开环传递函数所对应的负反馈系统的根轨迹。
(1))2)(1()3()(+++=s s s K s W g K (2))2)(3()5()(+++=s s s s K s W g k (3) )10)(5)(1()3()(++++=s s s s K s W g k解:第(1)小题 由系统的开环传递函数)2)(1()3()(+++=s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 11-=-p 、22-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,两条,一条终止于开环零点,另一条趋于无穷远。
4. 实轴上的根轨迹区间为3~-∝-和1~2--5. 分离点与会合点,利用公式0312111=+-+++d d d ()()()()()()()()()0321213132=+++++-+++++d d d d d d d d d 即:0762=++d d解上列方程得到:586.11-=d ,414.42-=d根据以上结果画出根轨迹如下图:解:第(2)小题 由系统的开环传递函数)2)(3()5()(+++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 00=-p 、21-=-p 、32-=-p2. 终点:=∝g K 时,终止于开环零点,51-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。
4. 实轴上的根轨迹区间为3~5--和0~2-5. 分离点与会合点,利用公式05131211=+-++++d d d d 8865.0-=d6. 根轨迹的渐进线 渐进线倾角为:0009013)21(180)21(180 =-+=-+=μμϕm n 渐进线的交点为:01352311=--+=---=-∑∑==m n z p m i in j j k σ 根据以上结果画出根轨迹如下图:解:第(3)小题 由系统的开环传递函数)10)(5)(1()3()(++++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 10-=-p 、51-=-p 、102-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。
自动控制原理第四章答案在自动控制原理的学习中,第四章是一个重要的环节,本章主要讲解了控制系统的稳定性。
在这一章节中,我们将学习如何分析控制系统的稳定性,并且掌握相应的解决方法。
接下来,我将为大家详细介绍第四章的内容及答案。
1. 什么是控制系统的稳定性?控制系统的稳定性是指当系统受到干扰时,系统能够保持平衡状态或者在一定的范围内回到平衡状态的能力。
在控制系统中,稳定性是一个非常重要的指标,它直接关系到系统的可靠性和性能。
2. 如何分析控制系统的稳定性?要分析控制系统的稳定性,我们通常采用的方法是利用系统的传递函数进行分析。
通过传递函数的极点和零点,我们可以判断系统的稳定性。
另外,我们还可以利用根轨迹法、Nyquist法、Bode图等方法进行分析。
3. 控制系统的稳定性解决方法有哪些?针对不同的稳定性问题,我们可以采取不同的解决方法。
比如,对于系统的根轨迹出现在右半平面的情况,我们可以采取根轨迹设计法进行修正;对于系统的相位裕度不足的情况,我们可以采取相位裕度补偿的方法进行调整。
4. 控制系统的稳定性分析在工程中的应用。
控制系统的稳定性分析在工程中有着广泛的应用,比如在飞行器、汽车、机器人等自动控制系统中,稳定性分析是至关重要的。
只有保证了系统的稳定性,才能确保系统的可靠性和安全性。
5. 总结。
通过本章的学习,我们对控制系统的稳定性有了更深入的了解。
掌握了稳定性分析的方法和解决方案,我们可以更好地应用于工程实践中,提高系统的性能和可靠性。
希望本文的内容能够帮助大家更好地理解自动控制原理第四章的内容,并且在学习和工程实践中取得更好的成绩。
自动控制原理第四章课后习题答案(免费)4-1 判断下列二次型函数的符号性质:(1) 222123122313()4262Q x x x x x x x x x x =++--- 解:()T V x x px =,其中:111143131P --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,P 的各阶主子式:12310,30,160p =>=>==-< 所以,此二次型函数不定.(2) 222123122313()31122Q x x x x x x x x x x =---+-- 解: ()T V x x px =,其中111113211112P ⎡⎤⎢⎥--⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥---⎣⎦,P 的各阶主子式:12310,20,17.50p =-<=>==-< 所以,P 为负定的.4-2 已知二阶系统的状态方程:11122122a a x x a a •⎛⎫= ⎪⎝⎭试确定系统在 平衡状态处大范围渐进稳定的条件。
解:坐标原点为该系统的一个平衡点,选取李亚普诺夫函数为()T V x x px =,其中:T A P PA Q +=-,取Q=I 得:112111121112111212221222122221221001a a p p p p a a a a p p p p a a -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,展开可得,其中1221p p =:11112112111221221111211212112212121122121212222211122122121222221001a p a p a p a p a p a p a p a p a p a p a p a p a p a p a p a p ++++-⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥++++-⎣⎦⎣⎦⎣⎦()211211111121121112122222121222111222121211212222111222121211212211221212112122122212221120200a p p a p a p a a p a p a p p a p a p a p a p a a p a p a p a p a a p a p a p --⎧=⎪+=-⎧⎪⎪+=---⎪⎪→=⎨⎨+++=⎪⎪⎪⎪+++=+++=⎩⎪⎩()()21121212112212122111221122211112221122221112212211122112120222a p a p a a p a a a a a a a a p a a a a a a a a a a ----⇒++⋅+⋅=+=+--1222211112211122112221122()()a a a a p p a a a a a a +⇒==+-解之得:221122211221221111221122211222112221121112221122112212212()()2()()a a a a a a p a a a a a a a a a a a a p a a a a a a ⎧-++=⎪+-⎪⇒⎨-++⎪=-⎪+-⎩要使矩阵P 为正定的,则应使:1112112212210,0p p p p p =>=->于是得:22112212212112211221221()()04()()a a a a a a a a a a ++->+-,即:112212*********,00a a a a p a a ->>⇒+< 综上所述在平衡点出渐进稳定的充要条件为:1122112212210,0a a a a a a +<-> 系统为线性的,所以满足上述条件即可满足大范围渐进稳定.4-3 以李雅普诺夫第二方法确定下列系统原点的稳定性:(1)1123x x •-⎛⎫= ⎪-⎝⎭解:求平衡点,12120230x x x x -+=-=,可得00e x ⎛⎫= ⎪⎝⎭为唯一的平衡点。
“十二五”职业教育国家级规划教材普通高等教育“十一五”国家级规划教材全国高等专科教育自动化类专业规划教材《自动控制原理》(第2版)习题解答机械工业出版社第一章习题解答1-1试列举开环控制和闭环控制的例子,并说明其工作原理。
答:开环控制:电风扇的转速控制。
电风扇的转速有多个转速档位,其风量大小可由调节其转速档位控制,其转速档位一旦确定后,其转速就相对固定,风量大小相对固定,气温变化时其风量不会自动调节,此控制属于开环控制。
闭环控制:1、家用抽水马桶的水位控制。
家用抽水马种闭环控制,其工作原理为:水箱水位的检测为浮球,浮球通2、普通车床的主轴控制系统,其转速控制属于一个开环系统。
即档位一旦确定后,其电动机的转速不会因为车床所加工零件的硬度或负载大小变化而自动稳速。
桶的水位控制系统属于一过杠杆连接进水阀的开闭,当水位达到规定水位时,浮球通过杠杆连接的进水阀关闭,当马桶冲水后,水箱水位下降,浮球通过杠杆连接的进水阀开启,水注入水箱,水箱水位上升,上升到设定水位时,浮球通过杠杆连接的进水阀关闭,水位保持设定高度不变,整个过程不需人为干涉,系统自动完成。
3、龙门刨床工作台的速度控制。
由于龙门刨床加工工艺要求工作台的运行速度必须恒定,这就要求电动机的转速要求恒定,因此其龙门刨床工作台的速度控制属于一种闭环控制,其工作原理为:工作台的运行由直流电动机带动,为此电动机的控制系统由给定装置、晶闸管整流装置、直流电动机、测速发电机等环节组成。
当某种原因造成带动工作台运行的电动机转速下降时,测速发电机检测的电压下降,此电压与给定电压比较,产生偏差电压,此电压使得晶闸管整流装置的输出电压增加,电动机转速上升,直到达到给定转速,此时经测速发电机反馈的电压与给定电压产生的偏差电压为零,晶闸管整流装置的输出电压不再增加,电动机转速保持稳定。
此既为一闭环控制。
1-2 请说明开环系统和闭环系统的主要特点,并比较两者的优缺点。
答:开环系统的特点是:(1)系统结构简单;(2)系统的信号由给定值至被控量为单向传递,无反馈;(3)被控量不能被自动调节。