自控原理习题参考答案(8)
- 格式:doc
- 大小:259.50 KB
- 文档页数:2
第八章 非线性控制系统分析练习题及答案8-2 设一阶非线性系统的微分方程为3x x x+-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。
解 令 x=0 得 -+=-=-+=x x x x x x x 321110()()()系统平衡状态x e =-+011,,其中:0=e x :稳定的平衡状态;1,1+-=e x :不稳定平衡状态。
计算列表,画出相轨迹如图解8-1所示。
可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-<x 时,x t ()→-∞; 1)0(>x 时,x t ()→∞。
注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~xx 平面上任意分布。
8-3 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。
(1) x xx ++=0 (5) ⎩⎨⎧+=+=2122112x x xx x x解 (1) 系统方程为x -2 -1 -13 0 131 2x-6 0 0.385 0 -0.385 0 6 x 11 2 01 0211图解8-1 系统相轨迹⎩⎨⎧<=-+I I >=++I )0(0:)0(0:x x x x x x x x令0x x ==,得平衡点:0e x =。
系统特征方程及特征根:21,221,21:10,()2:10, 1.618,0.618()s s s s s s I II ⎧++==-±⎪⎨⎪+-==-+⎩稳定的焦点鞍点(, ) , , x f x x x x dxdxxx x dx dx x x x x x==--=--==--=-+=ααβ111⎪⎪⎩⎪⎪⎨⎧<-=>--=)0(11:II )0(11:I x x βαβα计算列表用等倾斜线法绘制系统相平面图如图解8-2(a )所示。
图解8-2(a )系统相平面图(5) xx x 112=+ ① 2122x x x+= ② 由式①: x xx 211=- ③ 式③代入②: ( )( )x xx x x 111112-=+- 即 x x x 11120--= ④ 令 x x110== 得平衡点: x e =0 由式④得特征方程及特征根为 ⎩⎨⎧-==--414.0414.20122,12λs s (鞍点) 画相轨迹,由④式x xdxdx x x x 1111112===+α xx 112=-α 计算列表用等倾斜线法绘制系统相平面图如图解8-2(b )所示。
第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的精度越高,准确性越好。
当准确性与快速性有矛盾时,应兼顾这两方面的要求。
1.1解:(1)机器人踢足球:开环系统输入量:足球位置输出量:机器人的动作(2)人的体温控制系统:闭环系统输入量:正常的体温输出量:经调节后的体温(3)微波炉做饭:开环系统:输入量:设定的加热时间输出量:实际加热的时间(4)空调制冷:闭环系统输入量:设定的温度输出量:实际的温度1.2解:开环系统:优点:结构简单,成本低廉;增益较大;对输入信号的变化响应灵敏;只要被控对象稳定,系统就能稳定工作。
缺点:控制精度低,抗扰动能力弱闭环控制优点:控制精度高,有效抑制了被反馈包围的前向通道的扰动对系统输出量的影响;利用负反馈减小系统误差,减小被控对象参数对输出量的影响。
缺点:结构复杂,降低了开环系统的增益,且需考虑稳定性问题。
1.3解:自动控制系统分两种类型:开环控制系统和闭环控制系统。
开环控制系统的特点是:控制器与被控对象之间只有顺向作用而无反向联系,系统的被控变量对控制作用没有任何影响。
系统的控制精度完全取决于所用元器件的精度和特性调整的准确度。
只要被控对象稳定,系统就能稳定地工作。
闭环控制系统的特点:(1)闭环控制系统是利用负反馈的作用来减小系统误差的(2)闭环控制系统能够有效地抑制被反馈通道保卫的前向通道中各种扰动对系统输出量的影响。
(3)闭环控制系统可以减小被控对象的参数变化对输出量的影响。
1.4解输入量:给定毫伏信号被控量:炉温被控对象:加热器(电炉)控制器:电压放大器和功率放大器系统原理方块图如下所示:工作原理:在正常情况下,炉温等于期望值时,热电偶的输出电压等于给定电压,此时偏差信号为零,电动机不动,调压器的滑动触点停留在某个合适的位置上。
此时,炉子散失的热量正好等于从加热器获取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉温由于某种原因突然下降时,热电偶的输出电压下降,与给定电压比较后形成正偏差信号,该偏差信号经过电压放大器、功率放大器放大后,作为电动机的控制电压加到电动机上,电动机带动滑线变阻器的触头使输出电压升高,则炉温回升,直至达到期望值。
自动控制原理1一、单项选择题(每小题1分,共20分)1. 系统和输入已知,求输出并对动态特性进行研究,称为( )A.系统综合B.系统辨识C.系统分析D.系统设计 2. 惯性环节和积分环节的频率特性在( )上相等。
A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( )A.圆B.半圆C.椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( ) A.比例环节 B.微分环节 C.积分环节 D.惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为( )A.1B.2C.5D.10 7. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( )A.提高上升时间和峰值时间B.减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T1=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小 11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s ks G ,当k =( )时,闭环系统临界稳定。
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。
第八章习题参考答案
8-3 设系统如图8-30所示,其中继电器非线性特性的a =1。
试用描述函数法分析系统是否会出现自持振荡?如存在,试求出系统自持振荡的振幅和频率的近似值。
解:死区继电特性的描述函数为: 2
)(
14=
)(A
a A
πM A N - (A ≥a )
将M =1,a =1代入上式得:
2
2
)1(
14=
)(
14=
)(A
A
πA a A
πM A N --
当A <a 时,N (A )=0,即-1/N (A )→-∞;当A →∞时,N (A )→0,即-1/N (A )→-∞。
可见-1/N (A )存在极限值。
令F (A )=-1/N (A ),则
232
2
)
1()2(4=)(---
A A A πdA
A dF
由
0=dA
)A (dF ,得2=
A 。
<0----
πA A A πdA
)A (F d A A =)
1(1)2+(4
=2
=
3
2
2
2
2
=
2
2
因此,当2=A 时,负倒描述函数有最大值:
7.51=2
=1
4
=)
(1=
)
(12
=
2
22
=
--
--
--πA A
πA N A N A A max
负倒描述函数曲线如下图所示。
系统线性部分传递函数为:)
2+)(1+(10=
)(s s s s G
图8-30 题8-3图
r c
+
-e
m
0a
1
10(1)(2)
s s s ++
其频率特性为:)
2+)(1+(10
=
)(j ωj ωωj ωj G
幅频特性和相频特性分别为:
)
4+)(1+(10
=
|)(2
2
ωωωωj G |, ω.a r c t a n ωa r c t a n ωφ5090=)(---
令 180=)(-ωφ,即 180=5090=)(----ω.arctan ωarctan ωφ
90
=50+ω.arctan ωarctan →
90
=.501.512
ω
ωarctan
-
解得2=ω,此时7
.61≈35=18
210
=
)
4+)(1+(10
=
|)2(2
2ωωωj G |
因此,当2=ω时,线性部分奈氏曲线ΓG 与负实轴的交点坐标为(-1.67,j 0)。
ΓG 曲线如下图所示。
由图可见,ΓG 曲线和-1/N (A )曲线存在两个交点。
由1
4
=)(1)2+)(1+(10=
)(2
2--
=-A A
πANj ωj ωωj ωj G
解得两组解:2
=1ω,2.21=1A 和2
=
2ω,37.1=2A
根据周期运动稳定性判据,A 1和ω1对应不稳定的周期运动;A 2和ω2对应稳定的周期运动。
当初始条件或外扰动使A <A 1,则系统运动不存在自振荡,稳态误差a e <; 当初始条件或外扰动使A >A 1,则系统运动存在自振荡:
t sin
.)t (e 2731=
()
jY ω()
X ωω=∞
ω=7.61-7.15-
)
(1
A N -。