spss学习系列23.协方差分析
- 格式:doc
- 大小:220.50 KB
- 文档页数:11
协方差分析当X为定类数据,Y为定量数据时,通常使用的是方差分析进行差异研究。
比如性别对于身高的差异。
X的个数为一个时,称之为单因素方差(很多时候也称方差分析);X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。
当X超过1个时,统称为多因素方差,很多时候也统称为方差分析。
如果在方差分析过程中,会有干扰因素;比如“减肥方式”对于“减肥效果”的影响,年龄很可能是影响因素;同样的减肥方式,但不同年龄的群体,减肥效果却不一样;年龄就属于干扰项,因此在分析的时候需要把它纳入到考虑范畴中。
如果方差分析时需要考虑干扰项,此时就称之为协方差分析,而干扰项也称着“协变量”。
通常情况下,协变量是定量数据,比如本例中的年龄,协变量的个数不定,但一般情况下会很少,比如为1个,2个;原因在于协变量并非核心研究项,只是可能干扰到模型所以放到模型中;如果放入过多的协变量,反而会出现‘主次不分’,因此在进行协方差分析时,需要相对谨慎的放入干扰项(即协变量)。
在实验研究中,比如研究者测试某新药对于胆固醇水平是否有疗效;研究者共招募72名被试,分为A和B共两组,每组分别是36名,A组使用新药,B组使用普通药物;在实验前先测试72名被试的胆固醇水平,以及在实验3月之后再次测定胆固醇水平。
为测试新药是否有帮助,因此使用方差分析对比两组被试在3月后胆固醇水平的差异性;如果有差异具体差异是什么,通过差异去研究新药是否有帮助;在这里出现一个干扰项即实验前的胆固醇水平(实验前胆固醇水平肯定会影响实验后的胆固醇水平),因此需要将实验前的胆固醇水平纳入模型中,因此此处需要进行协方差分析。
特别提示:对于协方差分析,X是定类数据,Y是定量数据;协变量为定量数据;如果协变量是定类数据,可考虑将其纳入X即自变量中,也或者将协变量作虚拟变量处理;协变量为干扰项,但并非核心研究项;因此通常情况下只需要将其纳入模型中即可,并不需要过多的分析;协方差分析有一个重要的假设即“平行性检验”,如果交互项(即有*号项)的P值>0.05则说明平行,满足“平行性检验”,可进行分析。
SPSS 协方差分析的基本原理协方差分析是一种用于分析两个或两个以上变量之间关系的统计分析方法。
在SPSS 中,协方差分析用于评估变量之间的相关性以及它们如何随着时间或处理方式的变化而变化。
本文将介绍 SPSS 中协方差分析的基本原理及如何使用 SPSS 进行协方差分析。
协方差分析的基本概念协方差是用于测量两个变量之间线性关系的统计量。
如果两个变量存在正相关性,则它们的协方差将是正数;如果它们存在负相关性,则协方差将是负数;如果它们之间没有相关性,则协方差将是0。
协方差的计算公式如下:Cov(X, Y) = E[(X-E(X))(Y-E(Y))]其中,E(X) 和 E(Y) 分别是变量 X 和 Y 的期望值。
在 SPSS 中,我们可以使用协方差矩阵来查看多个变量之间的协方差。
协方差矩阵是一个 n x n 的矩阵,其中每一个元素是两个变量之间的协方差。
SPSS 中的协方差分析在 SPSS 中,使用协方差分析需要满足以下两个基本条件:1.至少有两个变量。
2.变量之间存在相关性。
首先,我们需要通过数据-选择数据进行数据输入。
然后,在分析-相关-协方差中,我们可以选择要分析的变量。
选择变量后,需要设置参数,如显示形式、统计量以及分析结果。
在选择协方差分析后,SPSS 会生成一个结果表格。
该表格包括了相关性系数、协方差和标准偏差等统计信息。
我们还可以使用 Scatterplot Matrix 查看多个变量之间关系的图像。
该图像显示了变量之间的散点图和相关性系数。
协方差分析是一种简单而有效的统计方法,用于分析多个变量之间的关系。
在SPSS 中,我们可以轻松地进行协方差分析,并获得有关变量之间相关性的详细信息。
本文介绍了协方差分析的基本原理和 SPSS 中的使用方法,希望本文能够帮助您更好地理解协方差分析的概念和应用。
⼿把⼿教你协⽅差分析的SPSS操作!⼀、问题与数据某研究将73例脑卒中患者随机分为现代理疗组(38例)和传统康复疗法组(35例)进⾏康复治疗,采⽤Fugl-Meyer运动功能评分法(FMA)分别记录治疗前、后的运动功能情况,部分数据如下。
试问现代理疗和传统康复治疗对脑卒中患者运动功能的改善是否有差异?⼆、对数据结构的分析整个数据资料涉及2组患者(共73例),每名患者有康复治疗前、后2个数据,测量指标为FMA 评分。
由于治疗前的FMA分数会对治疗后的FMA分数产⽣影响,因此在⽐较现代理疗和传统康复疗法对患者运动功能的改善情况时,应把治疗前的FMA评分作为协变量进⾏调整,若满⾜协⽅差分析的应⽤条件,可采⽤完全随机设计的协⽅差分析。
协⽅差分析可以控制混杂因素对处理效应的影响,提⾼假设检验的效能和分析结果的精度。
其应⽤条件包括:受试对象的观测指标满⾜独⽴性,各处理组的观测指标均来⾃正态分布总体,且⽅差相等。
需要控制的协变量(⾃变量)与观测指标(因变量)之间存在线性关系,且每个组⽤协变量(⾃变量)与观测指标(因变量)进⾏直线回归时,回归直线的斜率相同(即各组回归直线平⾏)。
协⽅差分析相关的假设检验1. 各组回归直线是否平⾏的假设检验;2. 各组观测指标⽅差是否相同的假设检验;3. 协变量(⾃变量)与观测指标(因变量)之间是否存在线性关系的假设检验;4. 控制协变量的影响后,各组调整的均数是否相等的假设检验。
三、SPSS分析⽅法1、数据录⼊SPSS(组别1=现代理疗组,组别2=传统康复疗法组,FMA1=治疗前FMA评分,FMA2=治疗后FMA 评分)2、选择Analyze→General Linear Model→Univariate3、选项设置A. 主对话框设置:选择观测指标(FMA2)到Dependent Variable窗⼝,组别变量到Fixed Factor(s)窗⼝,协变量(FMA1)到Covariate(s)窗⼝。
协方差分析,我见过的最详细SPSS教程!一、问题与数据某研究者拟分析不同强度体育锻炼对血脂浓度的影响,招募45位中年男性分为三组:第一组进行高强度体育锻炼干预(为期6周),第二组进行低强度体育锻炼干预(为期6周),第三组为对照组。
为了判断高/低强度体育锻炼哪个更有助于降低血脂浓度,研究者测量了每位研究对象接受干预前的血脂浓度(pre)和干预后的血脂浓度(post)变量,并收集了分组(group)变量信息。
部分数据如下图:二、对问题的分析研究者想判断不同干预方法(group)对因变量(post)的影响,但是不能忽视协变量(pre)对因变量的作用。
针对这种情况,我们可以使用单因素协方差检验,但需要先满足以下10项假设:假设1:因变量是连续变量。
假设2:自变量存在2个或多个分组。
假设3:协变量是连续变量。
假设4:各研究对象之间具有相互独立的观测值。
假设5:各组内协变量和因变量之间存在线性关系。
假设6:各组间协变量和因变量的回归直线平行。
假设7:各组内因变量的残差近似服从正态分布。
假设8:各组内因变量的残差具有等方差性。
假设9:各组间因变量的残差方差齐。
假设10:因变量没有显著异常值。
经分析,本研究数据满足假设1-4,那么应该如何检验假设5-10,并进行单因素协方差分析呢?三、SPSS操作检验假设5:各组内协变量和因变量之间存在线性关系为检验假设5,我们需要先绘制协变量与因变量在不同组内的散点图。
在主界面点击Graphs→ Chart Builder,在Chart Builder对话框下,从Choose from选择Scatter/Dot。
在中下部的8种图形中,选择“Grouped Scatter”,并拖拽到主对话框中。
将pre、post和group变量分别拖拽到“X-Axis?”、“Y-Axis?”和“Set color”方框内。
在Element Properties框内点击Y-Axis1 (Point1),在Scale Range框内取消对Minimum的勾选。
协方差分析协方差分析(ANCOVA)是一种在统计学中常用的方法,用于比较两个或更多组之间的平均值是否存在差异,并控制一个或多个可能存在的共同协变量的影响。
在本文中,将介绍协方差分析的基本概念、假设前提、模型、效应检验、应用注意事项等内容。
一、基本概念协方差分析是一种结合了方差分析(ANOVA)和回归分析的技术,旨在研究组间的差异是否受到一个或多个协变量的影响。
协变量指的是可能影响因变量的其他变量,例如年龄、性别、智力水平等。
通过控制协变量的影响,协方差分析可以更准确地评估组间的差异是否真正存在。
二、假设前提三、模型在协方差分析中,需要估计各组的平均值(μ)和回归系数(β1和β2),以及误差项的方差(σ²)。
通过比较组间方差与误差项方差的比值,可以判断在控制协变量的情况下,组间的差异是否显著。
四、效应检验另外,还可以通过比较回归系数的显著性来判断协变量对因变量的影响。
如果协变量的回归系数显著,表示协变量对因变量的影响在各组之间存在差异。
五、应用注意事项在进行协方差分析时,需要注意以下几点:1.选择合适的协变量:选择与因变量相关的协变量,以减少协变量的影响,提高结果的准确性。
2.检验协变量与因变量之间的线性关系:协变量与因变量之间的关系应该是线性的,否则可能导致结果不准确。
3.选择适当的控制组:选择适当的控制组进行比较,以保证对组间差异的探究更有说服力。
4.检验方差齐次性假设:协方差分析要求各组之间的方差应该是齐次的,如果方差齐次性假设不成立,可能导致结果失真。
5.做出合理的解释:协方差分析仅能提供组间的比较结果,不能得出因果关系的结论。
因此,在解释结果时应谨慎,并结合实际情况进行合理解释。
总结:协方差分析是一种在统计学中常用的方法,用于比较组间平均值是否存在差异,并控制可能存在的共同协变量的影响。
通过协方差分析,可以更准确地评估组间差异的显著性,并提供合理的解释。
在进行协方差分析时,需要注意选择合适的协变量、检验线性关系、选择适当的控制组、检验方差齐次性假设,并做出合理的解释。
1、分析原理协方差分析是回归分析与方差分析的结合。
在作两组和多组均数之间的比较前,用直线回归的方法找出各组因变量Y与协变量X之间的数量关系,求得在假定X相等时的修正均数,然后用方差分析比较修正均数之间的差别。
要求X与Y的线性关系在各组均成立,且在各组间回归系数近似相等,即回归直线平行;X的取值范围不宜过大,否则修正均数的差值在回归直线的延长线上,不能确定是否仍然满足平行性和线性关系的条件,协方差分析的结论可能不正确。
对于协变量的概念,可以简单的理解为连续变量,多数情况下,连续变量都要作为协变量处理。
2、问题欲了解成年人体重正常者与超重者的血清胆固醇是否不同。
而胆固醇含量与年龄有关,资料见下表。
数据视图:先要分析两组中年龄与胆固醇是否有线性关系,且比较回归洗漱是否相等,比较粗略的做法是画散点图,选择菜单:图形-》旧对话框-》散点图,如图:进入图形对话框:将胆固醇、年龄、组分别选入Y轴、X轴、设置标记:点击确定开始画图可以看出,大致呈直线关系。
更为精确的作法是检验年龄与分组之间是否存在交互作用,即年龄的作用是否受分组的影响。
接下来开始协方差分析,首先进入菜单:进入对话框将胆固醇选入“因变量”,组选入“固定因子”,年龄选入“协变量”,见图:点击右边“模型”按钮,在“构建项”下拉菜单中选择“主效应”,将“组”和“年龄”选入右边框中,然后在“构建项”下拉菜单中选择“交互”,同时选中“组”和“年龄”,一并选入右边的框中,见图:点击“继续”按钮回到“单变量”主界面:单击“选项”按钮,进入如下对话框:选中“描述性分析”:点击“继续”按钮回到主界面,单击“确定”即可。
4、结果解读这是各组的描述性统计分析。
这是主要的统计分析结果,一个典型的方差分析表,解释一下:1、表格的第一行“校正模型”是对模型的检验,零假设是“模型中所有的因素对因变量均无影响”(这里包括分组、年龄及他们的交互作用),其P<0.001,拒绝零假设,说明存在对因变量有影响的因素。
《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。
它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。
在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。
本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。
方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。
方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。
方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。
在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。
在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。
步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。
步骤3:点击“数据视图”页面,输入各组别的数据。
确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。
步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。
步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。
步骤6:点击“选项”按钮,出现选项对话框。
可以选择计算哪些统计量,如均值、标准差、总和平方和等。
步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。
方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。
-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。
-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。
-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。
-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。
协方差分析spss实例在统计学领域,协方差分析是一种重要的技术,它可以用来测量两个变量之间的变化程度。
它广泛应用于研究社会科学、心理学、生物学和其他领域,研究中需要测量变量间的相关性。
本文旨在讨论协方差分析的原理,以及有关应用SPSS软件计算协方差分析的实例。
一、协方差分析的原理协方差分析是一种可以测量两个变量之间的变化程度的统计方法。
协方差是衡量两个变量之间线性关系的度量。
从数学角度讲,协方差可以用来衡量两个变量X和Y的变化程度。
换句话说,如果X变量变化,Y变量也会变化,则可以称之为正相关;反之,则称之为负相关。
协方差可以用来检测变量间的线性相关性,以及变量间的变化关系。
二、应用SPSS软件计算协方差分析的实例1、准备数据首先,准备数据集,将需要测量协方差分析的变量输入到一个文本文件中,文件中的数据符合一定的格式,比如X1,X2,...Xn,每个变量占据一列。
接下来,将文本文件保存为.csv格式的文件。
2、使用SPSS软件计算协方差分析打开SPSS软件,在软件的右上方,找到“数据”选项,点击“导入”,选择数据文件,在“数据文件”选项下,将上一步准备好的数据文件上传;然后,会出现一个“数据文件选择”窗口,选择要测量协方差的变量,点击确定。
3、测量协方差接下来,在SPSS软件的“统计”选项中,找到“描述统计”,点击“协方差”,出现一个“协方差分析”窗口,在“变量”栏中,将要测量的变量输入,点击确定,系统就会根据输入的数据,计算出两个变量之间的协方差,并显示出来。
三、总结本文讲述了协方差分析的原理,以及如何使用SPSS软件计算协方差分析的实例说明。
协方差分析是一种重要的技术,它可以测量变量之间的相关性,应用于各种学科的研究,也是社会科学研究的重要手段。
应用SPSS软件计算协方差分析,可以简化运算,提高工作效率。
利用SPSS做方差分析教程在进行数据分析时,往常我们需要通过样本对总体进行推断。
然而,由于样本的随机性质和误差,我们需要应用一些常见的统计方法,如方差分析。
方差分析是一种用于比较两个或多个平均值的统计方法。
它比基于t检验的两个样本测试更灵活,因为它可以用于比较两个或多个样本数据。
SPSS是一个功能强大的数据分析工具,它提供了丰富的数据分析功能。
在本文中,我们将介绍如何使用SPSS进行方差分析。
软件准备首先,你需要下载并安装SPSS软件。
你可以到IBM的网站上下载SPSS试用版或购买正式版。
数据文件准备在进行方差分析之前,我们需要准备好数据文件。
在本次实验中,我们将使用实验数据。
该数据是每个组的平均次数和标准偏差。
可以使用以下命令查看数据:GROUP Mean Std. Deviation1 15.00 1.7342 21.00 2.1603 19.25 2.6004 23.75 1.7085 23.20 2.078执行分析在SPSS中选择“Analyze”>“General Linear Model”>“Univariate”。
1.选择因素在弹出的“Univariate”窗口中,选择要分析的有影响因素和结果变量,如下所示:Independent Variable: GroupDependent Variable: Mean2.统计在“Univariate”窗口中,选择要执行的统计分析,如下所示:Descriptive StatisticsHomogeneity of Variance TestsANOVA缺省情况下,所有三个分析选项都是选中的。
3.Descriptives在选择“Descriptives”选项后,可以查看每个组的样本数量、平均值和标准偏差。
结果如下所示:Group N Mean Std. Deviation1 4 15.00 1.7342 4 21.00 2.1603 4 19.25 2.6004 4 23.75 1.7085 4 23.20 2.0784.Homogeneity of Variance Tests在选择“Homogeneity of Variance Tests”选项后,可以查看每个组方差是否相等。
spss方差分析步骤2篇SPSS方差分析步骤方差分析(Analysis of Variance, ANOVA)是一种经典的多组比较方法,也是社会科学研究、生物医学研究、经济管理和自然科学等各个领域常用的统计工具。
通过比较不同组之间的均值差异来检验各组是否存在显著差异,从而对研究问题做出合理解释。
方差分析主要用于三个或三个以上的不同组别之间的比较,以研究自变量与因变量之间的关系。
在使用SPSS软件进行方差分析的时候,需要掌握以下步骤。
步骤1:准备数据将需要进行统计分析的数据导入SPSS软件中,点击“变量视图”,添加需要分析的变量,将自变量添加至“因子”栏位,将因变量添加至“依赖”栏位。
步骤2:设置参数点击“分析”-“一般线性模型”-“单因子方差分析”,在“模型”中选择“因子”,在“因子”中选择自变量,将因变量拖入“因变量”的栏位中,最后点击OK。
步骤3:检验方差齐性点击“选项”,在弹出的对话框中选择“描述”-“定义因子的不同水平上样本数不等的比例”,然后点击“继续”和“OK”。
如果不同组别之间样本量接近,则方差齐性检验通过,否则需要采用多元方差分析进行分析。
步骤4:生成结果在SPSS的输出窗口中,可以看到方差分析结果的表格与图表。
在表格中,关注“F”值和“Sig.”(显著性水平)两列。
如果“Sig.”列中的数字小于所设定的显著性水平(通常为0.05),则可以拒绝原假设,认为不同组别之间的均值有显著差异,反之,则接受原假设,认为不同组别之间均值没有显著差异。
步骤5:结果的解释针对方差分析的结果,需要将其解释清楚,涉及到的内容包括方差齐性检验、显著性水平、自变量与因变量之间的关系以及各组之间的均值差异等。
需要注重文字描述和图表展示的结合,对结果的得出做出严谨而科学的解释。
总之,SPSS方差分析步骤包括数据准备、设置参数、检验方差齐性、生成结果和结果的解释。
在进行数据分析的过程中,需要注意数据的准确性和严谨性,采用合适的方法和技巧,对分析结果进行深入的思考和解释,有助于提高研究成果的质量和可信度。
多个自变量对一个因变量的影响(SPSS:协方差分析)协方差分析解决的问题:多个自变量(包括离散变量和连续变量)对一个因变量(连续数据)的影响。
自变量中的连续变量被作为协变量加以'控制'(控制变量)。
协方差分析可以在一定程度上排除非处理因素的影响,从而准确的获得处理因素的影响。
协方差分析的条件:除了满足一般的方差分析条件外,还需要满足'平行性检验'。
协方差分析是回归分析和方差分析的结合。
分析步骤包括两个部分:第一部分:平行性检验自变量与协变量的交互作用:P>0.05,满足平行性检验,满足协方差分析的条件;P≤0.05,不满足平行性检验,不满足协方差分析的条件。
第二部分:协方差分析案例:运动干预对高血压人群的治疗效果研究实验设计(简化版):选取54名高血压人群,随机分为3组,分别采用健身走、广场舞、太极拳运动干预。
干预时间为6个月。
实验前、实验后测试安静收缩压,差值形成变量'血压下降'。
已经统计检验过,实验前三组的收缩压基础值差异没有统计学意义。
统计分析思路说明:考虑到年龄可能对血压下降程度有较大影响,而年龄又是连续变量,因此把'年龄'作为'协变量'。
在研究运动干预对血压影响的同时,排除协变量'年龄'的影响,使结果更加准确。
协方差分析就是用于解决类似问题的。
自变量:锻炼项目协变量:年龄因变量:血压下降。
1 部分数据图12 平行性检验这是协方差分析的一个重要条件。
意思是:各组的协变量与因变量存在线性回归关系且斜率基本相同。
也就是回归直线近似平行。
可以先做一个散点图,初步探索平行性。
图2 散点图根据图2,三条回归直线近似平行,可以尝试采用协方差分析。
SPSS步骤:1)分析-一般线性模型-单变量图32)'血压下降'为'因变量';'组别'为'固定因子';'年龄'为'协变量'。
我们在实际工作中为了准确的分析问题,经常会收集多个变量,这些变量之前存在相互影响,导致分析的因素混杂,影响分析结果,为了获得准确的实验效应,我们需要控制其中一些影响因变量的变量,这些变量称为就协变量,带有协变量的方差分析称为协方差分析。
协方差分析的基本思想为:在进行方差分析之前,先用直线回归找出各组因变量与协变量之间的数量关系,求得假定协变量相等时的因变量值,然后以这个修正后的因变量值做方差分析,这样就有可以做到控制协变量对因变量产生的影响。
协方差分析有如下假定
1.协变量与因变量是线性关系
2.各组残差呈正态分布
3.各组回归线平行,斜率相等
其中第三点为协方差分析特有的平行性假定,实际上就是检验对于不同的自变量,协变量对因变量的影响是否相同,这点很重要,如果该假设不满足的话,说明自变量和协变量之间存在相互影响,而它们又同时都会对因变量产生影响,这样混杂起来我们就无法完全控制协变量了。
如果不满足平行性假定,需要对数据进行处理或者改用其他方法。
协方差分析在一般线性模型的三个子过程中都可以做,本例只有一个因变量,因此选择单变量分析—一般线性模型—单变量。
spss学习系列23.协⽅差分析(⼀)原理⼀、基本思想在实际问题中,有些随机因素是很难⼈为控制的,但它们⼜会对结果产⽣显著影响。
如果忽略这些因素的影响,则有可能得到不正确的结论。
这种影响的变量称为协变量(⼀般是连续变量)。
例如,研究3种不同的教学⽅法的教学效果的好坏。
检查教学效果是通过学⽣的考试成绩来反映的,⽽学⽣现在考试成绩是受到他们⾃⾝知识基础的影响,在考察的时候必须排除这种影响。
协⽅差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从⽽实现对控制变量效果的准确评价。
协⽅差分析要求协变量应是连续数值型,多个协变量间互相独⽴,且与控制变量之间没有交互影响。
前⾯单因素⽅差分析和多因素⽅差分析中的控制变量都是⼀些定性变量,⽽协⽅差分析中既包含了定性变量(控制变量),⼜包含了定量变量(协变量)。
协⽅差分析在扣除协变量的影响后再对修正后的主效应进⾏⽅差分析,是⼀种把直线回归或多元线性回归与⽅差分析结合起来的⽅法,其中的协变量⼀般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组⼀致,即各组协变量与因变量所建⽴的回归直线基本平⾏。
当有⼀个协变量时,称为⼀元协⽅差分析,当有两个或两个以上的协变量时,称为多元协⽅差分析。
⼆、协⽅差分析需要满⾜的条件(1)⾃变量是分类变量,协变量是定距变量,因变量是连续变量;对连续变量或定距变量的协变量的测量不能有误差;(2)协变量与因变量之间的关系是线性关系,可以⽤协变量和因变量的散点图来检验是否违背这⼀假设;协变量的回归系数(即各回归线的斜率)是相同的,且不等于0,即各组的回归线是⾮⽔平的平⾏线。
否则,就有可能犯第⼀类错误,即错误地接受虚⽆假设;(3)⾃变量与协变量相互独⽴,若协⽅差受⾃变量的影响,那么协⽅差分析在检验⾃变量的效应之前对因变量所作的控制调整将是偏倚的,⾃变量对因变量的间接效应就会被排除;(4)各样本来⾃具有相同⽅差σ2的正态分布总体,即要求各组⽅差齐性。
SPSS教程-⽅差分析⽅差分析是⽤于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,⼀是不可控的随机因素,另⼀是研究中施加的对结果形成影响的可控因素。
⽅差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献⼤⼩,从⽽确定可控因素对研究结果影响⼒的⼤⼩。
⽅差分析主要⽤途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作⽤,③分析因素间的交互作⽤,④⽅差齐性检验。
在科学实验中常常要探讨不同实验条件或处理⽅法对实验结果的影响。
通常是⽐较不同实验条件下样本均值间的差异。
例如医学界研究⼏种药物对某种疾病的疗效;农业研究⼟壤、肥料、⽇照时间等因素对某种农作物产量的影响;不同化学药剂对作物害⾍的杀⾍效果等,都可以使⽤⽅差分析⽅法去解决。
⽅差分析原理⽅差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,⽤变量在各组的均值与该组内变量值之偏差平⽅和的总和表⽰,记作SS w,组内⾃由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
⽤变量在各组的均值与总均值之偏差平⽅和表⽰,记作SS b,组间⾃由度df b。
总偏差平⽅和 SS t = SS b + SS w。
组内SS t、组间SS w除以各⾃的⾃由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均⽅MS w和MS b,⼀种情况是处理没有作⽤,即各组样本均来⾃同⼀总体,MS b/MS w≈1。
另⼀种情况是处理确实有作⽤,组间均⽅是由于误差与不同处理共同导致的结果,即各样本来⾃不同总体。
那么,MS b>>MS w(远远⼤于)。
MS b/MS w⽐值构成F分布。
⽤F值与其临界值⽐较,推断各样本是否来⾃相同的总体。
⽅差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即µ1=µ2=µ3=…=µm=µ,m个样本有共同的⽅差。
SPSS基础学习⽅差分析—协⽅差分析
⽬的:在多因素⽅差分析中我们提到“协变量“是⽤来控制其他变量与因⼦变量有关⽽且影响⽅差分析的⽬标变量的其他⼲扰因素。
注意点:在利⽤协⽅差分析的时候,我们先对这个变量进⾏分析。
案例分析:研究三中不同的饲料对⽣猪的体重增加的影响。
(数据来源:薛薇《统计分析与SPSS的应⽤》第六章)
⾸先,先对猪喂养前的体重进⾏⼀个散点图的绘制
步骤:图形—旧对话框—点状/散点
由图可知:变量之间呈现较为相似的线性关系,各斜率基本相同,所以喂养前的体重可以作为协变量参与协⽅差分析。
协⽅差分析的步骤:
分析—⼀般线性模型—单变量
关键截图:
结果分析:
由协变量的图:
没有协变量的图:
分析:我们可以清楚地的看出SL的变差由1238.375减少为227.615,这就是剔除了喂养前体重的影响造成的,因此不能忽略”猪喂养前的体重“。
参考书籍:
薛薇《统计分析与SPSS的应⽤》第五版
吴骏《SPSS统计分析从零开始》。
(一)原理一、基本思想在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。
如果忽略这些因素的影响,则有可能得到不正确的结论。
这种影响的变量称为协变量(一般是连续变量)。
例如,研究3种不同的教学方法的教学效果的好坏。
检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。
协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。
协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。
前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。
协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。
当有一个协变量时,称为一元协方差分析,当有两个或两个以上的协变量时,称为多元协方差分析。
二、协方差分析需要满足的条件(1)自变量是分类变量,协变量是定距变量,因变量是连续变量;对连续变量或定距变量的协变量的测量不能有误差;(2)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;协变量的回归系数(即各回归线的斜率)是相同的,且不等于0,即各组的回归线是非水平的平行线。
否则,就有可能犯第一类错误,即错误地接受虚无假设;(3) 自变量与协变量相互独立,若协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除;(4)各样本来自具有相同方差σ2的正态分布总体,即要求各组方差齐性。
三、基本理论1. 观测值=均值+分组变量影响+协变量影响+随机误差. 即()ij i ij ij y u t x x βε=++-+ (1)其中,X 为所有协变量的平均值。
注:在方差分析中,协变量影响是包含在随机误差中的,在协方差分析中需要分离出来。
用协变量进行修正,得到修正后的y ij (adj)为(adj)()ij ij ij i ij y y x x u t βε=--=++就可以对y ij (adj)做方差分析了。
关键问题是求出回归系数β.2. 总离差=分组变量离差+协变量离差+随机误差,(1)计算总离差平方和时,记11()()knxy ij ij i j T x x y y ===--∑∑211()k nxx ij i j T x x ===-∑∑总离差平方和:211()knyy ij i j T y y ===-∑∑最终要检验分组自变量对因变量有无显著作用。
原假设H 0:无显著作用。
假设检验是在H 0为真条件下进行,可认为t i =0,则()ij T ij ij y u x x βε=+-+按最小二乘法原理线性回归可得到β的估计值ˆxyT xxT T β=记修正的总离差平方和(残差平方和)为T yy(adj),则22(adj)ˆT xyyy yy xx yyxxT T T T T T β=-=-,自由度为n-2注:2ˆT xx T β为回归平方和,若ˆ0Tβ=(回归线为水平线),表示协变量x 对y 无作用,用方差分析就可以解决了。
(2)计算组内离差平方和时,记11()()knxy ij i ij i i j E x x y y ===--∑∑211()k nxx ij i i j E x x ===-∑∑组内总离差平方和:211()k nyy ij i i j E y y ===-∑∑根据协方差分析的基本假设:各组内回归系数相等(做协方差分析时需要检验这一点),得到组内回归系数βw 的估计值ˆxyw xxE E β=记修正的组内总离差平方和(组内残差平方和)为E yy(adj), 则22(adj)ˆxyyy yy w xx yyxxE E E E E E β=-=-, 自由度为n-k-1其中,2ˆw xx E β为组内回归平方和,当1ˆˆw wk ββ==L 时,组内总离差平方和认为完全是由随机因素引起的,E yy(adj)就是随机为误差。
这里的ˆw β是1ˆˆ,,w wkββL 的加权平均值。
(3)计算分组变量离差平方和B yy(adj),它反映的是各个水平之间的差异。
2(adj)(adj)(adj)(adj)ˆT yy yy yy yy xx yy B T E T T E β=-=--即,分组变量离差=总离差-协变量离差-随机误差。
于是,就可以进行组间无差异检验了:(adj)(adj)/1/1yy yy B k F E n k -=--3. 因此,在做协方差分析前,需要依次做两个假设检验: (1)协变量对因变量的影响对与各组来说都是相同的,即各组回归系数相等:1ˆˆˆ:w wk wβββ===L ; 步骤:① 先按回归系数相等和不相等分别表示模型()ij i w ij ij y u t x x βε=++-+ ()ij i wi ij ij y u t x x βε=++-+并计算出误差平方和2(adj)yy yy w xx E E E β=-211i kyy wi xx i S E E β==-∑其中,1i kyy yy i E E ==∑.② 计算F 值(adj)11/1/2yy E S k F S n k--=-若F 值小于临界值F α,则说明各组回归系数无显著差异(相等)。
(2)这些相等的回归系数ˆ0w β≠. 即采用一元线性回归的显著性检验,2(adj)/1=//(1)w xx yy E F E n k β=--回归平方和/自由度残差平方和自由度 2222/(1)(/)/(1)xy xxxy yy xyxx yy xx xyE E E n k E E E n k E E E--==----4. 协方差分析的步骤(1)检验数据是否满足假设条件:正态分布性、方差齐性、线性相关性、平行性;(2)检验效应因子的显著性; (3)估计校正的组均值;(4)检验校正的组均值之间的差异。
(二)实例研究分别接受了3种不同的教学方法的3组学生,在数学成绩上是否有显著差异。
数据文件入下:先不考虑数学入学成绩,只以“教学方法”为分组变量,“后测成绩”为因变量进行单因素方差分析,得到结果:单因素方差分析后测成绩平方和df均方F显著性组间1.000组内93总数94P值<, 结果表明,两种教学方法有非常显著的差异。
但是,后测成绩肯定会受到前测成绩(连续型)的影响,假定前测成绩与教学方法(即组别,是控制变量)不存在交互影响。
因此,将后测成绩作为因变量;教学方法作为控制变量;前测成绩作为协变量进行协方差分析。
1. 平行性假定检验协方差分析的假定:①各组协变量与因变量的关系是线性的;②各组残差正态;③各组回归斜率相等(各组回归线平行)。
注意:协方差分析一般还要求各分组间协变量的观察值范围不宜相差太大。
本例先观察前测成绩与后测成绩的回归线是否平行(即协变量前测成绩对因变量后测成绩的影响在分别采用两种教学方法的班级是否相同)。
【图形】——【旧对话框】——【散点/点状】,打开“散点图/点图”窗口,选择“简单分布”,点【定义】打开“简单散点图”窗口;将“后测成绩”选入【Y轴】,“前测成绩”选入【X轴】,“教学方法”选入【面板依据:行】;点【确定】得到散点图结果,双击散点图打开“图表编辑器”,点“添加合计拟合线”按钮,再关闭“图表编辑器”:可见两组的直线趋势的斜率比较接近(平行),基本符合协方差假定。
2. 组内回归斜率相同检验(1)【分析】——【一般线性模型】——【单变量】,打开“单变量”窗口;将“后测测验”选入【因变量】,“教学方法”选入【固定因子】,“前测成绩”选入【协变量】;(2)点【模型】打开“模型”子窗口,要进行回归斜率相同的检验,故【指定模型】选“设定”;将【因子与协变量】框中的“教学方法”“前测成绩”先分别选中、再同时选中选入【模型】框;点【继续】;注:“教学方法*前测成绩”进行交互效应分析,即检验回归线斜率相等的假设。
点【确定】得到主体间效应的检验因变量: 后测成绩源III 型平方和df均方F Sig.校正模型3.000截距1.000教学方法1.988.323前测成绩1.000教学方法 * 前测成绩1.243.623误差91总计95校正的总计94a. R 方 = .308(调整 R 方 = .285)“教学方法*前测成绩”交互作用检验的P值=>,接受原假设,即交互作用无统计学意义。
因此,可认为两组斜率相同,符合协方差分析的假定。
3. 协方差分析(1)同2.的(1);(2)点【模型】,打开“模型”子窗口,【指定模型】选“全因子”;注:【全因子】表示模型包含全部因素变量和协变量的主效应、因素变量间的交互效应,但不包括与协变量的交互效应。
本例中只有1个因素变量和1个协变量,没有交互效应,计算结果只会有主效应。
(3)点【选项】,打开“选项”子窗口,将“教学方法”选入【显示均值】框,将输出不同教学方法的后测成绩调整后(考虑了协变量效应之后)的边缘平均值;勾选“比较主效应”,【置信区间调节】选“LSD(无)”,表示对“教学方法”各组的后测成绩平均值进行组间比较;【输出】选项,勾选“描述统计”、“(误差)方差齐性检验”、“残差图”;点【继续】;点【确定】得到各组因变量误差的方差齐性检验P值=>, 故接受原假设,即各组因变量误差的方差相同。
这说明下面的方差分析结果是有效的。
主体间效应的检验因变量: 后测成绩源III 型平方和df均方F Sig.校正模型2.000截距1.000前测成绩1.000教学方法1.033误差92总计95校正的总计94a. R 方 = .306(调整 R 方 = .291)考虑了协变量“前测成绩”之后的方差分析结果,前测成绩的P 值<, 说明“前测成绩”对“后测成绩产生了显著影响;“教学方法”的P值=<, 说明“教学方法”对“后测成绩”也产生了显著的影响。
注1:如果有多个教学方法的分组,要进一步判断各分组的差异,可查看后面结果中的“成对比较”结果。
注2:与不考虑协变量的单因素方差分析模型做对比:单因素方差分析后测成绩平方和df均方F显著性组间1.000组内93总数94发现教学方法的显著性比原来小了;需要总方差都是,单因素方差分析模型的组间差异解释了, 而考虑了协变量的协方差分析模型解释的方差增大到,这说明协方差分析模型能更准确地检验因素变量对因变量的作用。