第6章 SPSS的方差分析
- 格式:ppt
- 大小:992.50 KB
- 文档页数:86
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第6章SPSS的方差分析1、入户推销有五种方法。
某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。
从应聘人员中尚无推销经验的人员中随机挑选一部分人,并随机地将他们分为五个组,每组用一种推销方法培训。
一段时期后得到他们在一个月内的推销额,如下表所示:第一组20.016.817.921.223.926.822.4第二组24.921.322.630.229.922.520.7第三组16.020.117.320.922.026.820.8第四组17.518.220.217.719.118.416.5第五组25.226.226.929.330.429.728.21)请利用单因素方差分析方法分析这五种推销方式是否存在显著差异。
2)绘制各组的均值对比图,并利用LSD方法进行多重比较检验。
(1)分析比较均值单因素ANOVA因变量:销售额;因子:组别确定。
ANOVA销售额平方和df均方F显著性组之间405.5344101.38411.276.000组内269.737308.991总计675.27134概率P-值接近于0,应拒绝原假设,认为5种推销方法有显著差异。
(2)均值图:在上面步骤基础上,点选项均值图;事后多重比较LSD多重比较因变量:销售额LSD(L)95%置信区间平均差(I)组别(J)组别(I-J)标准错误显著性下限值上限第一组第二组-3.30000 *1.60279.048-6.5733-.0267第三组.728571.60279.653-2.54484.0019第四组3.057141.60279.066-.21626.3305第五组-6.70000 *1.60279.000-9.9733-3.4267*1.60279.048.02676.5733第二组第一组3.30000第三组4.02857 *1.60279.018.75527.3019*1.60279.0003.08389.6305第四组6.35714*第五组-3.400001.60279.042-6.6733-.1267第三组第一组-.728571.60279.653-4.00192.5448第二组-4.02857 *1.60279.018-7.3019-.7552第四组2.328571.60279.157-.94485.6019第五组-7.42857 *1.60279.000-10.7019-4.1552第四组第一组-3.057141.60279.066-6.3305.2162第二组-6.35714 *1.60279.000-9.6305-3.0838第三组-2.328571.60279.157-5.6019.9448第五组-9.75714 *1.60279.000-13.0305-6.4838*1.60279.0003.42679.9733第五组第一组6.70000*1.60279.042.12676.6733第二组3.40000*1.60279.0004.155210.7019第三组7.42857*1.60279.0006.483813.0305第四组9.75714*.均值差的显著性水平为0.05。
《统计分析与SPSS的应用(第五版)》课后练习答案(第6章)————————————————————————————————作者:————————————————————————————————日期:《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第6章SPSS的方差分析1、入户推销有五种方法。
某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。
从应聘人员中尚无推销经验的人员中随机挑选一部分人,并随机地将他们分为五个组,每组用一种推销方法培训。
一段时期后得到他们在一个月内的推销额,如下表所示:第一组20.0 16.8 17.9 21.2 23.9 26.8 22.4第二组24.9 21.3 22.6 30.2 29.9 22.5 20.7第三组16.0 20.1 17.3 20.9 22.0 26.8 20.8第四组17.5 18.2 20.2 17.7 19.1 18.4 16.5第五组25.2 26.2 26.9 29.3 30.4 29.7 28.21)请利用单因素方差分析方法分析这五种推销方式是否存在显著差异。
2)绘制各组的均值对比图,并利用LSD方法进行多重比较检验。
(1)分析→比较均值→单因素ANOV A→因变量:销售额;因子:组别→确定。
ANOVA销售额平方和df 均方 F 显著性组之间405.534 4 101.384 11.276 .000组内269.737 30 8.991总计675.271 34概率P-值接近于0,应拒绝原假设,认为5种推销方法有显著差异。
(2)均值图:在上面步骤基础上,点选项→均值图;事后多重比较→LSD多重比较因变量: 销售额LSD(L)(I) 组别(J) 组别平均差(I-J) 标准错误显著性95% 置信区间下限值上限第一组第二组-3.30000* 1.60279 .048 -6.5733 -.0267 第三组.72857 1.60279 .653 -2.5448 4.0019第四组 3.05714 1.60279 .066 -.2162 6.3305第五组-6.70000* 1.60279 .000 -9.9733 -3.4267 第二组第一组 3.30000* 1.60279 .048 .0267 6.5733 第三组 4.02857* 1.60279 .018 .7552 7.3019第四组 6.35714* 1.60279 .000 3.0838 9.6305第五组-3.40000* 1.60279 .042 -6.6733 -.1267 第三组第一组-.72857 1.60279 .653 -4.0019 2.5448 第二组-4.02857* 1.60279 .018 -7.3019 -.7552第四组 2.32857 1.60279 .157 -.9448 5.6019第五组-7.42857* 1.60279 .000 -10.7019 -4.1552 第四组第一组-3.05714 1.60279 .066 -6.3305 .2162第二组-6.35714* 1.60279 .000 -9.6305 -3.0838第三组-2.32857 1.60279 .157 -5.6019 .9448第五组-9.75714* 1.60279 .000 -13.0305 -6.4838第五组第一组 6.70000* 1.60279 .000 3.4267 9.9733 第二组 3.40000* 1.60279 .042 .1267 6.6733第三组7.42857* 1.60279 .000 4.1552 10.7019第四组9.75714* 1.60279 .000 6.4838 13.0305*. 均值差的显著性水平为 0.05。
第六章作业题目6-4一、实验方法:单因素方差分析二、实验步骤:1、analyze→compare means→one-way ANOV A2、对话框中将变量将肺活量变量添加到dependent list中,组别添加到factor3、单击options按钮,选中homogeneity按钮4、单击post hoc按钮选择比较方法lsd 和s-n-k,单击continu确定5、单击contrasts按钮选择polynomial,在下拉菜单中选择linear。
设置完毕,计算结果三、实验结果表一肺活量Sum of Squares df MeanSquareF Sig.Betwee n Groups (Combined) 11.074 2 5.537 110.130 .000 LinearTermUnweighted 10.880 1 10.880 216.400 .000Weighted 10.960 1 10.960 217.983 .000Deviation .114 1 .114 2.276 .143Within Groups 1.307 26 .050Total 12.381 28从下面表一可以看出方差检验的F值为110.130,相伴概率为0.000.相伴概率小于0.05,则表示拒绝零假设。
则三组中有两组和另一组差别很大。
另外可以看出三组的离差平方和为12.381,控制变量造成的为11.074,随机变量造成的1.307,组间平方和中,不能线性解释的为0.114。
表二肺活量(I) 组别(J) 组别MeanDifference (I-J)Std. Error Sig. 95% Confidence IntervalLower Bound Upper BoundLSD 0 1 -.62556*.10303 .000 -.8373 -.41382 -1.51556*.10303 .000 -1.7273 -1.30381 0 .62556*.10303 .000 .4138 .83732 -.89000*.10028 .000 -1.0961 -.68392 0 1.51556*.10303 .000 1.3038 1.72731 .89000*.10028 .000 .6839 1.0961从上表可以看出,这是lsd比较的结果,可以看出三个组之间的相伴概率都小于显著性水平,说明这三个组之间都存在显著性差别。
第六章方差分析一实验目的1.理解方差分析的概念、原理及作用;2.掌握用 SPSS 进行单因素、双因素及协方差分析的方法;3.结合参考资料了解方差分析的其它方法及作用。
二方差分析的原理方差分析的基本原理是认为不同处理组的均值间的差别基本来源有两个:(1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作w SS ,组内自由度w df ;(2)实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差的总平方和表示,记作b SS ,组间自由度b df 。
三实验过程1. 某农场为了比较4种不同品种的小麦产量的差异,选择土壤条件基本相同的土地,分成16块,将每一个品种在4块试验田上试种,测得小表亩产量(kg)的数据如表6.17所示(数据文件为data6-4.sav),试问不同品种的小麦的平均产量在显著性水平0.05和0.01下有无显著性差异。
(数据来源:《SPSS实用统计分析》郝黎仁,中国水利水电出版社)表6.17实验步骤:第1步分析:由于有一个因素(小麦),而且是4种饲料。
故不能用独立样本T 检验(仅适用两组数据),这里可用单因素方差分析;第2步数据的组织:分成两列,一列是试验田的产量(output),另一列是小麦品种(breed)(A、B、C、D);第3步方差相等的齐性检验:由于方差分析的前提是各个水平下(这里是不同品种的小麦产量)的总体服从方差相等的正态分布。
其中正态分布的要求并不是很严格,但对于方差相等的要求是比较严格的。
因此必须对方差相等的前提进行检验。
从SPSS的数据管理窗口中选择analyze—compare means—One-Way ANOVA,将小麦产量(output)选入dependent list框中,将品种(breed)选入factor框中,点开Options,选中Homogeneity of variance test(方差齐性检验),点开post hoc multiple comparisons,将significance level的值在两次实验时分别设置为0.01和0.05。
SPSS数据分析与应用第6章实训案例本章介绍《SPSS数据分析与应用第6章实训案例》的背景和目的。
这个案例是为了帮助读者更好地理解和应用SPSS数据分析工具而设计的。
在本章中,我们将介绍一个具体的实训案例,包括案例的背景、数据的来源以及需要进行的数据分析任务。
通过这个案例,读者将研究如何使用SPSS软件进行数据分析,并掌握常用的数据分析方法和技巧。
在这一章节中,我们将详细介绍实际操作SPSS软件的步骤,包括数据导入、数据清洗、变量设置、数据分析等。
每个步骤都会给出详细的说明和示例,以帮助读者顺利完成实训案例。
在这一章节中,我们将展示实际进行数据分析后得到的结果,并进行对结果的解读和分析。
读者将通过实验结果的展示和分析,更好地理解数据分析方法和结果的含义。
在这个章节中,我们将对整个实训案例进行总结,并给出一些拓展的内容,包括其他可能的数据分析方法和应用场景。
读者将通过这个章节更好地巩固所学的知识,并拓展自己的数据分析能力。
这个章节将给出实训案例的参考答案,供读者参考和对比。
读者可以通过对比答案,进一步检查自己的数据分析能力和理解程度。
通过研究本章内容,读者将能够熟练使用SPSS软件进行数据分析,掌握常用的数据分析方法和技巧,并能够将数据分析应用于实际问题中。
本章介绍了《SPSS数据分析与应用第6章实训案例》中涉及的数据集和问题。
以下是详细描述:该案例涉及的数据集为某医院的病人信息和医疗费用数据集。
主要问题是研究不同因素对病人的医疗费用的影响。
在数据集中,每个病人都有一些基本信息,如年龄、性别、是否吸烟等。
此外,还有每个病人的医疗费用数据,包括住院费、手术费、药费等。
研究问题主要包括以下几个方面:病人的基本信息对医疗费用的影响:通过分析年龄、性别、是否吸烟等因素与医疗费用之间的关系,研究这些基本信息对医疗费用的影响程度。
不同费用项之间的关系:通过探究住院费、手术费、药费等不同费用项之间的相关性,了解各项费用之间的关系,为进一步分析提供依据。