spss 协方差分析 的 基本原理
- 格式:doc
- 大小:2.41 MB
- 文档页数:11
方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。
那么,MS b>>MS w(远远大于)。
MS b/MS w比值构成F分布。
用F值与其临界值比较,推断各样本是否来自相同的总体。
方差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即μ1=μ2=μ3=…=μm=μ,m个样本有共同的方差。
SPSS 协方差分析的基本原理协方差分析是一种用于分析两个或两个以上变量之间关系的统计分析方法。
在SPSS 中,协方差分析用于评估变量之间的相关性以及它们如何随着时间或处理方式的变化而变化。
本文将介绍 SPSS 中协方差分析的基本原理及如何使用 SPSS 进行协方差分析。
协方差分析的基本概念协方差是用于测量两个变量之间线性关系的统计量。
如果两个变量存在正相关性,则它们的协方差将是正数;如果它们存在负相关性,则协方差将是负数;如果它们之间没有相关性,则协方差将是0。
协方差的计算公式如下:Cov(X, Y) = E[(X-E(X))(Y-E(Y))]其中,E(X) 和 E(Y) 分别是变量 X 和 Y 的期望值。
在 SPSS 中,我们可以使用协方差矩阵来查看多个变量之间的协方差。
协方差矩阵是一个 n x n 的矩阵,其中每一个元素是两个变量之间的协方差。
SPSS 中的协方差分析在 SPSS 中,使用协方差分析需要满足以下两个基本条件:1.至少有两个变量。
2.变量之间存在相关性。
首先,我们需要通过数据-选择数据进行数据输入。
然后,在分析-相关-协方差中,我们可以选择要分析的变量。
选择变量后,需要设置参数,如显示形式、统计量以及分析结果。
在选择协方差分析后,SPSS 会生成一个结果表格。
该表格包括了相关性系数、协方差和标准偏差等统计信息。
我们还可以使用 Scatterplot Matrix 查看多个变量之间关系的图像。
该图像显示了变量之间的散点图和相关性系数。
协方差分析是一种简单而有效的统计方法,用于分析多个变量之间的关系。
在SPSS 中,我们可以轻松地进行协方差分析,并获得有关变量之间相关性的详细信息。
本文介绍了协方差分析的基本原理和 SPSS 中的使用方法,希望本文能够帮助您更好地理解协方差分析的概念和应用。
146 例说
SPSS 统计分析 6.5 协方差分析
6.5.1 协方差分析的基本原理
方差分析时,除了要分析的因素变量外,其他的因素条件都要求一致或者尽可能地保持不变,然而实际中这一点非常难控制。
例如,考虑药物对患者某个生化指标变化的影响,比较实验组与对照组的该指标变化均值是否有显著性差异,以确定药物的有效性;但现实中,患者病程的长短、年龄以及原指标水平等混杂因素对疗效都有影响。
在有这些混杂因素的情况下处理因素对指标的影响是否显著就有必要使用协方差分析。
协方差分析是将方差分析和回归分析结合起来的一种统计方法。
它通过回归分析剔除其他混杂因素对指标的影响,再通过方差分析来研究处理因素对指标影响的显著性。
在协方差分析中,这些混杂因素被称为协变量。
协变量要求是连续型的数值变量,且多个协变量之间相互独立并与因素没有交互影响。
6.5.2 协方差分析的基本操作
下面以SPSS 15为例,介绍协方差分析的基本操作流程。
首先单击“Analyze ”下“General Linear Model ”中的“Univariate ”,指定因素变量到“Dependent ”框、影响因素到“
Fixed Factor(s)”
框和协变量到“
Covariate(s)”框;然后单击“Model ”按钮,定义方差分析的模型;再单击“Post Hoc ”按钮,定义各因素多重比较的检验方法。
具体如图6-19所示。
图6-19 协方差分析基本操作流程图
6.5.3 协方差分析的应用举例。
[转载]SPSS学习笔记之——协方差分析(2012-10-07 12:05:28)1、分析原理协方差分析是回归分析与方差分析的结合。
在作两组和多组均数之间的比较前,用直线回归的方法找出各组因变量Y与协变量X之间的数量关系,求得在假定X相等时的修正均数,然后用方差分析比较修正均数之间的差别。
要求X与Y的线性关系在各组均成立,且在各组间回归系数近似相等,即回归直线平行;X的取值范围不宜过大,否则修正均数的差值在回归直线的延长线上,不能确定是否仍然满足平行性和线性关系的条件,协方差分析的结论可能不正确。
对于协变量的概念,可以简单的理解为连续变量,多数情况下,连续变量都要作为协变量处理。
2、问题欲了解成年人体重正常者与超重者的血清胆固醇是否不同。
而胆固醇含量与年龄有关,资料见下表。
正常组超重组年龄胆固醇年龄胆固醇48 3.5 58 7.333 4.6 41 4.751 5.8 71 8.443 5.8 76 8.844 4.9 49 5.163 8.7 33 4.949 3.6 54 6.742 5.5 65 6.440 4.9 39 6.047 5.1 52 7.541 4.1 45 6.441 4.6 58 6.856 5.1 67 9.2 3、统计分析(1) 建立数据文件变量视图:建立3个变量数据视图:先要分析两组中年龄与胆固醇是否有线性关系,且比较回归洗漱是否相等,比较粗略的做法是画散点图,选择菜单:图形 -》旧对话框 -》散点图,如图:进入图形对话框:将胆固醇、年龄、组分别选入Y轴、X轴、设置标记:点击确定开始画图可以看出,大致呈直线关系。
更为精确的作法是检验年龄与分组之间是否存在交互作用,即年龄的作用是否受分组的影响。
接下来开始协方差分析,首先进入菜单:进入对话框将胆固醇选入“因变量”,组选入“固定因子”,年龄选入“协变量”,见图:点击右边“模型”按钮,在“构建项”下拉菜单中选择“主效应”,将“组”和“年龄”选入右边框中,然后在“构建项”下拉菜单中选择“交互”,同时选中“组”和“年龄”,一并选入右边的框中,见图:点击“继续”按钮回到“单变量”主界面:单击“选项”按钮,进入如下对话框:选中“描述性分析”:点击“继续”按钮回到主界面,单击“确定”即可。
协方差分析的基本原理1.协方差分析的提出无论是单因素方差分析还是多因素方差分析,它们都有一些人为可以控制的控制变量.在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响.如果忽略这些因素的影响,则有可能得到不正确的结论。
例如,研究3种不同的教学方法的教学效果的好坏.检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。
又比如,考查受教育程度对个人工资是否有显著影响,这时必须考虑工作年限因素。
一般情况下,工作年限越长,工资就越高。
在研究此问题时必须排除工作年限因素的影响,才能得出正确的结论。
再如,如果要了解接受不同处理的小白鼠经过一段时间饲养后体重增加量有无差别,已知体重的增加和小白鼠的进食量有关,接受不同处理的小白鼠其进食量可能不同,这时为了控制进食量对体重增加的影响,可在统计阶段利用协方差分析(Analysis of Covariance),通过统计模型的校正使得各组在“进食量”这个变量的影响上相等,即将进食量作为协变量,然后分析不同处理对小白鼠体重增加量的影响.为了更加准确地控制变量不同水平对结果的影响,应该尽量排除其它在实验设计阶段难以控制或者是无法严格控制的因素对分析结果的影响。
利用协方差分析就可以完成这样的功能。
协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。
协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。
前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。
协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行.当有一个协变量时,称为一元协方差分析,当有两个或两个以上的协变量时,称为多元协方差分析.以下将以一元协方差分析为例,讲述协方差分析的基本思想和步骤。
方差分析(多因素,协方差)一、方法名称单因素二、定义(方法及结果)三、用途四、实现过程1、格式数据整理2、提交显示3、分析变量处理:自变量、因变量ANOVA检验:显示表,是否齐次1 方差分析法方差分析是一种是一种假设检验,它把观测总变异的平方和自由度分解为对应不同变异来源的平方和自由度,将某种控制性因素所导致的系统性误差和其他随机性误差进行对比,从而判断各组样本之间是否存在显著性差异,以分析该因素是否对总体存在显著性影响。
2 样本数据要求方差分析法采用离差平法和对变差进行度量,从总离差平方分解出可追溯到指定来源的部分离差平方和。
方差分析要求样本满足以下条件:2.1 可比性样本数据各组均数本身必须具有可比性,这是方差分析的前提。
2.2 正态性方差分析要求样本来源于正态分布总体,偏态分布资料不适用方差分析。
对偏态分布的资源要考虑先进行对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变换为正态或接近正态后再进行方差分析。
2.3 方差齐性。
方差分析要求各组间具有相同的方差,满足方差齐性。
3 单因素分析法实验操作单因素分析用于分析单一控制变量影响下的多组样本的均值是否存在显著性差异。
单因素分析法的原理,单因素方差分析也称为一维方差分析,用于分析单个控制因素取不同水平时因变量的均值是否存在显著差异。
单因素方差分析基于各观测量来自于相互独立的正态样本和控制变量不同水平的分组之间的方差相等的假设。
单因素方差分析将所有的方差划分为可以由该因素解释的系统性偏差部分和无法由该因素解释的随机性偏差,如果系统性偏差明显超过随机性偏差,则认为该控制因素取不同水平时因变量的均值存在显著差异。
3.1 实验数据描述某农业大学对使用不同肥料的实验数据对比。
产量(千克/亩产)施肥类型864 普通钾肥875 普通钾肥891 普通钾肥873 普通钾肥883 普通钾肥859 普通钾肥921 控释肥944 控释肥986 控释肥929 控释肥973 控释肥963 控释肥962 复合肥941 复合肥985 复合肥974 复合肥977 复合肥在SPSS的变量视图中建立变量“产量”和“施肥类型”,分别表示实验田产量和实验田的施肥类型。
协方差分析spss实例在统计学领域,协方差分析是一种重要的技术,它可以用来测量两个变量之间的变化程度。
它广泛应用于研究社会科学、心理学、生物学和其他领域,研究中需要测量变量间的相关性。
本文旨在讨论协方差分析的原理,以及有关应用SPSS软件计算协方差分析的实例。
一、协方差分析的原理协方差分析是一种可以测量两个变量之间的变化程度的统计方法。
协方差是衡量两个变量之间线性关系的度量。
从数学角度讲,协方差可以用来衡量两个变量X和Y的变化程度。
换句话说,如果X变量变化,Y变量也会变化,则可以称之为正相关;反之,则称之为负相关。
协方差可以用来检测变量间的线性相关性,以及变量间的变化关系。
二、应用SPSS软件计算协方差分析的实例1、准备数据首先,准备数据集,将需要测量协方差分析的变量输入到一个文本文件中,文件中的数据符合一定的格式,比如X1,X2,...Xn,每个变量占据一列。
接下来,将文本文件保存为.csv格式的文件。
2、使用SPSS软件计算协方差分析打开SPSS软件,在软件的右上方,找到“数据”选项,点击“导入”,选择数据文件,在“数据文件”选项下,将上一步准备好的数据文件上传;然后,会出现一个“数据文件选择”窗口,选择要测量协方差的变量,点击确定。
3、测量协方差接下来,在SPSS软件的“统计”选项中,找到“描述统计”,点击“协方差”,出现一个“协方差分析”窗口,在“变量”栏中,将要测量的变量输入,点击确定,系统就会根据输入的数据,计算出两个变量之间的协方差,并显示出来。
三、总结本文讲述了协方差分析的原理,以及如何使用SPSS软件计算协方差分析的实例说明。
协方差分析是一种重要的技术,它可以测量变量之间的相关性,应用于各种学科的研究,也是社会科学研究的重要手段。
应用SPSS软件计算协方差分析,可以简化运算,提高工作效率。
第六章方差分析一实验目的1.理解方差分析的概念、原理及作用;2.掌握用 SPSS 进行单因素、双因素及协方差分析的方法;3.结合参考资料了解方差分析的其它方法及作用。
二方差分析的原理方差分析的基本原理是认为不同处理组的均值间的差别基本来源有两个:(1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作w SS ,组内自由度w df ;(2)实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差的总平方和表示,记作b SS ,组间自由度b df 。
三实验过程1. 某农场为了比较4种不同品种的小麦产量的差异,选择土壤条件基本相同的土地,分成16块,将每一个品种在4块试验田上试种,测得小表亩产量(kg)的数据如表6.17所示(数据文件为data6-4.sav),试问不同品种的小麦的平均产量在显著性水平0.05和0.01下有无显著性差异。
(数据来源:《SPSS实用统计分析》郝黎仁,中国水利水电出版社)表6.17实验步骤:第1步分析:由于有一个因素(小麦),而且是4种饲料。
故不能用独立样本T 检验(仅适用两组数据),这里可用单因素方差分析;第2步数据的组织:分成两列,一列是试验田的产量(output),另一列是小麦品种(breed)(A、B、C、D);第3步方差相等的齐性检验:由于方差分析的前提是各个水平下(这里是不同品种的小麦产量)的总体服从方差相等的正态分布。
其中正态分布的要求并不是很严格,但对于方差相等的要求是比较严格的。
因此必须对方差相等的前提进行检验。
从SPSS的数据管理窗口中选择analyze—compare means—One-Way ANOVA,将小麦产量(output)选入dependent list框中,将品种(breed)选入factor框中,点开Options,选中Homogeneity of variance test(方差齐性检验),点开post hoc multiple comparisons,将significance level的值在两次实验时分别设置为0.01和0.05。
我们在实际工作中为了准确的分析问题,经常会收集多个变量,这些变量之前存在相互影响,导致分析的因素混杂,影响分析结果,为了获得准确的实验效应,我们需要控制其中一些影响因变量的变量,这些变量称为就协变量,带有协变量的方差分析称为协方差分析。
协方差分析的基本思想为:在进行方差分析之前,先用直线回归找出各组因变量与协变量之间的数量关系,求得假定协变量相等时的因变量值,然后以这个修正后的因变量值做方差分析,这样就有可以做到控制协变量对因变量产生的影响。
协方差分析有如下假定
1.协变量与因变量是线性关系
2.各组残差呈正态分布
3.各组回归线平行,斜率相等
其中第三点为协方差分析特有的平行性假定,实际上就是检验对于不同的自变量,协变量对因变量的影响是否相同,这点很重要,如果该假设不满足的话,说明自变量和协变量之间存在相互影响,而它们又同时都会对因变量产生影响,这样混杂起来我们就无法完全控制协变量了。
如果不满足平行性假定,需要对数据进行处理或者改用其他方法。
协方差分析在一般线性模型的三个子过程中都可以做,本例只有一个因变量,因此选择单变量分析—一般线性模型—单变量。
协方差分析与SPSS协方差分析(analysis of covariance)是建立在方差分析与回归分析基础之上的一种统计分析方法。
具体是指探讨当协变量对因变量的影响被提出之后,自变量对因变量是否存在显著的影响的方法。
其中,协变量是指会对因变量产生影响,但却不是研究者所关心的非自变量的影响变量。
由于协方差分析是建立在方差分析基础之上的,所以一定要符合方差分析的前提,除此之外,还要符合如下假设:1、协变量与因变量之间成线性关系。
2、组内回归系数齐性,即各组内协变量对因变量的回归直线斜率相等。
3、协变量没有测量误差。
4、随机分配且实验处理为固定效果。
协方差分析的SPSS程序:将数据读入编辑视窗→检验组内回归系数齐性的假设→若组内回归系数齐性假设成立,则进行协方差分析。
检验组内回归齐性的流程:Analyze → General Liner Model(一般线性模型) → Univariate(单变量) →将因变量移入Dependent variable方格中→将自变量移入Fixed Factors方格中→将协变量移入Covariates方格中→点击Model次指令→点击Custom选项→将Include intercept in model 选项前的打勾取消→在Factor & Covariates中点击自变量及协变量并移入Model方格中→在Build Terms方格中选择Interaction,并用鼠标同时选择Factor & Covariates中的自变量和协变量,将二者的交互作用移入Model方格中→点击Continue回到Univariate窗口→点击OK,输出组内回归系数齐性检验的结果。
若结果显示自变量与协变量之间的交互作用不显著,就表示协变量与因变量之间的关系不会因自变量个处理水平的不同而有所差异,即协变量对因变量的回归斜率相等。
之后,进行协方差分析。
如前,打开Univariate窗口,将各变量移入相应的方格内→打开Option次指令→点击输出Descriptive Statistics、Homogeneity tests、Parameter estimates选项,界定输出描述统计、齐性检验以及参数估计值→点击Factors & Factor Interactions方格中的自变量,移入Display Means for方格,同时点击下方的Compare main Effects选项(以计算校正后平均数与进行时候检验)→点击OK,输出结果。
SPSS基础学习⽅差分析—协⽅差分析
⽬的:在多因素⽅差分析中我们提到“协变量“是⽤来控制其他变量与因⼦变量有关⽽且影响⽅差分析的⽬标变量的其他⼲扰因素。
注意点:在利⽤协⽅差分析的时候,我们先对这个变量进⾏分析。
案例分析:研究三中不同的饲料对⽣猪的体重增加的影响。
(数据来源:薛薇《统计分析与SPSS的应⽤》第六章)
⾸先,先对猪喂养前的体重进⾏⼀个散点图的绘制
步骤:图形—旧对话框—点状/散点
由图可知:变量之间呈现较为相似的线性关系,各斜率基本相同,所以喂养前的体重可以作为协变量参与协⽅差分析。
协⽅差分析的步骤:
分析—⼀般线性模型—单变量
关键截图:
结果分析:
由协变量的图:
没有协变量的图:
分析:我们可以清楚地的看出SL的变差由1238.375减少为227.615,这就是剔除了喂养前体重的影响造成的,因此不能忽略”猪喂养前的体重“。
参考书籍:
薛薇《统计分析与SPSS的应⽤》第五版
吴骏《SPSS统计分析从零开始》。
协方差分析的基本原理1.协方差分析的提出无论是单因素方差分析还是多因素方差分析,它们都有一些人为可以控制的控制变量。
在实际问题中,有些随机因素是很难人为控制的,但它们又会对结果产生显著影响。
如果忽略这些因素的影响,则有可能得到不正确的结论。
例如,研究3种不同的教学方法的教学效果的好坏。
检查教学效果是通过学生的考试成绩来反映的,而学生现在考试成绩是受到他们自身知识基础的影响,在考察的时候必须排除这种影响。
又比如,考查受教育程度对个人工资是否有显著影响,这时必须考虑工作年限因素。
一般情况下,工作年限越长,工资就越高。
在研究此问题时必须排除工作年限因素的影响,才能得出正确的结论。
再如,如果要了解接受不同处理的小白鼠经过一段时间饲养后体重增加量有无差别,已知体重的增加和小白鼠的进食量有关,接受不同处理的小白鼠其进食量可能不同,这时为了控制进食量对体重增加的影响,可在统计阶段利用协方差分析(Analysis of Covariance),通过统计模型的校正使得各组在“进食量”这个变量的影响上相等,即将进食量作为协变量,然后分析不同处理对小白鼠体重增加量的影响。
为了更加准确地控制变量不同水平对结果的影响,应该尽量排除其它在实验设计阶段难以控制或者是无法严格控制的因素对分析结果的影响。
利用协方差分析就可以完成这样的功能。
协方差分析将那些难以控制的随机变量作为协变量,在分析中将其排除,然后再分析控制变量对于观察变量的影响,从而实现对控制变量效果的准确评价。
协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间没有交互影响。
前面单因素方差分析和多因素方差分析中的控制变量都是一些定性变量,而协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。
协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析,是一种把直线回归或多元线性回归与方差分析结合起来的方法,其中的协变量一般是连续性变量,并假设协变量与因变量间存在线性关系,且这种线性关系在各组一致,即各组协变量与因变量所建立的回归直线基本平行。
当有一个协变量时,称为一元协方差分析,当有两个或两个以上的协变量时,称为多元协方差分析。
以下将以一元协方差分析为例,讲述协方差分析的基本思想和步骤。
2.协方差分析的计算公式以单因素协方差分析为例,总的变异平方和表示为:Q Q Q Q++总控制变量协变量随机变量=协方差分析仍然采用F检验,其零假设H为多个控制变量的不同水平下,各总体平均值没有显著差异。
F统计量计算公式为:22SFS控制变量控制变量随机变量=,22SFS协变量协变量随机变量=以上F统计量服从F分布。
SPSS将自动计算F值,并根据F分布表给出相应的相伴概率值。
如果F控制变量的相伴概率小于或等于显著性水平,则控制变量的不同水平对观察变量产生了显著的影响;如果F协变量的相伴概率小于或等于显著性水平,则协变量的不同水平对观察变量产生了显著的影响。
3.协方差分析需要满足的假设条件(1)自变量是分类变量,协变量是定距变量,因变量是连续变量;(2)对连续变量或定居变量的协变量的测量不能有误差;(3)协变量与因变量之间的关系是线性关系,可以用协变量和因变量的散点图来检验是否违背这一假设;(4)协变量的回归系数是相同的。
在分类变量形成的各组中,协变量的回归系数(即各回归线的斜率)必须是相等的,即各组的回归线是平行线。
如果违背了这一假设,就有可能犯第一类错误,即错误地接受虚无假设。
(5)自变量与协变量是直角关系,即互不相关,它们之间没有交互作用。
如果协方差受自变量的影响,那么协方差分析在检验自变量的效应之前对因变量所作的控制调整将是偏倚的,自变量对因变量的间接效应就会被排除。
4.协方差分析SPSS的示例在进行新的外语教学方法实验时,往往需要在实验前和实验后对实验组和控制组的学生都进行成绩测试,以便确定新的教学方法对实验后成绩的影响。
显然,实验前成绩与实验后成绩之间会有内在联系,如果要更准确地确定新的教学方法的效果,有必要考虑实验前成绩对实验后成绩的影响,也就是说可以把前测成绩作为协变量进行协方差分析。
本例子中的实验研究共有15名受试者,将这些受试者随机分为3组,各组有5人,然后对这三组进行不同的教学方法实验。
其中一组为控制组,实验时不对教学方法进行改变,仍然采用以前的传统教学方法。
另两组为实验组,分别用交际法和沉浸法两种教学方法进行教学方法实验。
实验开始前对这三组学生用相同的试卷进行了英语测试,得出了前测成绩。
实验结束后,用新的试卷同时对这三组学生进行了测试,得出了后测成绩。
然后将要分析的数据输入到SPSS中去。
见数据录入表格所示。
我们用1表示传统教学方法,2表示交际法,3表示沉浸法。
我们先不考虑前测成绩,以“教学方法”为因素变量,“后测成绩”为因变量进行单因素方差分析。
从方差分析结果来看,概率值为0.463(远远大于0.05的显著性水平),说明三种教学方法在后测成绩上似乎没有显著差异,但如果以前测成绩作为协变量进行方差分析时,分析结果可能就会有差异。
以下将以前测成绩作为协变量进行方差分析,检验三种不同教学方法是否真的没有显著差异。
未作协方差分析之前的单因素方差分析表ANOVA后测成绩用SPSS进行协方差分析,可以分两大步骤进行,首先检验回归斜率相等的假设,然后进行协方差分析。
一、回归斜率相等的假设1、分组散点图对于本例,首先应了解三种教学方法的前测成绩与后测成绩的回归线是否平行,即前测考试成绩的影响在分别采用三种教学法的三个班级中是否相同,这可以用前测成绩与教学法是否存在交互作用来表示。
对于该问题,首先可以作分组散点图,观察三组直线趋势是否近似,然后看交互作用有无统计学意义,当交互作用无统计学意义时,则进行协方差分析,得出统计结论。
在菜单中选择Graphs→Scatter/Dot,打开atter/Dot对话框,选择Simple Scatter选项,按右上角Define 按钮,以前测成绩为X轴,后测成绩为Y轴,教学方法作为(Panel by →Rows),作出散点图,注意在作出散点图之后,左键双击输出的图形,调出Chart Editor对话框,按照菜单Element→Fit Line at Total,可以得到如下图所示的散点图,从图中可知三组中前测成绩和后测成绩有明显的直线趋势,且三组中直线趋势的斜率接近,因此从图形上未发现违反前提条件的迹象,可以进一步作假设检验,检验各组总体斜率是否相等。
如果按照菜单Graphs→Scatter/Dot,打开atter/Dot对话框,选择Simple Scatter选项,按右上角Define 按钮,以前测成绩为X轴,后测成绩为Y轴,教学方法作为标记变量(Set markers by),作出散点图,注意在作出散点图之后,左键双击输出的图形,调出Chart Editor对话框,按照菜单Element→Fit Line at Total,可以得到如下图所示的散点图,作出散点图,注意在作出散点图之后,左键双击输出的图形,调出Chart Editor 对话框,按照菜单Element→Fit Line at subgroups,可以得到如下图所示的散点图,从图中可知三组中前测成绩和后测成绩有明显的直线趋势,且三组中直线趋势的斜率接近,因此从图形上未发现违反前提条件的迹象,可以进一步作假设检验,检验各组总体斜率是否相等。
2、组内回归斜率相同检验步骤1:选择协方差分析菜单(与GLM单因素方差分析菜单相同)。
点击数据编辑界面的Analyze命令,选择General Linear Model,并打开Univariate对话框。
步骤2:选定因变量、因素变量和协变量。
在对话框中左边变量列表中选择“后测成绩”作为因变量,并将其移入Dependent V ariable 方框中。
然后选择“教学方法”作为因素变量,将其移入到Fixed Factor(s)方框中。
再选择“前测成绩”作为协变量,将其移入Ccvariate(s)方框中。
步骤3:确定分析模型。
在对话框中单击Model命令按钮,进入Univariate Model对话框中。
该对话框提供了两种不同形式的模型,完全因素(full factorial)和自定义因素(custom)模型。
由于要进行回归斜率相同的检验,所以本例使用自定义因素模型。
点击Custom选择按钮后,从左边的变量列表中选择“教学方法”,点击右向箭头将其移入Model方框中。
用同样的方法将变量列表中的“前测成绩”移入Model方框中。
最后在变量列表中连续点击“教学方法”和“前测成绩”,同时选中它们,再点击右向箭头,Model方框中会出现“教学方法*前测成绩”字样,意为进行交互效应分析,即检验回归线斜率相等的假设。
点击Continue命令按钮回到主对话框中,并点击OK按钮提交程序运行。
组内回归斜率相同检验结果Tests of Between-Subjects Effects Dependent Variable:后测成绩Source Type III Sumof Squaresdf Mean Square F Sig.Corrected Model 1498.531(a) 5 299.706 9.816 .002Intercept 632.390 1 632.390 20.711 .001教学方法84.312 2 42.156 1.381 .300前测成绩86.072 1 86.072 2.819 .127教学方法*前测成绩166.488 2 83.244 2.726 .119Error 274.802 9 30.534Total 47700.000 15Corrected Total 1773.333 14a R Squared = .845 (Adjusted R Squared = .759)上表是组内回归斜率相同检验结果,教学方法与前测成绩的交互效应检验的F值为2.726,概率值为0.119(大于0.05),没有达到显著性水平,表明三组的回归斜率相同,即各组的回归线为平行线,符合了协方差分析的回归斜率相同的条件。
这一结果表明,下面所进行的协方差分析的结果是有效的。
二、协方差分析步骤步骤1:选择协方差分析菜单(与GLM单因素方差分析菜单相同)。
点击数据编辑界面的Analyze命令,选择General Linear Model,并打开Univariate对话框。
步骤2:选定因变量、因素变量和协变量。
在对话框中左边变量列表中选择“后测成绩”作为因变量,并将其移入Dependent V ariable 方框中。
然后选择“教学方法”作为因素变量,将其移入到Fixed Factor(s)方框中。