二阶常系数齐次线性微分方程
- 格式:ppt
- 大小:104.00 KB
- 文档页数:7
二阶常系数齐次线性微分方程的通解证明来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。
一、二阶常系数齐次线性微分方程的通解分析通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为12,λλ,则1)当12λλ≠且为实数时,通解为1212x x y C eC e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C eC xe λλ=+; ~3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+;证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++=212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=,令2z y y λ'=-,则11110x dz z z z z c e dxλλλ'-=⇒=⇒=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----⎰⎰=+=+⎰⎰ (1)1)当12λλ≠且为实数时,由(1)式得原方程的通解为21212()121212[]x x x x c y e e C C e C e λλλλλλλ-=+=+-,其中1112c C λλ=-,12C C 和为任意常数。
二阶常系数线性齐次微分方程二阶常系数线性齐次微分方程,又称二阶次线性常系统,是数学分析和积分变换中重要的问题,在系统控制、信号处理和信号检测中也得到广泛应用。
一. 二阶常系数线性齐次微分方程的概念1、定义:二阶常系数线性齐次微分方程是指有形式U′′ + pU′ + qU = 0的二阶常系数齐次线性微分方程,其中,p和q为常数,U是未知函数。
2、求解:若对未知函数U,有形如U′′ + pU′ + qU = 0的二阶常系数齐次线性微分方程,则求解之所有实根解形式有:U(t)=C1eλ1t+C2eλ2t,其中,C1,C2为常数,λ1,λ2为方程的根,则得到方程:λ2+pλ+q=0。
二. 二阶常系数线性齐次微分方程的特点1、齐次:二阶常系数线性齐次微分方程是等号右边完全为零的一次方程的特殊形式,其解实际上也就是方程的根,二阶齐次方程的解可以通过求根公式求出。
2、常系数:二阶常系数线性齐次微分方程所有项都是常系数,不会改变,所以可以用公式进行解法简化,使用求根公式求出二阶常系数线性齐次微分方程的实根解,比一般的常系数线性非齐次微分方程的解法要简单得多;3、线性:二阶常系数线性齐次微分方程里面的未知函数和其倒数的次数有明确的关系,所以它是线性的;4、微分:二阶常系数线性齐次微分方程里面的未知函数不仅要满足一次微分方程,而且要满足特定的二次微分方程;三. 二阶常系数线性齐次微分方程的应用1、系统控制:二阶常系数线性齐次微分方程可以用来描述内外环回路的联系,可以用来优化被控系统的输出;2、信号处理:二阶常系数线性齐次微分方程可以用来对信号进行插值、滤波、离散傅里叶变换等处理;3、信号检测:二阶常系数线性齐次微分方程可以用来检测周期性变化或者噪声等不平凡现象,从而处理信号。
四. 二阶常系数线性齐次微分方程的扩展1、非齐次:不论是一阶常系数线性非齐次微分方程还是二阶非齐次微分方程,都可以通过常系数变换将其转化为齐次方程;2、常数变量:在适当的条件下,可以将二阶常系数线性齐次微分方程中的未知函数转化成一、二阶常数变量方程组;3、转化:二阶常系数线性齐次微分方程可以用Laplace变换、线性变换和积分变换等转化手段将其转化为容易求解的形式;4、衍生:可以从二阶常系数线性齐次微分方程发展出求解波。
第七章常微分方程7.10 二阶常系数齐次线性微分方程数学与统计学院赵小艳1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 二阶常系数齐次线性微分方程的形式 )(1)1(1)(t F x a x a x a x n n n n =++++-- n 阶常系数线性微分方程的标准形式21=++x a x a x 二阶常系数齐次线性方程的标准形式.,,,,121均为实常数其中n n a a a a - )1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- ,2211x C x C x +=则其通解为,,21解是其线性无关的两个特若x x .,21为任意常数其中C C 解的结构1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法,t e x λ=设则 ()0212=++t e a a λλλ得 0212=++a a λλ特征方程 ,2422111a a a -+-=λ,11t e x λ=,22t e x λ=且它们线性无关,通解为 .,)(212121为任意常数其中C C e C e C t x tt ,λλ+=特征根为: ,2422112a a a ---=λ情形1 有两个不相等的实根 )0(>∆,021=++x a x a x 对于对应特解 ,,21解是其线性无关的两个特若x x ,2211x C x C x +=则其通解为.,21为任意常数其中C C 待定系数法2 二阶常系数齐次线性微分方程的解法,11t e x λ=,2121a -==λλ情形2 有两个相等的实根 )0(=∆故一特解为 ,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,)(12t e t u x λ=设另一特解为特征根为 2121,)()('1112t t e t u e t u x λλλ+= ,)()('2)("1112112tt t e t u e t u e t u x λλλλλ++=,11t e x λ=情形2 有两个相等的实根 )0(=∆故一特解为 通解为 (),te t C C t x 121)(λ+=,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,0=''u 得(),t t u =取,12t te x λ=则特征根为 2121(),21C t C t u +=,)(12t e t u x λ=设另一特解为0=0=.,21为任意常数其中C C ,2121a -==λλ,1βαλi +=,2βαλi -=,)(1t i e x βα+=t i e x )(2βα-=情形3 有一对共轭复根 )0(<∆由解的性质 ()21121x x x +=,cos t e t βα=()21221x x ix -=.sin t e t βα=通解为 (),sin cos 21t βC t βC e x t α+=特征根为 2121对应特解为 t e i t e t t ββααsin cos -=.,21为任意常数其中C C .,21线性无关且x x.044的通解求方程=++x x x解 特征方程为 ,0442=++λλ,221-==⇒λλ故所求通解为 ().221te t C C x -+=例1 解 特征方程为 ,0522=++λλ,2121i ±-=⇒,λ故所求通解为 ().2sin 2cos 21x C x C e y x +=-.052的通解求方程=+'+''y y y 例2 021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为()().00,2004422的解满足初始条件求='==++y y y x y x y d d d d 解 特征方程为 ,01442=++λλ.212,1-=⇒λ故所求通解为 x e x C C y 2121)(-+=例3 ()()得由00,20='=y y ,21=C .12=C 为方程满足初始条件的解.22121x x xe e y --+=021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法01)1(1)(=+'+++--x a x a xa x n n n n 特征方程为 0111=++++--n n n n a a a λλλ 特征方程的根 相对应的线性无关的特解 重根是若k λt k t t et te e λλλ1,,,- 重是若共轭复根k i βα±.sin ,,sin ,sin ,cos ,,cos ,cos 11t βe t t βte t βe t βe tt βte t βe t αk t αt αt αk t αt α-- 注意: n次代数方程有n 个根, 而特征方程的每个根都对应着一个特解. 3 高阶常系数齐次线性微分方程的解法.2211n n x C x C x C x +++= 通解为特征根为.2,1321-===λλλ故所求通解为 ()t e t C C x 21+=解 ,0233=+-λλ特征方程为 ()(),0212=+-λλ().0233的通解求方程=+-x x x 例4 特征根为 .,,154321i i -====-=λλλλλ故所求通解为 ()()t.t C C t t C C sin cos 5432++++解 ,01222345=+++++λλλλλ特征方程为 ()(),01122=++λλ()()().022345的通解求方程=+++++x x x x x x 例5 .e C t 23-+t e C x -=1。
二阶常系数齐次线性微分方程在微积分的学习中,我们经常接触到二阶常系数齐次线性微分方程,那么什么是二阶常系数齐次线性微分方程呢?简单来说,二阶常系数齐次线性微分方程是指形如$y''+ay'+by=0$ 的微分方程,其中 $a$ 和 $b$ 都是常数,齐次指方程右边恒等于 $0$。
从这个微分方程的形式中我们可以看出,它是一个二阶微分方程,即方程中含有 $y''$ 这一项,同时它是一个常系数微分方程,因为$a$ 和$b$ 都是常数,不会随着自变量的变化而改变。
而且,由于 $y''+ay'+by=0$,方程右边恒等于 $0$,可以说是一次条件齐次线性微分方程。
那么为什么我们要学习二阶常系数齐次线性微分方程呢?这是因为它们在物理、工程、自然科学和社会科学等领域中都具有非常广泛的应用。
例如,在物理学中,可以用二阶常系数齐次线性微分方程来描述运动学问题、振动问题和电磁学问题等;在经济、生态和环境科学等领域中,也会出现这样的微分方程。
不过,对于二阶常系数齐次线性微分方程,我们不仅需要掌握它的基本概念和性质,还需要学习如何解这类微分方程。
对于 $y''+ay'+by=0$ 这样的常系数齐次线性微分方程,我们可以通过求解其特征方程 $\lambda^2+a\lambda+b=0$ 来确定其通解的形式。
关于特征方程,它的形式为$r^2+ar+b=0$,其中$r$ 是特征根,$\lambda$ 是 $r$ 的一种更广泛的表示形式,在解这类微分方程的时候常常用到。
特征方程的根决定了通解的形式,当特征方程的两个根不相等时,通解可以表示为 $y=c_1 e^{\lambda_1 x}+c_2e^{\lambda_2 x}$ 的形式;当特征方程仅有一个根时,通解可以表示为 $y=(c_1+c_2 x)e^{\lambda x}$ 的形式;当特征方程的两个根为实数且相等时,通解可以表示为 $y=(c_1+c_2 x)e^{\lambdax}$ 的形式;当特征方程的两个根为纯虚数时,通解可以表示为$y=e^{\alpha x}(c_1 \cos{\beta x}+c_2 \sin{\beta x})$ 的形式。