24。1圆的基本性质
- 格式:doc
- 大小:201.00 KB
- 文档页数:4
圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。
24.1 圆(一)知识点归纳一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
巩固练习一、选择题(每题3分,共27分)1.下列说法不正确的是()A.顶点在圆心上的角叫做圆心角B.圆的对称中心是圆心C.相等的圆心角所对的弧相等D.圆既是中心对称图形,又是轴对称图形2. 如图:点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=︒,则ACB ∠的度数是( )A .18°B .30°C .36°D .72° 3. 如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 和D 两点,AB =10cm ,CD =6cm ,则AC 长为( )A.0.5cmB.1cmC.1.5cmD.2cm4.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧; (4)经过圆心的每一条直线都是圆的对称轴。
圆的基本性质圆是几何学中最基本的图形之一,具有许多独特的性质和特征。
在本文中,我将介绍圆的基本性质,包括圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等。
通过了解这些基本性质,我们可以更好地理解和运用圆形。
1. 圆的定义圆是由一条与一个固定点距离相等的点构成的集合。
这个固定点被称为圆心,圆心到圆上的任意一点的距离被称为半径。
圆内部的点到圆心的距离都小于半径,而圆外部的点到圆心的距离都大于半径。
2. 圆的半径和直径圆的半径是从圆心到圆上任意一点的距离。
圆的直径是通过圆心,并且两个端点都在圆上的线段。
圆的直径是半径的两倍,也是圆的最长线段。
3. 圆心和弧圆心是圆的中心点。
圆上的弧是由圆上的两个点以及它们之间的弧长所确定的。
圆的弧可以被度量为角度,弧度或弧长。
4. 圆的面积圆的面积是圆内部所包围的空间。
圆的面积公式为:面积= π * r²,其中π(pi)是一个无理数,约等于3.14159,r是圆的半径。
这个公式表明,圆的面积正比于半径的平方。
5. 圆的周长圆的周长是圆上所有点之间的距离总和。
圆的周长也被称为圆周长或圆的周长。
圆的周长公式为:周长= 2 * π * r,其中2πr是一个圆的直径。
6. 圆的切线在圆上的每个点上都有一个与切线相切的方向。
切线是与圆只有一个交点的直线,且与圆的切点处于圆上的切线角度为90度。
7. 圆的弦圆上的任意两个点之间的线段被称为弦。
最长的弦是圆的直径。
8. 圆的弧度弧度是一种用于度量圆上弧长的单位。
一个圆的弧长等于半径的弧度数乘以圆心角的弧度。
总结:在几何学中,圆拥有许多独特的性质和特征。
通过了解圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等基本性质,我们可以更好地理解和应用圆形。
圆在许多领域中都有广泛的应用,如工程、建筑、数学等。
掌握圆的基本性质对于解决与圆相关的问题非常重要。
通过学习和应用这些性质,我们可以更好地理解圆,并在实际生活和学习中运用它们。
24.1《圆的基本性质》复习题
24.1.1圆的基本概念
1. _________确定圆的位置,________确定圆的大小.
2.已知圆外一点和圆周的最短距离为2,最长距离为8,则该圆的半径是( )
A 、5
B 、4
C 、3
D 、2
3.如图所示,AB 和CD 是⊙O 的直径,图中有几条优弧?几条劣弧?把它们表示出来。
4.如图所示,以平行四边形的一边AB 为直径的⊙O 经过点C ,若∠BOC=50°,求∠BAD 的度数。
24.1.2垂直于弦的直径
1.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( )
A 、A
B ⊥CD B 、∠AOB=4∠ACD
C 、A
D ⌒=BD ⌒
D 、PO=PD
2.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )
A 、4
B 、6
C 、7
D 、8
3.如图,将半径为4cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为( )
O B C A D 第4题
D A B O C 第3题
B
A
C
P O 第1题材 B
A
O
M
第2题材 第3题材
O A
B
P 第4题
材
A
B
O
A
、43cm B 、23cm C 、3cm D 、2cm
4.如图所示,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一动点,则OP 长的取值范围是________________.
5.如图,在⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm.求:⊙O 的半径.
6.某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图3所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm ,则修理人员应准备多少cm 内径的管道(内径指内部直径)?
24.1.3弧、弦、圆心角
1.在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等,它们所对的弦也相等;(3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有( )
A 、4个
B 、3个
C 、2个
D 、1个
2.如图,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______.(只需写一个正确的结论)
3. 在⊙O 中,AB ⌒=AC ⌒,且∠A=80°则∠B=__________.
B
C
E
D
O
F
P
O
D
C
B
A
第3题
4.如图,AB 是⊙O 的直径,BC ⌒= CD ⌒ = DE ⌒,∠COD=35°,求∠AOE 的度数.
5.如图,已知AB 和CD 是⊙O 的两条弦,AD ⌒=BC ⌒ ,求证:AB=CD.
24.1.4圆周角
1.如图,点A B C ,,都在⊙O 上,若34C =∠,则AOB ∠的度数为( ) A 、34 B 、56 C 、60 D 、68
2.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A 、80° B 、50° C 、40° D 、20°
3.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于点C 的任意一点,则∠BPC 的度数是( )
A 、45°
B 、60°
C 、75°
D 、90°
4.如图,AB 是⊙O 的直径,点C D ,是圆上两点,100AOC ∠=,则D ∠=_______.
D
C
O
O
C
B A
第1题
O C
F
G
D
E
第2题
A
O
B
D
第4题
A
D
B
O C
第5题
5.如图,ABC △内接于⊙O,AD 是⊙O 的直径,30ABC ∠=,则
CAD ∠=______.
5.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?
6.如图,AB 为⊙O 的直径,AB AC BC =,交⊙O 于点D ,AC 交⊙O 于点
45E BAC ∠=,°.(1)求EBC ∠的度数;(2)求证:BD CD =.。