3:旋转常见题型与的解题技巧
3.如图,P为△ABC内一点,且AB=AC,BAC 90, BPC 135,CP=5,则△PAC的面积为________
3:旋转常见题型与的解题技巧
4.如图,在四边形ABCD中,AC,BD是对角线, △ABC是等边三角形,ADC 30,AD=3,BD=5 ,则CD的长为________
图形形旋转的初步认识 图形旋转的应用探讨 图形旋转常见题型与解题技巧
1:图形的旋转初步认识
1:图形的旋转
把一个平面图形绕着平面内的某一点O转动一个角 度,叫做图形的旋转,点O叫做旋转中心,转动的 角叫做旋转角,如果图形上的点P经过旋转变为点 P’,那么这两个点叫做这个旋转的对应点。
3:旋转常见题型与的解题技巧
5. 如图所示,四边形ABCD中,BAD .BCD 90
AB=AD,若四边形ABCD的面积是24 cm 2,则AC的长 为________
3:旋转常见题型与的解题技巧
6.如图所示,已知正方形ABCD,AC,BD交于点O ,过点A的直线m从起始位置AC逆时针绕着点A 旋转;DE m于E,连接OE,设旋转角CAE 0 45,求证:AE DE 2OE
1:图形的旋转的初步认识
2:中心对称 把一个图形绕着某一点旋转180度,如果它能够和另 一个图形重合,那么就说这两个图形是中心对称的 ,这个点叫做对称中心,并且把旋转后能重合的对 应点叫做关于对称中心的对称点。
中心对称图形:把一个图形绕着某一个点旋转180 度,如果旋转后的图形能够与原来重合,那么这个 图形叫做中心对称图形,这个点就是它的对称中心
3:旋转常见题型与解题技巧
1. 如图,在△ABC中,ACB 90,AC BC , P是
△ABC内的一点,且AP=3,CP=2,BP=1,求 BPC