华师大八年级数学(上)复习提纲
- 格式:doc
- 大小:172.57 KB
- 文档页数:12
数学8年级上册第十二章:整式的乘除线段的垂直平分线角平分线互逆命题与互逆定理尺规作图等边三角形5.(斜边、直角边)H.L.:如果两个直角三角形中一条斜边和一条直角边都对应相等,那么①等腰三角形的两腰相等②等腰三角形的两底角相等③等腰三角形“三线合一”(顶角的平分线,底边上的中线,底边上的高重合)④等腰三角形是轴对称图形,只有一条对称轴⑤等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)①定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
②判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
这两个三角形全等。
考点:①若是等腰三角形②等腰三角形“三线合一”2.自己补充完整1.若AD 贝U BD=BC,/ BAD玄CAD则说明点的距离相等E若直线EF是线已知:若EF ,垂足为点C,AC=BC点D是直D段AB的垂直平线EF上任意一点I D\分线,结论:DA=DB\则:性质定理的逆定理:到线段两端点距离相等的/A① DA=DB点在线段的垂直平分线上 A C r B②是等已知:DA=DB F腰三角形,因此结论:点D在线段AB的垂直平分线上具有等腰三角形的一切性质性质定理:线段垂直平分线上的点到线段两端考点:性质定理:角平分线上的点到角两边的距离相等已知:OP平分/ AOB且PD , PE , 结论:PE=PD性质定理的逆定理:角的内部到角两边距离相等的点在角的平分线上已知:PD , PE 且PE=PD结论:OP平分/ AOB第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题五个基本的作图方法:①作一条线段等于已知线段②作一个角等于已知角③作已知角的平分线④过一点作已知线段的垂线⑤作已知线段的垂直平分线性质:①是特殊的等腰三角形,因此具有等腰三角形的一切性质。
(等腰三角形包括等边三角形,等腰大于等边)②等边三角形的三条边相等③等边三角形的三个角相等,都为60o。
八年级上册第一单元:数的开方一、知识点总结知识点一:平方根(1)平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。
(2)开平方:求一个数a 的平方根的运算叫做开平方.(3)平方根的表示:a 的平方根记作:a 2±±或a 。
a 叫做被开方(4)求一个数的平方根的方法:利用平方和开平方互为逆运算(5)平方根的性质①一个正数有两个平方根,它们互为相反数②0有一个平方根,它是0本身③负数没有平方根。
(6)算术平方根的定义:非负数a 的正的平方根。
(7)算术平方根表示:一个非负数a 的平方根用符号表示为:“a ”,读作:“根号a”,其中a 叫做被开方数(8)算术平方根的性质:①正数a 的算术平方根是一个正数;②0的算术平方根是0;③负数没有算术平方根。
注: ①算术平方根是非负数,具有非负数的性质;a (a≥0)是一个非负数, 即a ≥0;②若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;③平方根等于本身的数只有0,算术平方根等于本身的数有0、1;④非负数的算术平方根再平方仍得这个数,即:(a )2=a(a≥0);⑤某数的平方的算术平方根等于某数的绝对值,即 2a =|a|= ()()⎩⎨⎧<-≥00a a a a ⑥平方根有三种表示形式:±a ,a ,-a ,它们的意义分别是:非负数a 的平方根,非负数a 的算术平方根,非负数a 的负平方根。
要特别注意:a ≠±a⑦平方根与算术平方根的区别与联系:区别:①定义不同 ②个数不同: ③ 表示方法不同:联系:①具有包含关系: ②存在条件相同: ③ 0的平方根和算术平方根都是0。
1、填空:(1)0.25的平方根是 ;29的算术平方根是 ,16 的平方根是 。
(1) 2-的相反数是 ,3的倒数是 , 13-的绝对值是 ;(2) (3)=81 ,2516±= ,2)3(-= 。
因式分解复习提纲一、知识提要1、因式分解的概念⑴注意与多形式乘法的联系与区别 ⑵用提公因式法时,每项必须有公因式⑶提公因式法时第一项为负一定要提出负号 ⑷分解因式一定要进行到底 ⑸先提公因式,后用公式法22416y x x -2、因式分解的方法 ⑴提公因式法 ⑵公式法 ⑶分组分解法by ay bx ax +--⑷十字相乘法二、易出错的地方1、用分解因式的方法解一元二次方程时漏解 如64x 2=2、不记得相反数的平方相等(白P4)3、不记得填充完全平方公式时2ab 可正可负4、分解因式不能进行到底5、不能快速地看出平方差公式的特点 如22b a -,22b a --,22b a +-,()22a a -+6、漏项()y x x x xy x 35352-=+-7、不会按要求在实数范围内分解。
三、练习1、多项式b a ab 22-提出公因式后,另一个因式是。
2、多项式分解因式的结果为()()2x 2x 22-+。
3、如果1kx x 92++是一个完全平方式,则k=。
4、若()()4x 2x q px x 2-+=++,则p= ,q=。
5、使18ax x 2++能分解因式整数a 共有个。
6、满足010n 6m 2n m 22=+-++,则m= ,n= 。
7、无论x 、y 取什么值,40y 12y x 4x 22+++-的值都是。
8、如果a+b=12,ab =-15,则22b a +的值是。
9、已知02x 3x 2=-+则,x 4x 62x 23-+的值是。
10、m 、n 为任意有理数,则4mn22n m 4+(填“>、<、≥、≤、=”) 11、多项式142+x 加上某个单项式能成为一个二项式的完全平方式。
例如加上单项式4x 可得()212+x ;加上单项式—4x 可得()212-x 。
请你例举另外一个单项式____________。
12、计算 49.7×30.3144-12×46+23213、因式分解 ①412++x x ②b a b a 2422-+- ③16x 4-④()1p 6q 6q p 92++--⑤()1y 2y x 422+-- 14、两个正方形的周长相差96㎝,它们的面积相差96㎝2,求这两个正方形的边长。
八年级上第 11章 数的开方1.平方根(1)如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
即:如果a x =2,那么x 叫做a 的平方根(2)一个正数有两个平方根,它们互为相反数。
其中:正数a 的正的平方根,叫做a 的算术平方根,记作a ,读作“根号a ”,另一个平方根是它的相反数,即a -。
因此,正数a 的平方根可以记作a ±。
a 称为被开方数。
0的平方根只有一个,就是0,记作00=。
负数没有平方根。
a 0≥(a 0≥)(3)求一个非负数的平方根的运算,叫做开平方。
2.立方根(1)如果一个数的立方等于a ,那么这个数叫做a 的立方根。
即:如果a x =3,那么x 叫做a 的立方根数a 的立方根,记作3a ,读作“三次根号a ”,其中a 称为被开方数,3称为根指数。
(2)求一个数的立方根的运算,叫做开立方。
(3)任何数(正数、负数、0)都有立方根,并且只有一个。
正数有一个正的立方根。
负数有一个负的立方根。
0的立方根是0。
3.无理数 无限不循环小数叫做无理数。
实数 有理数和无理数统称为实数。
实数与数轴上的点一一对应。
第 12章 整式的乘除1.幂的运算(1)同底数幂相乘,底数不变,指数相加。
n m n m a a a +=⋅(m 、n 为正整数) (2)幂的乘方幂的乘方,底数不变,指数相乘。
()mn n m a a =(m 、n 为正整数) (3)积的乘方积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。
()n n nb a ab =(n 为正整数) (4)同底数幂的除法同底数幂相除,底数不变,指数相减。
(m 、n 为正整数,m>n ,a 0≠)2.整式的乘法(1)单项式与单项式相乘将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
(2)单项式与多项式相乘将单项式分别乘以多项式的每一项,再将所得的积相加。
最新华东师大版八年级数学(shùxué)上册知识点总结最新华东师大版八年级数学(shùxué)上册知识点总结华师版八年级上册知识点总结第十一章:数的开方知识点平方根内容概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术(suànshù)平方根:正数a的正的平方根记作:a性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0考点:①〔a的取值范围(fànwéi)a≥〕②(的取值范围≥)③(a的取值范围为任意实数)(≥)④==(多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别(fēnbié)乘以另一个多项式的每一项,再把所得的积相加例:〔某+2〕〔某3〕=+=例:24÷=〔24÷〕〔÷〕〔÷〕=8整式的除法单项式相除,把系数、同底数幂分别相除作为商的因式,对单项式除于单项式于只在被除式中出现的字母,那么连同它的指数一起作为商的一个因式多项式除于单项式,先用这个多项式除于单项式多项式的每一项除于这个单项式,再把所得的商相加例:(9+)÷(3某)=9÷÷+÷=3+例:(a+b)(a-b)=逆用:=(a+b)(a-b)例:(+)=++逆用++=(+)例:()=+逆用+=()常考点:①两种因式分解法一起运用〔先提公因式,然后再运用公式法〕例:++=++=(+)乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:因式分解①提公因式法②运用乘法公式法=(a+b)(a-b)++=(+)+=()②“1〞常常要变成“12〞例:=()=+〔〕第十三章:全等三角形知识点全等三角形内容性质:全等三角形的对应边和对应角相等三角形全等的判定:1.〔边边边〕S.S.S.:如果两个三角形的三条边都对应地相等,那么这两个三角形全等。
一、有理数
1.有理数的概念和性质
2.有理数的四则运算
3.有理数的比较大小和化简
二、代数式与方程式
1.代数式的定义和基本运算
2.整式与分式的化简
3.一元一次方程的解法和应用
4.一元一次方程组的解法和应用
三、图形的性质和变换
1.直角三角形、等腰三角形和边长比的性质
2.平行四边形、矩形和正方形的性质
3.三角形的面积计算
4.图形的平移、旋转、翻转和对称性
四、比例与相似
1.比例的概念和比例线段
2.比例的性质和应用
3.相似三角形的性质和判定
4.实际问题中的比例和相似关系
五、数据的处理与统计
1.数据的收集、整理和纪录
2.数据的分析和处理
3.统计图表的制作和解读
4.概率的计算和应用
六、立体几何与三视图
1.点、线、面的概念
2.空间图形的性质和分类
3.立体几何造型和作图
4.空间切割和三视图的绘制
以上是华师大八年级数学复习提纲的主要内容,根据这个提纲进行系统的学习和复习,可以从全面的角度掌握数学知识,并顺利备战考试。
初二数学华师大版知识点初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
八年级下册数学复习资料正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
八年级上册知识点第11章数的平方11.1平方根与立方根一、平方根的概念如果一个数的平方等于a ,那么这个数叫做a 的平方根。
二、平方根的性质1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,就是它本身。
3.负数没有平方根。
三、算术平方根正数a 的正的平方根,叫做a 的算术平方根,记作,读作“根号a ”;另一个平方根是它的相反数,即-。
因此,正数a 的平方根可以记作±,其中a 称为被开方数。
0的算术平方根是0,负数没有算术平方根。
四、平方根与算术平方根的区别与联系1.概念不同;2.表示方法不同;3.个数及取值不同。
五、开平方求一个非负数的平方根的运算,叫做开平方。
六、立方根1.概念:如果一个数的立方等于a ,那么这个数叫做a 的立方根。
2.性质:任何数(正数、负数和0)的立方根只有一个。
a a a3a3.表示:数a的立方根,记作,读作“三次根号a”。
其中a称为被开方数,3是根指数。
4.一个正数只有一个正的立方根,一个负数只有一个负的立方根,0的立方根是0。
七、开立方求一个数的立方根的运算,叫做开立方。
11.2实数一、无理数1.无线不循环小数叫做无理数。
2.无理数与有理数的区别(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数。
(2)所有的有理数都能写成分数的形式(整数可以看成分母是1的分数),而无理数不能写成分数的形式。
二、实数及其分类1.实数的概念有理数和无理数统称为实数,即实数包括有理数和无理数。
2.实数的分类(1)按概念分类正整数整数0有理数负整数正分数分数实数负分数正有理数无理数负有理数(2)按正负分类正整数正有理数正实数正分数正无理数实数0负整数负有理数负实数负分数负无理数三、实数与数轴上点的关系实数与数轴上的点意义对应。
四、实数的有关概念1.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。
,0,00,aaa a a a2.一个数的绝对值是非负数,即a ≥0,因此,在实数范围内,绝对值最小的数是零.两个相反数的绝对值相等.第12章整式的乘除12.1幂的运算12.1.1同底数幂的乘法一、同底数幂的意义及同底数幂的乘法法则1.同底数幂的意义同底数幂是指底数相同的幂。
第11章数的开方§11.1平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。
(也叫做二次方根)即:若x2=a,则x叫做a的平方根。
2、平方根的性质:(1)一个正数有两个平方根。
它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。
二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。
2、算术平方根的性质:(1)一个正数的算术平方根只有一个为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:a≥0。
三、平方根和算术平方根是记号:平方根±a(读作:正负根号a);算术平方根a(读作根号a)即:“±a”表示a的平方根,或者表示求a的平方根;“a”表示a的算术平方根,或者表示求a的算术平方根。
其中a叫做被开方数。
∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。
四、开平方:求一个非负数的平方根的运算,叫做开平方。
其实质就是:已知指数和二次幂求底数的运算。
五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。
(也叫做三次方根)即:若x3=a,则x叫做a的立方根。
2、立方根的性质:(1)一个正数的立方根为正;(2)一个负数的立方根为负;(3)零的立方根是零。
3、立方根的记号:3a(读作:三次根号a),a称为被开方数,“3”称为根指数。
3a中的被开方数a的取值范围是:a为全体实数。
六、开立方:求一个数的立方根的运算,叫做开立方。
其实质就是:已知指数和三次幂求底数的运算。
七、注意事项:1、“±a ”、“a ”、“3a ”的实质意义:“±a ”→问:哪个数的平方是a ; “a ”→问:哪个非负数的平方是a ; “3a ”→问:哪个数的立方是a 。
2、注意a 和3a 中的a 的取值范围的应用。
如:若3-x 有意义,则x 取值范围是 。
(∵x-3≥0,∴x ≥3)(填:x ≥3)若32009x -有意义,则x 取值范围是 。
(填:全体实数) 3、33a a -=-。
如:∵3273-=-,3273-=-,∴332727-=-4、对于几个算数平方根比较大小,被开方数越大,其算数平方根的值也越大。
如:256710>>>>等。
23和32怎么比较大小?(你知道吗?不知道就问!!!!!!!)5、算数平方根取值范围的确定方法:关键:找邻近的“完全平方数的算数平方根”作参照。
如:确定7的取值范围。
∵4<7<9,∴2<7<3。
6、几个常见的算数平方根的值:414.12≈,732.13≈,236.25≈,449.26≈,646.27≈。
八、补充的二次根式的部分内容1、二次根式的定义:形如a (a ≥0)的式子,叫做二次根式。
2、二次根式的性质:(1)b a ab •=(a ≥0,b ≥0); (2) ba b a =(a ≥0,b >0); (3) a a =2)((a ≥0);(4) ||2a a =3、二次根式的乘除法:(1)乘法:ab b a =•(a ≥0,b ≥0); (2)除法:ba b a =(a ≥0,b >0)。
§11.2实数与数轴一、无理数1、无理数定义:无限不循环小数叫做无理数。
2、常见的无理数:(1)开方开不尽的数。
如:256710,,,,,2532617102-++-,,,等。
(2)“π”类的数。
如:π,π-,3π,π1,π2等。
(3)无限不循环小数。
如:2.1010010001……,-0.234242242224……,等二、实数1、实数定义:有理数与无理数统称为实数。
2、与实数有关的概念:(1)相反数:实数a 的相反数为-a 。
若实数a 、b 互为相反数,则a+b=0。
(2)倒 数:非零实数a 的倒数为a1(a ≠0)。
若实数a 、b 互为倒数,则ab=1。
(3)绝对值:实数a 的绝对值为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a3、实数的运算:有理数的所有运算法则及运算律均适用于实数的运算。
4、实数的分类:(1)按照正负性分为:正实数、零、负实数三类。
(2)按照定义分为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数和无限循环小负分数正分数分数负整数正整数整数有理数实数0 5、几个“非负数”:(1)a 2≥0; (2)|a|≥0; (3)a ≥0。
6、实数与数轴上的点是一一对应关系。
第12章 整式的乘除§12.1幂的运算一、同底数幂的乘法1、法则:a m ·a n ·a p ·……=a m+n+p+……(m 、n 、p ……均为正整数)文字:同底数幂相乘,底数不变,指数相加。
2、注意事项:(1)a 可以是实数,也可以是代数式等。
如:π2·π3·π4=π2+3+4=π9;(-2)2·(-2)3=(-2)2+3=(-2)5=-25; (2)3·(2)4=(2)3+4=(2)7;(a+b)3·(a+b)4·(a+b)= (a+b)3+4+1=(a+b)8(2)一定要“同底数幂”“相乘”时,才能把指数相加。
(3)如果是二次根式或者整式作为底数时,要添加括号。
二、幂的乘方1、法则:(a m )n =a mn (m 、n 均为正整数)。
推广:{[(a m )n ]p }s =a mn p s文字:幂的乘方,底数不变,指数相乘。
2、注意事项:(1)a 可以是实数,也可以是代数式等。
如:(π2)3=π2×3=π6;[(2)3]4=(2)3×4=(2)12;[(a -b )2]4= (a -b )2×4=(a -b )8(2)运用时注意符号的变化。
(3)注意该法则的逆应用,即:a mn = (a m )n ,如:a 15= (a 3)5= (a 5)3三、积的乘方1、法则:(ab )n =a n b n (n 为正整数)。
推广:(acde )n =a n c n d n e n文字:积的乘方等于把积的每一个因式都分别乘方,再把所得的幂相乘。
2、注意事项:(1)a 、b 可以是实数,也可以是代数式等。
如:(2π)3=22π2=4π2;(2×3)2=(2)2×(3)2=2×3=6;(-2abc )3=(-2)3a 3b 3c 3=-8a 3b 3c 3;[(a +b )(a -b )]2=(a +b )2(a -b )2(2)运用时注意符号的变化。
(3)注意该法则的逆应用,即:a n b n =(ab )n ;如:23×33= (2×3)3=63,(x +y )2(x -y )2=[(x +y )(x -y )]2四、同底数幂的除法1、法则:a m ÷a n =a m-n (m 、n 均为正整数,m >n ,a ≠0)文字:同底数幂相除,底数不变,指数相减。
2、注意事项:(1)a 可以是实数,也可以是代数式等。
如:π4÷π3=π4-3=π;(-2)5÷(-2)3=(-2)5-3=(-2)2=4; (2)6÷(2)4=(2)6-4=(2)2=2;(a+b )16÷(a+b )14= (a+b )16-14=(a+b )2=a 2+2ab +b 2(2)注意a ≠0这个条件。
(3)注意该法则的逆应用,即:a m-n = a m ÷a n ;如:a x-y = a x ÷a y ,(x +y )2a-3=(x +y )2a ÷(x +y )3§12.2 整式的乘法一、单项式与单项式相乘法则:单项式与单项式相乘,只要将它们的系数与系数相乘,相同字母的幂相乘,多余的字母照搬到最后结果中。
如:(-5a 2b 2)·(-4 b 2c )·(-23ab )=[(-5)×(-4)×(-23)]·(a 2·a )·(b 2·b 2)·c =-30a 3b 4c二、单项式与多项式相乘法则:(乘法分配律)只要将单项式分别去乘以多项式的每一项,再将所得的积相加。
如:22(3)(21)x x x --+-=(-3x 2)·(-x 2)+(-3x 2)·2 x 一(-3x 2)·1=432363x x x -+ 三、多项式与多项式相乘法则:(1)将一个多项式中的每一项分别乘以另一个多项式的每一项,再将所得的积相加。
如:(m + n )(a + b )= ma+mb+na +nb(2)把其中一个多项式看成一个整体(单项式),去乘以另一个多项式的每一项,再按照单项式与多项式相乘的法则继续相乘,最后将所得的积相加。
如:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb§12.3 乘法公式一、两数和乘以这两数的差1、公式:(a+b )(a-b )=a 2-b 2;名称:平方差公式。
2、注意事项:(1)a 、b 可以是实数,也可以是代数式等。
如:(10+9)(10-9)=102-92=100-81=19;(2xy+a )(2xy-a )=(2xy )2-a 2=4 x 2y 2-a 2;(a+b+π)( a+b -π)=(2xy )2-a 2=4 x 2y 2-a 2; (2)注意公式中的第一项、第二项各自相同,中间是“异号”的情况,才能用平方差公式。
(3)注意公式的来源还是“多项式×多项式”。
二、完全平方公式1、公式:(a ±b )2=a 2±2a b+b 2;名称:完全平方公式。
2、注意事项:(1)a 、b 可以是实数,也可以是代数式等。
如:(2+3)2=(2)2+2×2×3+32=2+62+9=11+62;(mn-a ) 2=(mn )2-2m n ·a+ a 2= m 2n 2-2m n a+ a 2;( a+b -π)2=( a+b )2-2( a+b )π+π2= a 2+2a b+b 2-2πa -πb +π2; (2)注意公式运用时的对位“套用”;(3)注意公式中“中间的乘积项的符号”。
3、补充公式:(a+ b+ c )2=a 2+c 2+b 2+2a b+2bc+2ca特别提醒:利用乘法公式进行整式的运算时注意“思维顺序”是:“一看二套三计算”。
§12.4 整式的除法一、单项式除以单项式法则:单项式相除,只要将它们的系数与系数相除,相同字母的幂相除,只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。