七年级(上)期末数学模拟试题(含答案)
- 格式:doc
- 大小:315.50 KB
- 文档页数:11
七年级上册数学期末模拟试卷(含答案)一、选择题1.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>02.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1第2行 -2,3第3行 -4,5,-6第4行 7,-8,9,-10第5行 11,-12,13,-14,15……按照上述规律排列下去,那么第10行从左边数第5个数是()A.-50 B.50 C.-55 D.553.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n个图中黑色正方形纸片的张数为()….A.4n+1 B.3n+1 C.3n D.2n+14.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.1115.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到A n,则△OA2A2019的面积是()A .504B .10092C .10112D .10096.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个B .2个C .3个D .4个7.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式8.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°9. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm10.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .32 11.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( )A .30B .35︒C .40D .4512.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .313.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .14.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020 15.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( )A .49B .40C .16D .916.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .13C .25cmD .30cm17.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-18.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣819.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”.第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .25320.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+21.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a ,则这个两位数为( )A .a ﹣50B .a +50C .a ﹣20D .a +2022.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一B .方案二C .方案三D .不能确定23.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强24.下列运算中正确的是( ) A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=25.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >026.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-127.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2728.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .629.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条30.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .94【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.2.A解析:A 【解析】 【分析】分析可得,第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数. 【详解】解:第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负. 所以第10行第5个数的绝对值为:1095502⨯+=, 50为偶数,故这个数为:-50. 故选:A . 【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.3.D解析:D 【解析】 【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果. 【详解】第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片, 第3个图中有7张黑色正方形纸片, …,依次类推,第n 个图中黑色正方形纸片的张数为2n+1, 故选:D . 【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.D解析:D 【解析】 【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数. 【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个, 第②个图案中“●”有:1+4×(1+2)=13个, 第③个图案中“●”有:1+5×(2+2)=21个, 第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D . 【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.5.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.6.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.7.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.8.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.9.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.10.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.11.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()39018020x x---=解得35x=故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.12.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.13.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.C解析:C【解析】【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值.【详解】11a =-,212a a =-+=-1,323a a =-+=-2,434a a =-+=-2,5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102=, ∴2020a 的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.15.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m 2﹣mn-mn+ n 2=28-12,即 m 2﹣2mn+n 2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..16.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm,底面直径等于30πcm,∴底面周长=3030ππ⋅=cm,∴BC=20cm,AC=12×30=15(cm),∴AB2222201525AC BC+=+=(cm).答:它需要爬行的最短路程为25cm.故选:C.【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.17.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514-故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.18.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.19.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.20.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x元,则提高30%后的标价为(130%)x+元;打9折出售,则售价为(130%)90%x+,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.21.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b ,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a 表示出b ,然后写出即可.【详解】解:设这个两位数的十位数字为b ,由题意得,2ab =10a ,解得b =5,所以,这个两位数是10×5+a =a +50.故答案为B .【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.22.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m (1-10%)30%=0.37m ;方案二降价0.2m+m (1-20%)15%=0.32m ;方案三降价0.2m+m (1-20%)20%=0.36m ;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..23.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.25.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C 、b a<0,故本选项不合题意; D 、ab <0,故本选项不合题意.故选:A .【点睛】 本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.26.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C27.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27. 故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.28.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键.29.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条.故选:A.【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.30.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.。
浙教版七年级(上)期末数学模拟试卷(一)一、选择题(每小题3分,共30分)1.计算:|0﹣2019|=( )A. 0B. ﹣2019C. 2019D. ±20192.几个同学在公园里玩、发现一个源亮的“古董”、甲:它有10个面乙:它由24条棱丙:它有8个面是正方形、2个面是多边形丁:如果把它们的侧面展开、是一个长方形、这个长方形有八种顔色、挺好看,通过这四个同学的对话、从几何体的名称来看、这个“古董”的形状可能是( )A. 八棱柱B. 十棱柱C. 二十四棱柱D. 棱锥3.已知∠α=60°32’,则∠α的余角是( )A. 29°28’B. 29°68’C. 119°28’D. 119°68’4.√81 的平方根是( )A. 3B. ±3C. ±9D. 95.下列各式中,去括号正确的是( )A. a +(b -c )=a -b -cB. a -(b +c )=a -b +cC. a +2(b +c )=a +2b +cD. a -2(b -c )=a -2b +2c6.若代数式4x -5与 2x−12 的值相等,则x 的值是( )A. 1B. 32C. 23D. 27.如图,实数a 和b 在数轴上的对应点如图所示,则下列式子中错误的是( )A. a +b <0B. a ﹣b <0C. ab >0D. a b <18.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a 2b 则图2中纸盒底部长方形的周长为( )A. 4abB. 8abC. 4a +bD. 8a +2b9.点A ,B ,C 在同一直线上,已知AB =3cm ,BC =1cm ,则线段AC 的长是( )A. 2cmB. 3cmC. 4cmD. 2cm 或4cm10.观察算式,探究规律:当n =1时,S 1=13=1=12;当n =2时,S 2=13+23=9=32;当n =3时,S 3=13+23+33=36=62;当n =4时,S 4=13+23+33+43=100=102;…那么S n 与n 的关系为( )A. 14n 4+12n 3B. 14n 4+12n 2C. 14n 2(n +1)2D. 12n (n +1)2 二、填空题(每小题3分,共18分)11. 2018年至2019上半年,累计来北流铜石岭旅游人数达130400人,把它精确到万位,用科学记数法表示为________.12.如图,已知,OE 平分∠AOB ,OF 平分∠BOC ,∠EOF =65°,则∠AOC =________度13.按照下面程序计算:若输入x 的值为﹣2,则输出的结果为________.14.一个实数的两个平方根分别是a +3和2a -5,则这个实数是________.15.若 −x +2y =5 ,则 7−3x +6y =________.16.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为________.三、解答题(共3题;共22分)17.计算:(9分)(1)3−(−7)+(−2)(2)(−1)2019+(16−34)×(−12)(3)−32÷32−√8318. (8分)(1)5(x −6)=−4x −3 ;(2)2x+13=1+1−10x 6 .19.(5分)先化简,再求值(a ﹣6b )﹣2(2a +3b )+b ,其中a = 23 ,b =﹣1.四、解答题(共6题;共50分)20.为了解用电量的多少,小月在九月初连续几天同一时刻观察家里电表显示的度数,记录如下:请问:(1)小月家哪一天用电量最多,用了多少度?(2)小月家这六天的总用电量是多少?(3)如果每度电的价格是0.53元,估计小月家这个月的电费是多少?(一个月以30天计算).21.已知|a|=7, b2=36且|ab|=−ab,求:(1)a,b的值;(2)当a<b时,计算(a+b)2019−(a−b)2的值.22.(1)已知4的算术平方根为a,﹣27的立方根为b,最大负整数是c,则a=________,b=________,c=________;(2)将(1)中求出的每个数表示在数轴上.(3)用“<”将(1)中的每个数连接起来.23.为喜迎祖国70华诞,某校计划购买牵牛花、孔雀草、鸡冠花共1500盆布置校园,营造喜庆祥和的节日氛围. 经市场调查,收集到三种鲜花的单价信息:(1)若购买牵牛花x盆,孔雀草y盆,请列式表示购买这1500盆鲜花所需费用;(2)当x=500,y=800时,求购买这1500盆鲜花共花多少元?24.光华中学在运动会期间准备为参加前导队的同学购买服装(前导队包括花束队、彩旗队和国旗队)其中花束队有60名同学,彩旗队有30名同学,国旗队有10名同学,已知花束队的服装与彩旗队的服装单价比为4:3,国旗队的服装单价比彩旗队的服装单价多5元。
广东省深圳市2023-2024学年七年级(上)期末考试数学模拟卷02答案与解析一.选择题(共10小题,满分30分,每小题3分)1.﹣2的相反数是()A.2B.﹣2C.D.【分析】利用相反数的定义判断即可.【解答】解:﹣2的相反数是2.故选:A.2.台湾岛是我国第一大岛,面积35800平方千米,在世界大岛中列第38位.将35800用科学记数法表示为()A.3.58×104B.3.58C.3.58×105D.0.358×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将35800用科学记数法表示是3.58×104.故选:A.3.我校要了解学生的课外作业负担情况,你认为下列抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查七年级全体学生D.随机调查七、八、九年级学生各50名【分析】利用抽样调查应具有全面性以及随机性,进而得出答案.【解答】解:∵我校要了解学生的课外作业负担情况,∴抽样方法中比较合理的是随机调查七、八、九年级学生各50名.故选:D.4.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.5.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1D.3a2b﹣3ba2=0【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.6.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=b D.若x=y,则=【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若a=b,则ac=bc,正确,不合题意;C、若=,则a=b,正确,不合题意;D、若x=y,则=,a≠0,故此选项错误,符合题意.故选:D.7.有理数a、b、c在数轴上所对应的点如图所示,则下列结论正确的是()A.a+b<0B.a+b>0C.a+c<0D.b+c>0【分析】先根据数轴判断出﹣4<b<﹣3<﹣1<a<0<1<c<2,再结合有理数的加法法则逐一判断即可.【解答】解:由数轴知,﹣4<b<﹣3<﹣1<a<0<1<c<2,∴a+b<0,a+c>0,b+c<0,故选:A.8.若a2+3a﹣4=0,则2a2+6a﹣3=()A.5B.1C.﹣1D.0【分析】将已知条件变形可得a2+3a=4,然后将2a2+6a﹣3变形为2(a2+3a)﹣3后代入数值计算即可.【解答】解:∵a2+3a﹣4=0,∴a2+3a=4,∴2a2+6a﹣3=2(a2+3a)﹣3=2×4﹣3=5,故选:A.9.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.+2=D.﹣2=【分析】根据“每3人乘1车,最终剩余2辆车;若每2人共乘1车,最终剩余9个人无车可乘”,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:+2=.故选:C.10.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算:|﹣5|=5.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.若﹣2a2m b与a4b n﹣1是同类项,则2m﹣n=2.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,根据有理数的减法,可得答案案.【解答】解:∵﹣2a2m b与a4b n﹣1是同类项,∴2m=4,n﹣1=1,m=2,n=2.2m﹣n=2×2﹣2=2,故答案为:2.13.已知x=﹣1是方程﹣2(x﹣a)=4的解,则a的值为1.【分析】把x=﹣1代入方程计算即可求出a的值.【解答】解:把x=﹣1代入方程得:﹣2(﹣1﹣a)=4,去括号得:2+2a=4,解得a=1,故答案为:1.14.A、B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是1cm或9cm.【分析】由已知条件知A,B,C三点在同一直线上,做本题时应考虑到A、B、C三点之间的位置,分情况可以求出A,C两点的距离.【解答】解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故答案为:1cm或9cm.15.如图图形都是由同样大小的小钢珠按一定规律排列的,按照此规律排列下去,第40个图形有小钢珠820颗.【分析】根据图形变化规律可知,第n个图形有个小球,据此规律计算即可.【解答】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……,照此规律,第n个图形有个小球,当n=40时,小球个数为,故答案为:820.三.解答题(共7小题,满分55分)16.(5分)由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【解答】解:这个组合体的三视图如下:17.(7分)解方程:(1)2x﹣(x+10)=6x;(2)1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,解得:x=﹣2;(2)去分母得:6﹣9x+15=2+10x,移项合并得:19x=19,解得:x=1.18.(8分)计算:(1)计算:﹣14﹣;(2)先化简,后求值:5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)],其中x=﹣,y=﹣3.【分析】(1)先算乘方,再算乘除,后算加减,有括号先算括号里边的;(2)先去小括号,再去中括号,最后合并同类项,进行计算即可解答.【解答】解:(1)﹣14﹣=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0;(2)5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)]=5x2﹣5xy﹣(5x2﹣6y+3xy+6y)=5x2﹣5xy﹣5x2+6y﹣3xy﹣6y=﹣8xy,当x=﹣,y=﹣3,原式=﹣8×(﹣)×(﹣3)=﹣12.19.(8分)在疫情期间,某县城为了保障学校学生的正常学习,需每天抽取不低于总学生人数的30%进行核酸抽检.为了更好地统计每天抽测的学生人数,医务人员以每天抽测2000人为标准,超过的人数记作正,不足的人数记作负.下表是该县城学校一周核酸抽检情况的记录(单位:人):星期一二三四五与标准的差/人+21+16﹣10﹣11﹣26(1)该县城哪天抽检的学生人数最多?哪天抽检的最少?分别是多少人?(2)聪明的你,帮医务人员计算下这周该县城总共核酸抽检了学生多少人?【分析】(1)根据正数和负数的实际意义列式计算即可;(2)根据正数和负数的实际意义列式计算即可.【解答】解:(1)2000+21=2021(人),2000﹣26=1974(人),即该县城星期一抽检的学生人数最多,最多为2021人;星期五抽检的学生人数最少,最少为1974人;(2)2000×5+(21+16﹣10﹣11﹣26)=10000﹣10=9990(人),即这周该县城总共核酸抽检了学生9990人.20.(8分)某校随机抽取部分学生,就”对自己做错题进行整理、分析、改正”这一学习习惯进行问卷调查,选项为:很少、有时、常常、总是(每人只能选一项);调查数据进行了整理,绘制成部分统计图如图:请根据图中信息,解答下列问题:(1)该调查的总人数为200,a=12%,b=36%,“常常”对应扇形的圆心角的度数为108° ;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中”总是”对错题进行整理、分析、改正的学生有多少名?【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;用360°乘以“常常”的人数所占比例.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.【解答】解:(1)∵44÷22%=200(名),∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.故答案为:200、12、36、108°;(2)常常的人数为:200×30%=60(名),补全图形如下:.(3)∵2000×36%=720(名),∴“总是”对错题进行整理、分析、改正的学生约有720名.21.(9分)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?【分析】(1)设调入x名工人,根据“调整后车间的总人数是调入工人人数的3倍多4人“得:16+x =3x+4,可解得答案;(2)设y名工人生产螺栓,由“1个螺栓需要2个螺母”,可得240y×2=400(22﹣y),即可解得答案.【解答】解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得x=6,∴调入6名工人;(2)由(1)知,调入6名工人后,车间有工人16+6=22(名),设y名工人生产螺栓,则(22﹣y)名工人生产螺母,∵每天生产的螺栓和螺母刚好配套,∴240y×2=400(22﹣y),解得y=10,∴22﹣y=22﹣10=12,答:10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.22.(10分)(1)如图1,已知点C、D为线段AB上两点,且AB=4AD=5BC,点M和点N分别是线段AC和BD的中点.若线段AB=20cm,则线段AD=5cm,BC=4cm,MN= 4.5cm.(2)已知OC、OD为从∠AOB顶点出发的两条射线,∠AOB=5∠BOC且∠AOB=120°,射线OM和射线ON分别平分∠AOC、∠BOD.①如图2,若OC、OD均为∠AOB内的两条射线,且∠AOB=4∠AOD,求∠MON的度数.②如图3,若OC为∠AOB外的一条射线,且∠MON=20°,则∠AOD=64或16°.【分析】(1)根据题意可得AD=5cm,BC=4cm,计算出BD=AB﹣AD=15cm,AC=AB﹣BC=16cm,再根据中点的定义得出,,最后根据MN=AB﹣BN﹣AM即可得出答案;(2)①先计算∠BOC=24°,根据角平分线的定义得出∠AOM=∠COM=48°,,进而得出答案;②分两种情况:当OD在∠AOB内部时,当OD在∠AOB外部时,分别计算即可.【解答】解:(1)∵AB=20cm,AB=4AD=5BC,∴AD=5cm,BC=4cm,∴BD=AB﹣AD=20﹣5=15cm,AC=AB﹣BC=20﹣4=16cm,∵点M和点N分别是线段AC和BD的中点,∴,,∴,故答案为:5;4;4.5;(2)①∵∠AOB=5∠BOC=120°,∴∠BOC=24°,∴∠AOC=120°﹣24°=96°,∵OM平分∠AOC,∴∠AOM=∠COM=48°,∵∠AOB=4∠AOD=120°,∴∠AOD=30°,∴∠BOD=90°,∠DOM=18°,∵ON平分∠BOD,∴,∴∠MON=45°﹣18°=27°;②当OD在∠AOB内部时,∵∠AOC=120°+24°=144°,OM平分∠AOC,∴∠AOM=∠COM=72°,∴∠BOM=72°﹣24°=48°.∵∠MON=20°,∴∠BON=28°.∵ON平分∠BOD,∴∠DON=∠BON=28°,∴∠DOM=8°,∴∠AOD=72°﹣8°=64°;当OD在∠AOB外部时,∠DON=∠BON=20°+48°=68°,∵∠AOM=∠COM=72°,∴∠AON=72°﹣20°=52°,∴∠AOD=68°﹣52°=16°.。
七年级(上)期末数学模拟试卷(一)一.选择题(共10小题,满分20分)1.2的倒数是()A.2 B.C.﹣D.﹣22.﹣1+3的结果是()A.﹣4 B.4 C.﹣2 D.23.下列各数中负数是()A.﹣(﹣2)B.﹣|﹣2| C.(﹣2)2D.﹣(﹣2)34.下列各式的计算,正确的是()A.﹣12x+7x=﹣5x B.5y2﹣3y2=2C.3a+2b=5ab D.4m2n﹣2mn2=2mn5.四舍五入得到的近似数6.49万,精确到()A.万位B.百分位C.百位D.千位6.若方程2x+a﹣14=0的解是x=﹣2,则a的值为()A.10 B.7 C.18 D.﹣187.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度5500000米,则数字5500000用科学记数法表示为()A.55×105B.5.5×106C.0.55×105D.5.5×1058.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对9.有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,②ab>0,③a+b<0,④a﹣b<0,⑤a<|b|,⑥﹣a>﹣b正确的有()A.2个B.3个C.4个D.5个10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178二.填空题(共8小题,满分16分,每小题2分)11.若a和b互为相反数,c和d互为倒数,则的值是.12.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB=155°,则∠COD=,∠BOC=.13.计算:15°37′+42°51′=.14.如图,OA表示方向,∠AOB=.15.若3x6y m+1和﹣x3n y2是同类项,则3m+n的值是.16.如果∠A的余角是26°,那么∠A的补角为°.17.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.18.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用枚棋子.三.解答题(共2小题,满分17分)19.(6分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.20.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.四.解答题(共2小题,满分15分)21.(10分)解方程:(1)4x﹣2(x+0.5)=17 (2)﹣=1.22.(8分)如图是由几个相同的小正方体搭成的几何体,(1)搭成这个几何体需要个小正方体;(2)画出这个几何体的主视图和左视图;(3)在保持主视图和左视图不变的情况下,最多可以拿掉n个小正方体,则n=,请在备用图中画出拿掉n个小正方体后新的几何体的俯视图.23.(8分)如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.六.解答题(共1小题,满分8分,每小题8分)24.(8分)(1)试验探索:如果过每两点可以画一条直线,那么请下面三组图中分别画线,并回答问题:第(1)组最多可以画条直线;第(2)组最多可以画条直线;第(3)组最多可以画条直线.(2)归纳结论:如果平面上有n(n≥3)个点,且每3个点均不在一条直线上,那么最多可以画出直线条.(作用含n的代数式表示)(3)解决问题:某班50名同学在毕业后的一次聚会中,若每两人握一次手问好,则共握次手;最后,每两个人要互赠礼物留念,则共需件礼物.25.(8分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.八.解答题(共1小题,满分8分,每小题8分)26.(8分)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?参考答案一.选择题1.解:2的倒数是,故选:B.2.解:﹣1+3=2,故选:D.3.解:A、﹣(﹣2)=2是正数,B、﹣|﹣2|=﹣2,是负数,C、(﹣2)2=4是正数,D、﹣(﹣2)3=8是正数,故选:B.4.解:A、正确.B、错误.5y2﹣3y2=2y2;C、错误.不是同类项不能合并;D、错误.不是同类项不能合并;故选:A.5.解:近似数6.49万精确到百位.故选:C.6.解:把x=﹣2代入方程2x+a﹣14=0得:﹣4+a﹣14=0,解得:a=18,故选:C.7.解:将度5500000用科学记数法表示为5.5×106.故选:B.8.解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故选:C.9.解:根据数轴上点的位置得:b<0<a,且|a|<|b|,可得ab<0,a+b<0,a﹣b>0,a<|b|,﹣a<﹣b,则正确的有3个,故选:B.10.解:根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选:B.二.填空题(共8小题,满分16分,每小题2分)11.解:根据题意得:a+b=0,cd=1,则原式=0﹣2011=﹣2011.故答案为:﹣201112.解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=155°,∴∠COD=180°﹣∠AOB=180°﹣155°=25°,∠BOC=∠DOB﹣∠COD=90°﹣25°=65°.故答案为:25°,65°.13.解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.14.解:,OA表示:北偏东28°方向,∠AOB=90°﹣28+45°=107°北偏东28°,107°15.解:由题意得:3n=6,m+1=2,解得:n=2,m=1,故3m+n=5.故答案为:2.16.解:∵∠A的余角是26°,∴∠A=90°﹣26°=64°,则∠A的补角为180°﹣64°=116°,故答案为:116.17.解:设制作大花瓶的x人,则制作小饰品的有(20﹣x)人,由题意得:12x×5=10(20﹣x)×2,解得:x=5,20﹣5=15(人).答:要安排5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.故答案是:5.18.解:“上”字共有四个端点每次每个端点增加一枚棋子,而初始时内部有两枚棋子不发生变化,所以第n个字需要4n+2枚棋子.故答案为:4n+2.三.解答题(共2小题,满分17分)19.解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.20.解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.四.解答题(共2小题,满分15分)21.解:(1)去括号得:4x﹣2x﹣1=17移项合并得:2x=18解得:x=9(2)去分母得:12﹣3x﹣4x﹣2=6移项合并得:7x=4解得:x=22.解:(1)这个几何体由10小正方体组成,故答案为:10(2)这个几何体的主视图和左视图如图a,b所示:(3)最多可以拿掉1个小正方体,即n=1,新的几何体的俯视图如备用图所示:故答案为:1.五.解答题(共1小题,满分8分,每小题8分)23.解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数为60°.(7分)六.解答题(共1小题,满分8分,每小题8分)24.解:(1)根据图形得:如图:(1)试验观察如果每过两点可以画一条直线,那么:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.(2)探索归纳:如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n﹣1=条直线.(用含n的代数式表示)(3)解决问题:某班50名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握1225次手.最后,每两个人要互赠礼物留念,则共需2450件礼物.故答案为1225,2450.七.解答题(共1小题,满分8分,每小题8分)25.解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.八.解答题(共1小题,满分8分,每小题8分)26.解:设这本名著共有x页,根据题意得:36+(x﹣36)=x,解得:x=216.答:这本名著共有216页.11。
鲁教版2022-2023学年七年级数学上册期末模拟测试题(附答案)一、选择题(共48分)1.在,π,,3.,,0,1010010001…(每两个1之间,逐次多一个0)中,无理数的个数有()A.2个B.3个C.4个D.5个2.下列曲线中,表示y是x的函数的是()A.B.C.D.3.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25B.25或20C.20D.154.已知函数y=(m﹣2)+1是一次函数,则m的值为()A.±B.C.±2D.﹣25.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°6.如图,AC∥BD,AB交CD于点O,过O的直线EF分别交AC、BD于E、F,DF=CE,则图中全等的三角形的对数共有()A.1对B.2对C.3对D.4对7.一次函数y=kx+b的图象如图所示,则一次函数y=bx﹣k的图象所过象限为()A.一、三、四象限B.二、三、四象限C.一、二、三象限D.一、二、四象限8.已知点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)9.如图,在平面直角坐标系中,点A的坐标是(﹣3,0),点B的坐标是(0,4),点M是OB上一点,将△ABM沿AM折叠,点B恰好落在x轴上的点B'处,则点M的坐标为()A.(,0)B.(0,)C.(,0)D.(0,)10.如图,AB=AC,点B关于AD的对称点E恰好落在CD上,∠BAC=124°,AF为△ACE中CE边上的中线,则∠ADB的度数为()A.24°B.28°C.30°D.38°11.如图,矩形ABCD的顶点A(﹣3,0),B在x轴的负半轴上,顶点C(﹣1,3),D在第二象限内,对角线AC与BD的交点为M.将矩形ABCD沿x轴正方向滚动(无滑动),使其一边保持落在x轴上,点M的对应点分别为M1,M2,M3,…,则M2021的坐标为()A.(5050,1)B.(5050,)C.(5050,1)D.(5050,)12.如图,在△ABC中,∠ACB=45°,AD⊥BC,BE⊥AC,AD与BE相交下点F,连接并延长CF交AB于点G,∠AEB的平分线交CG的延长线于点H,连接AH.则下列结论:①∠EBD=45°;②AH=HF;③△ABD≌△CFD;④CH=AB+AH;⑤BD=CD﹣AF.其中正确的有()个.A.5B.4C.3D.2二、填空题(共24分)13.如图,将三角形纸片ABC沿着中线AD折叠,使点B落在点B′处,交BC于点E,若△AEC的面积为S1,△DEB′的面积为S2,则S1S2(填“>“、“<“或“=”)14.如图,Rt△ABC中,AB=4,BC=3,以Rt△ABC的三边为直径画3个半圆,则阴影部分的面积为.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为.16.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向下平移3个单位后,得到一个正比例函数的图象,则m的值为.17.如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿堤岸走到电线杆B旁,接着再往前走相同的距离,到达C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点.小明测得C、D间的距离为90米,则在A点处小明与游艇的距离为米.18.若a、b、c为三角形的三边长,且a、b满足|a﹣3|+(b﹣2)2=0,则第三边长c的取值范围是.三、解答题(共78分)19.计算与求值:(1)(﹣2+x)3=﹣216;(2);(3)若2a﹣4与3a+1是同一个正数的平方根,求a的值.20.在平面直角坐标系中,A(0,2),B(6,1),C(5,3),如图所示:(1)以x轴为对称轴,作△ABC的轴对称图形△DEF;(2)求△ABC的面积;(3)在x轴上找一点M,使M点到A、B两点的距离之和最小,请你通过作图观察,直接写出点M的坐标;21.如图,△ABC中,∠ABC=2∠C,BE平分∠ABC交AC于E、AD⊥BE于D,求证:(1)AC﹣BE=AE;(2)AC=2BD.22.如图,在长方形ABCD中,DC=9.在DC上找一点E,沿直线AE把△AED折叠,使D点恰好落在BC上,设这一点为F,若△ABF的面积是54,求DE的长.23.某公司要印制产品宣传材料,甲印刷厂提出:每份材料收2元印制费,另收1500元制版费;乙印刷厂提出:每份材料收3.5元印制费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印制数量x(份)之间的关系式;(2)若公司需印制800份宣传材料,通过计算说明选择哪家印刷厂比较合算?(3)若该公司拟拿出7000元用于印制宣传材料.选择哪家印刷厂印制宣传材料多些?24.如图,在△ABC中,∠A=90°,AB=AC,点D在射线AC上(点D不与点A重合)(1)若点D在边AC时,延长AC至点G,CG=AD,过点D作DE⊥BD,交BC于点E,过G作HG⊥AG交DE延长线于点H.求证:BD=DH.(2)过点A作AF⊥BD,垂足为F,射线AF交BC于点N,点Q在射线CA上,且∠QNC=∠ANB.求证:AQ=CD.25.如图,一次函数y=x+3的图象分别与x轴和y轴交于C,A两点,且与正比例函数y =kx的图象交于点B(﹣1,m).(1)求正比例函数的表达式;(2)若点D是x轴上的点,且△OBD的面积和△OBA的面积相等,求满足条件的点D 的坐标.参考答案一、选择题(共48分)1.解:,3.,,0是有理数,π,,1010010001…(每两个1之间,逐次多一个0)是无理数,故选:B.2.解:在某个变化过程中,有两个变量x、y,一个量变化,另一个量也随之变化,当x每取一个值,y就有唯一的值与之相对应,这时我们就把x叫做自变量,y叫做因变量,y 是x的函数,只有选项C中的“x每取一个值,y不是唯一值与之相对应”,其它选项中的都不是“有唯一相对应”的,所以选项C中的y表示x的函数,故选:C.3.解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:A.4.解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.5.解:∵CD平分∠BCA,∴∠ACD=∠BCD=∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,6.解:全等三角形有△AEO≌△BFO,△CEO≌△DFO,△ACO≌△BDO,共3对,故选:C.7.解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,﹣k>0,∴一次函数y=bx﹣k图象第一、二、三象限,故选:C.8.解:∵点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,∴a﹣1=﹣2,解得a=﹣1,所以,a+5=﹣1+5=4,所以,点P的坐标为(4,﹣2).故选:A.9.解:∵将△ABM沿AM折叠,∴AB=AB',又A(﹣3,0),B(0,4),∴AB=5=AB',∴点B'的坐标为:(2,0),设M点坐标为(0,b),则B'M=BM=4﹣b,∵B'M2=B'O2+OM2,∴(4﹣b)2=22+b2,∴b=,∴M(0,),故选:B.10.解:如图,∵△AED与△ABD关于AD对称,∴AB=AE,∠ADB=∠ADE,∠BAD=∠DAE,∴AC=AE,∵AF是△ACE的中线,∴∠CAF=∠EAF,AF⊥CE,∴∠DAF=∠BAC=62°,∵∠AFD=90°,∴∠ADF=90°﹣62°=28°,∴∠ADB=∠ADF=28°,故选:B.11.解:∵长方形ABCD的顶点A(﹣3,0),顶点C(﹣1,3),∴M1的坐标为(,1),M2的坐标为(+,),M3的坐标为(+,1),M4的坐标为(+,),•M2021的坐标为(,1),∴M2021的坐标为(5050,1).故选:A.12.解:设EH与AD交于点M,如图,∵∠ACB=45°,BE⊥AC,∴∠EBD=90°﹣∠ACD=45°.故①正确;∵AD⊥BC,∠EBD=45°,∴∠BFD=45°.∴∠AFE=∠BFD=45°.∵BE⊥AC,∴∠F AE=∠AFE=45°.∴△AEF为等腰直角三角形.∵EM是∠AEF的平分线,∴EM⊥AF,AM=MF.即EH为AF的垂直平分线.∴AH=HF.∴②正确;∵AD⊥BC,∠ACD=45°,∴△ADC是等腰直角三角形,∴AD=CD.同理,BD=DF.在△ABD和△CFD中,,∴△ABD≌△CFD(SAS).∴③正确;∵△ABD≌△CFD,∴CF=AB.∵CH=CF+HF,由②知:HF=AH.∴CH=AB+AH.∴④正确;∵BD=DF,CD=AD,又∵DF=AD﹣AF,∴BD=CD﹣AF.∴⑤正确.综上,正确结论的个数为5个.故选:A.二、填空题(共24分)13.解:∵AD是△ABC的中线,∴S△ABD=S△ADC,由折叠的性质可知,S△AB′D=S△ABD,∴S△ADC=S△AB′D,∴S1=S2,故答案为:=.14.解:设分别以BC,AB,AC三边为直径的三个半圆面积分别表示为S1、S2、S3,则有:S1=π()2=,同理,S2=,S3=,∵BC2+AB2=AC2,∴S1+S2=S3;∴S阴影=S1+S2+S△ABC﹣S3=S△ABC,则S阴影=S△ABC=AB•BC=×4×3=6.故答案为6.15.解:(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y随x的增大而减小,因此,2﹣m<0,解得,m>2,故答案为:m>2.16.解:将一次函数y=2x+m﹣1的图象向下平移3个单位后,得到y=2x+m﹣1﹣3,把(0,0)代入,得到:0=0+m﹣1﹣3,解得m=4.故答案为:4.17.解:在△ABS与△CBD中,,∴△ABS≌△CBD(ASA),∴AS=CD,∵CD=90米,∴AS=CD=90米,答:在A点处小明与游艇的距离为90米,故答案为:90米.18.解:∵a、b满足|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,∴a=3,b=2.∵a、b、c为三角形的三边长,∴3﹣2<c<3+2,即1<c<5.故答案为:1<c<5.三、解答题(共78分)19.解:(1)∵(﹣2+x)3=﹣216,∴﹣2+x=﹣6,解得x=﹣4;(2)∵,=4,∴2x+1=±2,解得x=或﹣;(3)∵2a﹣4与3a+1是同一个正数的平方根,∴2a﹣4+3a+1=0或2a﹣4=3a+1,∴解得:a=或a=﹣5.20.解:(1)如图,△DEF即为所求;(2)△ABC的面积=3×6﹣×1×6﹣×1×2﹣×1×5=;(3)如图点M即为所求,点M的坐标(4,0).21.证明:(1)∵BE平分∠ABC,∴∠CBE=∠ABC,∵∠ABC=2∠C,∴∠EBC=∠C,∴BE=CE,∴AC﹣BE=AC﹣CE=AE;(2)延长BD至N,使DN=BD,连接AN.∵AD⊥BE,∴AD垂直平分BN,∴AB=AN,∴∠N=∠ABN=∠NBC=∠C,∴AN∥BC,∴∠C=∠NAC,∴∠NAC=∠N,∴AE=EN,∵BE=EC,∴AC=BN=2BD.22.解:在长方形ABCD中,DC=9,所以,AB=DC=9,∵△ABF的面积为54,∴×9•BF=54,解得BF=12,由勾股定理得,AF===15,∵△AED沿AE折叠点D落在BC上点F处,∴AD=AF=15,DE=EF,∴CF=BC﹣BF=15﹣12=3,设DE=x,则EF=x,EC=9﹣x,在Rt△CEF中,由勾股定理得,CF2+EC2=EF2,即32+(9﹣x)2=x2,解得x=5,∴DE=5.23.解:(1)由题意可得,y甲=2x+1500,y乙=3.5x;(2)当x=800时,y甲=2×800+1500=3100,y乙=3.5×800=2800,∵3100>2800,∴若公司需印制800份宣传材料,选择乙印刷厂比较合算;(3)当y甲=7000时,7000=2x+1500,得x=2750,当y乙=7000时,7000=3.5x,得x=2000,∵2750>2000,∴若该公司拟拿出7000元用于印制宣传材料.选择甲印刷厂印制宣传材料多些.24.(1)证明:∵CG=AD,∴CG+DC=AD+DC,∴DG=AC=AB,∵DE⊥BD,∴∠BDE=∠A=90°,∴∠ADB+∠GDH=∠ADB+∠ABD,∴∠ABD=∠GDH,在△ABD和△GDH中,,∴△ABD≌△GDH(ASA),∴BD=DH;(2)证明:如图,过C作CE⊥AC交AN延长线于点E,∴∠ECQ=90°,∵∠BAC=90°,AB=AC,∴∠ACB=45°,∴∠ECN=45°,∴∠QCN=∠ECN,∵∠QNC=∠ANB.∠ENC=∠ANB.∴∠QNC=∠ENC.在△QNC和ENC中,,∴△QNC≌ENC(ASA),∴CQ=CE,∵AF⊥BD,∴∠AFD=∠BAC=90°,∴∠ADB+∠F AD=∠ADB+∠ABD,∴∠ABD=∠F AD,在△ABD和△CAE中,,∴△ABD≌△CAE(ASA),∴AD=CE;∵CQ=CE,∴AD=CQ,∴AD+DQ=CQ+CQ,∴AQ=CD.25.解:(1)由一次函数与正比例函数交于点B(﹣1,m),当x=﹣1时,得出y=2,即m=2,将B(﹣1,2)代入y=kx,得﹣k=2,即k=﹣2.答:y=﹣2x.(2)∵A为y=x+3与y轴的交点,∴A为(0,3),∵B(﹣1,2),∴△OBA的面积为3×1÷2=1.5;又∵△OBD的面积与△OBA的面积相同,∴△OBD的面积为1.5,∵△OBD的高为2,∴OD=1.5×2÷2=1.5;答:D(1.5,0)或(﹣1.5,0).。
数学七年级上册数学期末模拟试卷(含答案)一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短3.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 5.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查6.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 7.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .18.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .39.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,210.如图的几何体,从上向下看,看到的是( )A .B .C .D .11.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.15.单项式22ab -的系数是________.16.若523m xy +与2n x y 的和仍为单项式,则n m =__________.17.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.18.如图,在数轴上点A ,B 表示的数分别是12,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)21.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.22.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.23.若代数式x2+3x﹣5的值为2,则代数式2x2+6x﹣3的值为_____.24.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg),每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为_____.三、压轴题25.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344 ++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.27.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?28.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.29.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.30.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.31.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.B解析:B 【解析】 【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可. 【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.5.B解析:B 【解析】 【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确; C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误; D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误. 故选:B . 【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.6.B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.8.A【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.9.D解析:D 【解析】 【分析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.A解析:A 【解析】 【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可. 【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A 符合题意, 故选:A . 【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.11.B解析:B 【解析】 【分析】由CB =4cm ,DB =7cm 求得CD=3cm ,再根据D 是AC 的中点即可求得AC 的长 【详解】∵C ,D 是线段AB 上两点,CB =4cm ,DB =7cm , ∴CD =DB ﹣BC =7﹣4=3(cm ),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答. 12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;15.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.16.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9. 17.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 18.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.19.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.20.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.21.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.22.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°. 解析:40°【解析】解:由角的和差,得:∠AOC =∠AOD -∠COD =140°-90°=50°.由余角的性质,得:∠COB =90°-∠AOC =90°-50°=40°.故答案为:40°.23.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键24.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.三、压轴题25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健26.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=,故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯,()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 27.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.【详解】解:(1)∵数轴上点A 表示的数为6,∴OA =6,则OB =AB ﹣OA =4,点B 在原点左边,∴数轴上点B 所表示的数为﹣4;点P 运动t 秒的长度为5t ,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P 所表示的数为:6﹣5t ,故答案为﹣4,6﹣5t ;(2)①点P 运动t 秒时追上点Q ,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.28.(1)3456;45678S S=+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n项的钢管数.【详解】(1)3456;45678S S=+++=++++(2)方法不唯一,例如:12S=+1233S=+++123444S=+++++12345555S=+++++++(3)方法不唯一,例如:()()12 (2)S n n n n=++++++()()()()=.....12.....1112n n n nn n n n+++++++=+++()312n n=+【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.29.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长,代入3AC -4AB 即可得到结论.【详解】(1)A ,B ,C 三点的位置如图所示:.(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.②3AC -4AB 的值不变.当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.30.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==,P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.31.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°. 【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP 的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON ﹣∠PAO ﹣∠PBO ;②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,证明:延长AP 交ON 于点D ,∵∠ADB 是△AOD 的外角,∴∠ADB=∠PAO+∠AOD ,∵∠AP B 是△PDB 的外角,∴∠APB=∠PDB+∠PBO ,∴∠APB=∠MON+∠PAO+∠PBO ;(2)设∠MON=2m°,∠APB=2n°,∵OC 平分∠MON ,∴∠AOC=∠MON=m°,∵PQ 平分∠APB ,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠O QP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。
人教版(七年级)初一上册数学期末模拟测试题及答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .346.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.估算15在下列哪两个整数之间( ) A .1,2 B .2,3 C .3,4 D .4,5 11.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=112.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.17.﹣30×(1223-+45)=_____. 18.已知23,9n mn aa -==,则m a =___________.19.若方程11222m x x --=++有增根,则m 的值为____. 20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.五边形从某一个顶点出发可以引_____条对角线. 22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、解答题25.计算: (1)()7.532-⨯-(2(383+3233-- 26.解下列一元一次方程()1()23x x +=- ()2()113124x x --+=27.解方程:131 142x xx+-+=-28.知图①,在数轴上有一条线段AB,点,A B表示的数分别是2-和11-.(1)线段AB=____________;(2)若M是线段AB的中点,则点M在数轴上对应的数为________;(3)若C为线段AB上一点.如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B'处,若15AB B C''=,求点C在数轴上对应的数是多少?29.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;商场优惠方案甲全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?30.某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间.这个学校的住宿生有多少人?四、压轴题31.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.32.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2023-2024学年第一学期浙江省宁波市七年级期末数学模拟试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2023的倒数是( )A. B. 3202 C.D. 2. 5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上.用科学记数法表示1300000是( )A .B .C .D .3. 下列化简正确的是( )A. B. C. D. 4. 下列说法正确的是( )A .的平方根是B .没有立方根C .的立方根是D .的算术平方根是5.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或56. 已知a ,b 都是实数,若,则的值是()A .B .C .1D .20237. 若整数a ,则整数a 是( )A. 2B. 3C. 4D. 58. 如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD =2,则线段AB 的长是( )A .10B .15C .20D .259. 某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A .不赚不赔B .赚9元C .赔18元D .赚18元2023-12023-1202351310⨯51.310⨯61.310⨯71.310⨯87x y x y -=-222a b ab ab-=222945a b ba a b -=541m m -=428-82±42()2210a b ++-=()2023a b +2023-1-a <<10. 如图,在同一平面内,,,点为反向延长线上一点(图中所有角均指小于的角).下列结论:①;②;③;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有6个小题,每小题4分,共24分)11.如图是时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于 °.12 . 已知是方程的解,则m 的值是 .13. 如图放置一副三角板,若,则∠AOD 的度数是 °.14 .如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD =2,则线段AB 的长是_________15 .如图,已知线段,动点P 从点A 由发以每秒3cm 的速度向点B 运动,同时动点Q 从点B 出发以每秒2cm 的速度向点A运动,有一个点到达终点时另一点也随之停止运动.90AOB COD ∠=∠=︒AOF DOF ∠=∠E OF 180︒COE BOE ∠=∠180AOD BOC ∠+∠=︒90BOC AOD ∠-∠=︒180COE BOF ∠+∠=︒2x =423m x -=13BOC COD ∠=∠40cm AB =当时,则运动时间t = s .16 .有一个数值转换机,其原理如图所示,若第一次输入的x 的值是1,可发现第一次输出的结果是4,第二次输出的结果是2,,那么第100次输出的结果是 .三、解答题(第17-19题各6分,第20题7分,第21题8分,第22题9分,第23题10分,共52分)17.计算:(1);(2).18.先化简,再求值:,其中,.19. 解方程:(1)3(x -2)+8x =5(2)20.小桂和小依玩猜数游戏,他们的对话如图所示,请按照他们的对话内容解决下列问题:15cm PQ =⋯223-++-()12512236⎛⎫-+⨯- ⎪⎝⎭()()22223449a ab a ab +-+-12a =3b =-250.536x x --=(1)设小桂出生的月份为,人口数为,用含,的代数式表示小桂所说的结果.(2)若小桂所说的结果为123,求小桂出生的月份和他家的人口数.21 .学校举行迎新活动,需要购买A 种灯笼15盏,B 种灯笼20盏,已知A 种灯笼的单价比B 种灯笼的单价多9元,购买A 种灯笼所花费用与B 种灯笼所花费用相同.(1)请问A 、B 两种灯笼的单价分别是多少?总共需多少费用?(2)由于灯笼布置设计方案改变,在总经费不变的情况下,还需购买单价为20元/盏的C 种灯笼,因此需要减少A ,B 两种灯笼的购买数量,其中B 种灯笼的减少数量是A 种灯笼减少数量的2倍,若三种灯笼都要买,如何购买可以买到最多数量的灯笼?22.已知数轴上点A 表示的数为6,B 是数轴上在原点左侧的一点,且A ,B 两点间的距离为10。
数学七年级上册数学期末模拟试卷(含答案)一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个3.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4 a b c ﹣2 3 …A .4B .3C .0D .﹣24.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 5.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .87.方程312x -=的解是( )A .1x =B .1x =-C .13x =- D .13x = 8.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 9.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m -10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.16.5535______.17.化简:2xy xy +=__________.18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.20.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.用度、分、秒表示24.29°=_____.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.计算:(1)()7.532-⨯-(2(383+3233--26.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣2,y =1.27.某水果店用500元购进甲、乙两种水果共50kg ,这两种水果的进价、售价如下表所示 品名甲种 乙种 进价(元/kg)7 12 售价(元/kg) 10 16 ()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg ,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)28.解方程:2112233x x -+=. 29.已知A =3x 2+x+2,B =﹣3x 2+9x+6. (1)求2A ﹣13B ;(2)若2A﹣13B与32C互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.30.根据语句画出图形:如图,已知、、A B C三点.(1)画线段AB;(2)画射线AC;(3)画直线BC;(4)取AB的中点P,连接PC.四、压轴题31.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.33.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =,12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x a x x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x a x a =⎧⎨-=-⎩ ,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确 ④方程组解得25-15x a y a =⎧⎨=-⎩由题意得:x-3a=5把25-15x a y a=⎧⎨=-⎩代入得 25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键3.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.4.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B .【点睛】 本题考查了倒数的概念,熟练掌握是解题的关键.6.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D .【点睛】本题考查数字类的规律探索.7.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A .考点:解一元一次方程.8.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 9.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m 时水位变化记作0.6m +,∴水位下降0.8m 时水位变化记作0.8m -,故选:C .【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.A解析:A【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°.故选:B .【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.二、填空题13.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中 ,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 17..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.18.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 19.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.20.270°-3α【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程解析:270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程式,求解即可.【详解】设∠DOE=x ,根据OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,∴∠BOD=4x ,∠AOC=∠COD=α-x ,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.21.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n 个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n 个图案中的基础图形个数表达式是解题的关键.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″. 故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、解答题25.(1)13.5;(2)9.【解析】【分析】(1)根据有理数的四则混合运算解答;(2)根号二次根式的四则运算进行解答.【详解】解:(1) ()7.532-⨯-=7.56+=13.5;(3--=()23+3233⨯-+=6+23233-+=9.【点睛】本题考查的是有理数以及二次根式的计算问题,解题关键按照四则运算去计算即可.26.﹣x 2y ,﹣4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy=2x 2y +2xy ﹣3x 2y +3xy ﹣5xy=﹣x 2y ,当x =﹣2,y =1时,原式=﹣(-2)2×1=﹣4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(1) 购进甲种水果20千克,乙种水果30千克;(2) 175元.【解析】【分析】(1)设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据总价格甲种水果单价×购进甲种水果质量+乙种水果单价×购进乙种水果质量即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=每千克甲种水果利润×购进甲种水果质量+每千克乙种水果利润×购进乙种水果质量,净利润=总利润-其它销售费用,代入数据即可得出结论.【详解】解:()1设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据题意得:()7x 1250x 500+-=,解得:x 20=,则50x 30-=.答:购进甲种水果20千克,乙种水果30千克; ()()()210720*********(-⨯+-⨯=元).1800.150175(-⨯=元).答:水果店销售完这批水果获得的利润是175元.【点睛】本题考查一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题关键.28.12x =. 【解析】【分析】 根据解一元一次方程的步骤依次计算可得.【详解】解:去分母,得:3(21)24x x -+=,去括号,得:6324x x -+=,移项,得:6432x x -=-,合并同类项,得:21x =,系数化为1,得:12x =. 【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.29.(1)7x 2﹣x+2;(2)﹣14x 2+2x ﹣1;(3)﹣577 【解析】【分析】(1)根据题意列出算式2(3x 2+x+2)﹣13(﹣3x 2+9x+6),再去括号、合并即可求解; (2)由已知等式知2A ﹣13B+32C -=0,将多项式代入,依此即可求解; (3)由题意得出x =2是方程C =2x+7a 的解,从而得出关于a 的方程,解之可得.【详解】解:(1)2A ﹣13B =2(3x 2+x+2)﹣13(﹣3x 2+9x+6) =6x 2+2x+4+x 2﹣3x ﹣2 =7x 2﹣x+2;(2)依题意有:7x 2﹣x+2+32C -=0, 14x 2﹣2x+4+C ﹣3=0,C =﹣14x 2+2x ﹣1;(3)∵x =2是C =2x+7a 的解,∴﹣56+4﹣1=4+7a ,解得:a=﹣577.故a的值是﹣577.【点睛】本题考查了整式的加减、相反数和一元一次方程的解法,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.30.(1)见解析;(2)见解析;(3)见解析;(4)见解析.【解析】【分析】(1)由题意根据线段的画法连接AB即可;(2)由题意根据射线的画法以A为端点画射线AC即可;(3)由题意根据直线的定义画出直线BC即可;(4)由题意测量出AB的长度,取AB的中点为P点,并连接PC即可.【详解】解:(1)如图所示AB是所求线段;(2)如图所示AC是所求射线;(3)如图所示直线BC是所求直线;(4)如图所示P为AB中点,PC为所连接线段.【点睛】本题考查直线、射线、线段,正确区分直线、线段、射线是解题关键.四、压轴题31.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.32.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.33.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
人教版七年级上册数学期末模拟考试(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.59.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.3.在关于x、y的方程组2728x y mx y m+=+⎧⎨+=-⎩中,未知数满足x≥0,y>0,那么m的取值范围是_________________.4.若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是________.5.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、D5、D6、D7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、105°3、-2≤m<34、2m≤-5、24.6、2或-8三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、m=4,n=﹣1.3、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)证明略;(2)∠AED+∠D=180°,略;(3)110°5、(1)75,54;(2)补图见解析;(3)600人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
七 年 级 上 册 期 末 数 学 试 卷(1)一、精心选一选1、下列式子正确的是( D )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 2、多项式12++xy xy 是( D )A .二次二项式B .二次三项式C .三次二项式D .三次三项式3、桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( A )A .①②③④B .①③②④C .②④①③D .④③①②4、一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( A )5、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( C )A .3瓶B .4瓶C .5瓶D .6瓶 二、填空题6、52xy -的系数是 51- 。
7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第6次后剩下的绳子的长度是641米。
图3 O O O O A B C D8、如图点A 、O 、B 在一条直线上,且∠AOC =50°,OD 平分∠AOC 、,则图中∠BOD= 155 度。
-|c -b |化简9、有理数a ,b ,c 在数轴上的位置如图,式子|a |-|b|+|a+b|结果为___-b+c ____10、如图:A 地和B 地之间途经C 、D 、E 、F 四个火车站,且相邻两站之间的距离各不相同,则售票员应准备___30____种火车票.11、用小立方块搭一几何体,使得它的从正面看和从上面看 形状图如图所示,这样的几何体最少要____9__个立方块,最 多要____13___个立方块.12、已知A=2x 2+3xy -2x -1,B=-x 2+xy-1,若3A +6B 的值与x 的值无关,则y 的值___52__三、对号入座13、(1)把下列各整式填入相应圈里ab +c ,2m ,ax 2+c ,-ab 2c ,a, 0, -x 21,y +2.(1)单项式:2m ,-ab 2c ,a ,0,-x 21 多项式:ab +c ,ax 2+c ,y +2AOBC D 单项式多项式C 地在A 2×2, 3×2, 4×3, 5×4,……,(1) 同一行中两个算式的结果怎样?(2)算式2005+20042005和2005×20042005的结果相等吗?(3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。
七年级上册数学期末模拟试题及答案解答(1)一、选择题1.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于()A.49B.40C.16D.92.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有(l)所示是一个33智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是⨯幻方,请你类比图(l)推算图(3)中P处所对应的数字是()一个未完成的33A.1 B.2 C.3 D.4=++,则称n为“好3.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”.例如:31111数”的个数共有()个A.1 B.2 C.3 D.44.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是()A.2019B.2018C.2016D.20135.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形6.下列四个选项中,不是正方体展开图形的是()A .B .C .D .7.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海8. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm9.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3210.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -11.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 12.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .813.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .314.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9416.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <017.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >018.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度B .7度C .8度D .9度19.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-20.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.9121.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为()A.a﹣50 B.a+50 C.a﹣20 D.a+2022.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )A.1985 B.-1985 C.2019 D.-2019 23.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多()A.方案一B.方案二C.方案三D.不能确定24.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是()A.中B.国C.梦D.强25.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块26.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >027.“比a 的3倍大5的数”用代数式表示为( ) A .35a + B .3(5)a +C .35a -D .3(5)a -28.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-129.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2230.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将两个式子相减后即可求解. 【详解】 两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..2.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.3.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.4.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.5.C解析:C 【解析】 【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.6.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.8.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.9.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.10.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.11.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.12.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.18.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度), ∴估计他家6月份日用电量为9度,故选:D .【点睛】 本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.19.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S 即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.20.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.21.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B .【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.22.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.23.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m (1-10%)30%=0.37m ;方案二降价0.2m+m (1-20%)15%=0.32m ;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..24.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.26.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b <0,a >0,且|b|>|a|,A 、a -b >0,故本选项符合题意;B 、a +b <0,故本选项不合题意;C 、b a<0,故本选项不合题意; D 、ab <0,故本选项不合题意.故选:A .【点睛】 本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.27.A解析:A【解析】【分析】根据题意可以用代数式表示比a 的3倍大5的数,本题得以解决.【详解】解:比a 的3倍大5的数”用代数式表示为:3a +5,故选A .【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.28.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C29.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.30.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.。
济南市2022-2023七年级上册期末数学模拟卷满分150分时间120分钟一、选择题(本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项符合题目要求)1.2023-的倒数是()A.2023B.12023C.2023- D.12023-2.据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为()A.8.55×106B.8.55×107C.8.55×108D.8.55×1093.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.5B.4C.8D.94.在数轴上表示数﹣1和2014的两点分别为A 和B ,则A 和B 两点间的距离为()A.2013B.2014C.2015D.20165.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查全国中学生视力和用眼卫生情况C.调查黄河的水质情况D.检查我国“神舟十三号”飞船各零部件的情况6.实数a 、b 在数轴上的位置如图所示,下列各式成立的是A.a<0bB.a ﹣b >0C.ab >0D.a+b >07.下列说法中,正确的是()A.234x -的系数是34B.232a π的系数是32C.23ab 的系数是3aD.235xy 的系数是358.若单项式22m x y 与33n x y -是同类项,则m n +的值是()A.5B.1- C.1D.5-9.如果线段5cm AB =,线段4cm BC =,那么A ,C 两点之间的距离是()A.9cmB.1cmC.1cm 或9cmD.以上答案都不对10.当1x =时,多项式32ax bx +-的值是2,则当=1x -时,该多项式的值是()A.6- B.2- C.0D.211.将矩形ABCD 沿AE 折叠,得到如图的图形.已知50CEB '∠=︒,则AEB ∠等于()A.50︒B.65︒C.75︒D.130︒12.某校举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为()A.62n +B.68n +C.44n + D.8n二、填空题(本大题共6小题,每题4分,共24分)13.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m 记为50m +,则向上浮15m 记为______m .14.若代数式576x -与3112x --的值互为相反数,则x =______.15.对于任意有理数a ,b ,规定一种新的运算*221a b a b a b =+--+,则()*35-=_______16.已知当1x =时,22ax bx +的值是3,则当2x =时,2ax bx +=_________.17.将数轴上一点P 先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P 表示的数是__________.18.已知∠AOB =80°,在其顶点O 处引一条射线OC ,且∠BOC =30°,则∠AOC =________;三、解答题(本大题共9个小题,请写出文字说明、证明过程或演算步骤)19.如图是由7个相同的小立方体组成的一个几何体,请画出这个几何体从正面、左面、上面看到的形状图.20.计算(1)()()()1251439--+---(2)()()3116248⎛⎫÷---⨯- ⎪⎝⎭21.(1)先化简,再求值()()2252224x x --+,其中2x =-;(2)已知 4x =-,12y =,求()22222253422xy xy xy x y x y xy ⎡⎤---+-⎣⎦.22.解方程(1)()315x x --=;(2)21232x x -+=+123.如图,线段4AB =cm ,延长线段AB 到C ,使1BC =cm ,再反向延长AB 到D ,使3AD =cm ,E 是AD 的中点,F 是CD 的中点,求CD 和EF 的长度.24.某商场从厂家批发电视机进行零售,批发价格与零售价格如表:电视机型号甲乙批发价(元/台)15002500零售价(元/台)25004000若商场购进甲、乙两种型号的电视机共50台,用去10万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“新年”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利15%,求甲种型号电视机打几折销售?25.如图,由点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =90°,OF 平分∠BOC ,OE 平分∠AOD ,若∠EOF =170°,求∠COD 的度数.26.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“社科类、文史类、生活类、小说类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)将条形统计图补充完整;(3)图(2)中“小说类”所在扇形的圆心角的度数为______度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.27.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD =.(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.①求两点第一次相遇时,与点B 的距离;②设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值)济南市2022-2023七年级上册期末数学模拟卷答案解析满分150分时间120分钟一、选择题(本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项符合题目要求)1.2023-的倒数是()A.2023B.12023 C.2023- D.12023-【答案】B【解析】【分析】先化简绝对值,根据倒数的定义求解即可.【详解】解:20232023-=,2023的倒数是1 2023,故选:B【点睛】本题考查了绝对值的定义和倒数的定义,互为倒数的两个数乘积为1.2.据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为()A.8.55×106B.8.55×107C.8.55×108D.8.55×109【答案】C【解析】【详解】8.55亿=855000000=8.55×108,故选C.3.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.5B.4C.8D.9【答案】B【解析】【分析】根据俯视图可判断底层的个数,根据主视图和左视图可判断第二层的个数.【详解】解:由俯视图可知底层有3个小正方体,由主视图和左视图可知第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选:B.【点睛】本题查了学生对三视图掌握程度和灵活运用能力,以及学生的空间想象能力.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.4.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013B.2014C.2015D.2016【答案】C【解析】【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【详解】解:2014﹣(﹣1)=2015,故A,B两点间的距离为2015.故选:C.5.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查全国中学生视力和用眼卫生情况C.调查黄河的水质情况D.检查我国“神舟十三号”飞船各零部件的情况【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、测某批次汽车的抗撞击能力,适合抽样调查,故选项不符合题意;B、调查全国中学生视力和用眼卫生情况,适合抽样调查,故选项不符合题意;C、调查黄河的水质情况,适合抽样调查,故选项不符合题意;D、检查我国“神舟十三号”飞船各零部件的情况,适合全面调查,故选项符合题意;故选:D.【点睛】本题主要考查的是调查的两种方式:普查与抽样调查的区别用法,掌握其适用范围是解题的关键.6.实数a、b在数轴上的位置如图所示,下列各式成立的是A.a <0bB.a ﹣b >0C.ab >0D.a+b >0【答案】A 【解析】【详解】试题分析:由图可知,﹣2<a <﹣1,0<b <1,因此,A 、a<0b,正确,故本选项正确;B 、a ﹣b <0,故本选项错误;C 、ab <0,故本选项错误;D 、a+b <0,故本选项错误.故选A .7.下列说法中,正确的是()A.234x -的系数是34 B.232a π的系数是32C.23ab 的系数是3a D.235xy 的系数是35【答案】D 【解析】【分析】根据系数的定义逐项分析即可.【详解】A .234x -的系数是34-,故原说法不正确;B .232a π的系数是32π,故原说法不正确;C .23ab 的系数是3,故原说法不正确;D .235xy 的系数是35,正确;故选D .【点睛】本题考查了单项式的概念,不含有加减运算的整式叫做单项式,单独的一个数或一个字母也是单项式.单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.8.若单项式22m x y 与33n x y -是同类项,则m n +的值是()A.5B.1- C.1D.5-【答案】A 【解析】【分析】先根据同类项的定义求出m 、n ,再相加即可.【详解】解:∵单项式22m x y 与33n x y -是同类项,∴3m =,2n =,∴325m n +=+=.故选A .【点睛】本题考查了同类项的定义,熟练掌握同类项的定义是解答本题的关键.同类项定义中的两个“相同”:①所含字母相同;②相同字母的指数相同.9.如果线段5cm AB =,线段4cm BC =,那么A ,C 两点之间的距离是()A.9cmB.1cmC.1cm 或9cmD.以上答案都不对【答案】D 【解析】【分析】题中没有说明A 、B 、C 三点是否在同一直线,所以A ,C 两点之间的距离有多种可能.【详解】解:当A ,B ,C 三点在一条直线上时,分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论.①点B 在A 、C 之间时,549cm AC AB BC =+=+=;②点C 在A 、B 之间时,541cm AC AB BC =-=-=,所以A 、C 两点间的距离是9cm 或1cm ,当A ,B ,C 三点不在一条直线上时,A ,C 两点之间的距离有多种可能;故选:D .【点睛】本题考查了两点间的距离,属于基础题,关键是分类讨论A ,B ,C 三点是否在一条直线上.10.当1x =时,多项式32ax bx +-的值是2,则当=1x -时,该多项式的值是()A.6-B.2- C.0D.2【答案】A 【解析】【分析】由已知先求出a b +的值,再整体代入即可得到答案.【详解】解:∵当1x =时,多项式32ax bx +-的值为2,∴22a b +-=,∴4a b +=,当=1x -时,32ax bx +-2a b =---()2a b =-+-42=--6=-,故选:A .【点睛】本题考查代数式求值,解题的关键是掌握整体代入思想的应用.11.将矩形ABCD 沿AE 折叠,得到如图的图形.已知50CEB '∠=︒,则AEB ∠等于()A.50︒B.65︒C.75︒D.130︒【答案】B 【解析】【分析】先根据邻补角的定义求出BEB '∠,根据折叠前后对应部分相等得AEB AEB '∠=∠,即可求解.【详解】解:∵50CEB '∠=︒,∴18050130BEB '∠=︒-︒=︒.∵AEB '△是AEB △沿AE 折叠而得,∴1652AEB AEB BEB ''∠=∠=∠=︒.故选B .【点睛】本题考查了角的计算,以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的对应量相等.12.某校举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为()A.62n +B.68n +C.44n + D.8n【答案】A 【解析】【分析】观察不难发现,后一个图形比前一个图形多6根火柴棒,然后根据此规律写出第n个图形的火柴棒的根数即可.【详解】解:第1个图形有8根火柴棒,即(6×1+2)根;第2个图形有14根火柴棒,即(6×2+2)根;,第3个图形有20根火柴棒,即(6×3+2)根⋯,第n个图形有(62n+)根火柴棒.故选:A.【点睛】本题是对图形变化规律的考查.查出前三个图形的火柴棒的根数,并观察出后一个图形比前一个图形多6根火柴棒是解题的关键.二、填空题(本大题共6小题,每题4分,共24分)13.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为50m+,则向上浮15m记为______m.【答案】15-【解析】【分析】根据正负数的意义,直接写出答案即可.【详解】解:因为潜水艇向下潜50m记为50m+,所以向上浮15m记为15m-,故答案为:15-.【点睛】本题考查了正数和负数,根据相反意义的量正确地确定符号的正负是解题的关键.14.若代数式576x-与3112x--的值互为相反数,则x=______.【答案】1 2【解析】【分析】根据相反数的概念得到关于x的方程,求得x的值.【详解】解:依题意得:576x-+3112x--=05x-7+6-3(3x-1)=04x=2x=12【点睛】本题考查了解一元一次方程.解一元一次方程常见的过程有去括号、移项、系数化为1等.15.对于任意有理数a ,b ,规定一种新的运算*221a b a b a b =+--+,则()*35-=_______【答案】33【解析】【分析】根据*221a b a b a b =+--+计算即可.【详解】()()()*22353535192535133-=-+---+=++-+=,故答案为33.【点睛】本题考查了新定义,能够根据题意列出式子是解题的关键.16.已知当1x =时,22ax bx +的值是3,则当2x =时,2ax bx +=_________.【答案】6【解析】【分析】把1x =代入代数式求出2a b +的值,然后整体代入2x =时的代数式进行计算即可得解.【详解】解:当1x =时,22221123ax bx a b a b +=⨯+⨯=+=,当2x =时,()22224222236ax bx a b a b a b +=⨯+⨯=+=+=⨯=.故答案为:6.【点睛】本题考查了代数式求值,整体思想的利用是解本题的关键.17.将数轴上一点P 先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P 表示的数是__________.【答案】6【解析】【分析】设开始点P 表示的数为x ,由于在数轴上的点向左移时点表示的数要减小,向右移动时,点表示的数要增大,于是得到x+3-5=4,然后解一次方程即可.【详解】设点P 原来表示的数为x ,根据题意,得:x +3−5=4,解得:x =6,即原来点P 表示的数是6,故答案为6.18.已知∠AOB =80°,在其顶点O 处引一条射线OC ,且∠BOC =30°,则∠AOC =________;【答案】50°或110°【解析】【分析】分为两种情况:①当OC在∠BOA内部时,②当OC在∠BOA外部时,根据角之间的关系求出即可.【详解】解:分为两种情况:①当OC在∠BOA内部时,∠AOC=∠AOB-∠BOC=80°-30°=50°;②当OC在∠BOA外部时,∠AOC=∠AOB+∠BOC=80°+30°=110°.故答案为:50°或110°.【点睛】本题考查了角的有关计算的应用,主要考查了学生的计算能力,注意要进行分类讨论.三、解答题(本大题共9个小题,请写出文字说明、证明过程或演算步骤)19.如图是由7个相同的小立方体组成的一个几何体,请画出这个几何体从正面、左面、上面看到的形状图.【答案】见解析【解析】【分析】根据三视图的定义结合图形画图即可.【详解】如图所示,【点睛】本题考查作图-三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.20.计算(1)()()()1251439--+---(2)()()3116248⎛⎫÷---⨯- ⎪⎝⎭【答案】(1)8(2)52-【解析】【小问1详解】()()()1251439--+---171439=--+3139=-+8=【小问2详解】()()3116248⎛⎫÷---⨯- ⎪⎝⎭()()116848⎛⎫=÷---⨯- ⎪⎝⎭122=--52=-【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.(1)先化简,再求值()()2252224x x --+,其中2x =-;(2)已知 4x =-,12y =,求()22222253422xy xy xy x y x y xy ⎡⎤---+-⎣⎦.【答案】(1)218x -,14-;(2)5-.【解析】【分析】(1)去括号后,合并同类项即可化简,然后代入x 的值计算即可;(2)先去中括号,再去小括号,然后合并同类项即可化简,再代入x ,y 的值计算即可.【详解】解:(1)原式2251048x x =---218x =-,当2x =-时,原式()221841814=--=-=-;(2)原式()22222253422xy xy xy x y x y xy =--++-22222253422xy xy xy x y x y xy =-+-+-25xy =;把 4x =-,12y =代入得:原式()2115420524⎛⎫=⨯-⨯=-⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.22.解方程(1)()315x x --=;(2)21232x x -+=+1【答案】(1)4x =(2)8x =【解析】【小问1详解】解:∵()315x x --=,∴335x x --=,∴353x x -=+,∴28x =,∴4x =;【小问2详解】解:∵21232x x -+=,∴()()22132x x -=+,∴4236x x -=+,∴4362x x -=+,∴8x =.【点睛】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.23.如图,线段4AB =cm ,延长线段AB 到C ,使1BC =cm ,再反向延长AB 到D ,使3AD =cm ,E 是AD 的中点,F 是CD 的中点,求CD 和EF 的长度.【答案】8CD =cm , 2.5EF =cm【解析】【分析】结合图形和题意,利用线段的和差知CD AD AB BC =++,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF DF DE =-,即可求得EF 的长度.【详解】解:3418CD AD AB BC =++=++=cm ;∵E 是AD 的中点,F 是CD 的中点,∴118422DF CD ==⨯=cm ,113 1.522DE AD ==⨯=cm .∴4 1.5 2.5EF DF DE =-=-=cm .【点睛】本题考查了数轴上两点间的距离和中点的定义,解题的关键是运用数形结合思想.24.某商场从厂家批发电视机进行零售,批发价格与零售价格如表:电视机型号甲乙批发价(元/台)15002500零售价(元/台)25004000若商场购进甲、乙两种型号的电视机共50台,用去10万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“新年”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利15%,求甲种型号电视机打几折销售?【答案】(1)25,25;(2)六四折【解析】【分析】(1)设商场购进甲型号电视机x 台,则乙型号电视机(50﹣x )台,根据“商场购进甲、乙两种型号的电视机共50台,用去10万元”列出方程并解答.(2)设甲种型号电视机打a 折销售,根据“两种电视机销售完毕,商场共获利15%”列出方程并解答.【详解】解:(1)设商场购进甲型号电视机x 台,则乙型号电视机(50﹣x )台,则1500x+2500(50﹣x )=100000.解得x =25.答:商场购进甲型号电视机25台,乙型号电视机25台;(2)设甲种型号电视机打a 折销售,依题意得:25×(4000×0.75﹣2500)+25×(2500×0.1a ﹣1500)=(25×1500+25×2500)×15%解得a =6.4答:甲种型号电视机打六四折销售.【点睛】考核知识点:一元一次方程的应用.理解销售中数量关系是关键.25.如图,由点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =90°,OF 平分∠BOC ,OE 平分∠AOD ,若∠EOF =170°,求∠COD 的度数.【答案】∠COD =70°【解析】【分析】先利用周角的含义求解100,AOE BOF Ð+Ð=°再结合角平分线的定义证明∠EOD +∠COF =100°,再结合角的和差关系可得答案.【详解】解:∵∠AOB =90°,∠EOF =170°∴∠AOE +∠FOB =36090170°-°-°=100°.∵OF 平分∠COB ,OE 平分∠AOD ,∴∠COF =∠FOB ,∠AOE =∠EOD .∴∠EOD +∠COF =100°.∴∠COD =170°-100°=70°.【点睛】本题考查的是角平分线的定义,角的和差关系,证明∠EOD +∠COF =100°是解本题的关键.26.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“社科类、文史类、生活类、小说类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)将条形统计图补充完整;(3)图(2)中“小说类”所在扇形的圆心角的度数为______度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【答案】(1)200(2)见解析(3)126(4)300【解析】【分析】(1)用喜欢“文史类”书籍的人数除以其占比即可得到调查人数;(2)先求出喜欢“生活类”和“小说类”书籍的人数,然后补全统计图即可;(3)用360度乘以喜欢“小说类”书籍的人数占比即可得到答案;(4)用2000乘以样本中喜欢“社科类”书籍的人数占比即可得到答案.【小问1详解】÷=名学生,解:由题意得此次共调查了7638%200故答案为:200;【小问2详解】⨯=(人),解:喜欢“生活类”书籍的人数为20015%30---=(人),喜欢“小说类”书籍的人数为20024763070补全统计图如下:【小问3详解】解:由题意得图2中“小说类”所在扇形的圆心角为70360126200︒⨯=︒,故答案为:126;【小问4详解】由题意得估计该校喜欢“社科类”书籍的学生人数242500300200⨯=(人).【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.27.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD =.(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.①求两点第一次相遇时,与点B 的距离;②设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值)【答案】(1)-14(2)①两点第一次相遇时,与点B 的距离是3个单位长度;②3.5s ,4.5s ,5s ,7s【解析】【分析】(1)根据2CD =,7AC CD =求出AC =14,即可得到答案;(2)①设运动时间为x 秒.由题意列方程316x x +=,求出x 值,再计算BP 或BQ 即可得到距离;②分四种情况:当两点没有相遇时,当两点第一次相遇后,当点P 到达点C 返回且未追上点Q 时,当点P 追上点Q 后,分别列方程求解.【小问1详解】解:∵2CD =,7AC CD =.∴AC =14,∵点C 为原点,∴点A 表示的数是-14,故答案为:-14;【小问2详解】解:①设运动时间为x 秒.由题意得316x x +=,解得4x =,∵AB =14-5=9,∴3493BP AP AB =-=⨯-=,答:两点第一次相遇时,与点B 的距离是3个单位长度.②当两点没有相遇时,3162t t +=-,解得t =3.5;当两点第一次相遇后,3162t t +=+,解得t =4.5;当点P 到达点C 返回且未追上点Q 时,31422t t -+=-,解得t =5;当点P 追上点Q 后,31422t t --=-,解得t =7;故t 为3.5s ,4.5s ,5s ,7s 时,PQ 的值为2.【点睛】此题考查了数值上的动点问题,数轴上两点之间的距离,一元一次方程与动点问题,正确理解题意列出一元一次方程求解是解题的关键.。
七年级上册数学期末模拟试卷(含答案)一、选择题1.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)32.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯C .66.04810⨯D .60.604810⨯3.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x+= C .10040062x x += D .1004006x 2x+= 6.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .77.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1D .(-1)n x 2n +18.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<011.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.16.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.17.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 18.36.35︒=__________.(用度、分、秒表示)19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.﹣213的倒数为_____,﹣213的相反数是_____. 21.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.22.方程x +5=12(x +3)的解是________. 23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、解答题25.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使50AOC ∠=︒,将一直角三角板的直角项点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.()1如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.此时BON ∠=__ 度;()2如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由;()3将图1中的三角板绕点O 按每秒5︒的速度沿逆时针方向旋转一周,在旋转的过程中,若第t 秒时,,,OA OC ON 三条射线恰好构成相等的角,则t 的值为__ (直接写出结果). 26.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 27.已知x ay b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则3a b -=_____.28.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种 5 8 乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元? 29.先化简,再求值:()()223321325x x x x --+---,其中1x =-. 30.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF 平分∠AOD ,∠AOE=36°.(1)求∠COD 的度数; (2)求∠BOF 的度数.四、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
七年级(上)期末考试数学试卷一、选择题(每题3分,共36分)请将正确的答案填入下表:题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有( ).A .1B .2C .3D .42.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适. A .18℃~20℃ B .20℃~22℃ C .18℃~21℃ D .18℃~22℃ 3.多项式3x 2-2xy 3-21y -1是( ). A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 4.下面不是同类项的是( ). A .-2与21 B .2m 与2n C .b a 22-与b a 2D .22y x -与2221y x 5.若x =3是方程a -x =7的解,则a 的值是( ). A .4 B .7 C .10 D .736.在解方程123123x x -+-=时,去分母正确的是( ). A .3(x -1)-2(2+3x )=1 B .3(x -1)+2(2x +3)=1 C .3(x -1)+2(2+3x )=6 D .3(x -1)-2(2x +3)=67.如图1,由两块长方体叠成的几何体,从正面看它所得到的平面图形是( ).A .B .C .D .8.把图2绕虚线旋转一周形成一个几何体,与它相似的物体是 ( ). A .课桌 B .灯泡 C .篮球 D .水桶9.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有图1图2人数是x人,可列出方程().A.98+x=x-3 B.98-x=x-3C.(98-x)+3=x D.(98-x)+3=x-310.以下3个说法中:①在同一直线上的4点A、B、C、D只能表示5条不同的线段;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.说法都正确的结论是().A.②③ B.③ C.①② D.①11.用一副三角板(两块)画角,不可能画出的角的度数是().A.1350 B.750 C.550 D.15012.如图3,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P 为NA的中点,Q是AM的中点,则MN:PQ等于().A.1 B.2 C.3 D.4图3 Q PNM CBA二、填空题(每小题3分,共12分)13.请你写出一个解为x=2的一元一次方程.14.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是.15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.16.计算:77°53′26"+33.3°=______________.三、解答与证明题(本题共72分) 17.计算:(本题满分8分) (1)-2123+334-13-0.25;(4分) (2)22+2×[(-3)2-3÷12](4分)18.(本题满分8分)先化简,再求值,222963()3y x y x -++-,其中12-==y x ,.(4分)19.解下列方程:(本题满分8分) (1)231x x -=+(4分) (2)13312x x --=-(4分)20.(本题6分)如图所示,点C、D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB的长度.AC BE D21.(本题7分)下面是红旗商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你求出这台电脑的进价是多少(写出解答过程)22.(本题9分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(6分)(2)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?(3分)23.(本题7分)如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB的度数及AB的长.ABN MCOBAN MC OB AAOM B N C24.(本题满分9分)如图所示已知90AOB ∠=︒,30BOC ∠=︒,OM 平分AOC ∠,ON 平分BOC ∠; (1)︒=∠_____MON ;(2)如图∠AOB =900,将OC 绕O 点向下旋转,使∠BOC =02x ,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.(3) AOB α∠=,BOC β∠=,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求MON ∠的度数;并从你的求解中看出什么什么规律吗?(3分)QP图4BAO600AB图5PQ25.(本题10分)如图4,线段AB =20cm 。
(1)点P 沿线段AB 自A 点向B 点以2厘米/秒运动,同时点Q 沿线段BA 自B 点向A 点以3厘米/秒运动, 几秒钟后,P 、Q 两点相遇?(本题4分)(2)如图5,AO =PO =2cm ,∠POQ =600,现点P 绕着点O 以300/s 的速度顺时针旋转..一周后停止.....,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点也能相遇,求点Q 运动的速度.(本题6分).参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D C B C D A D D AC B二、填空题13.2x =4(答案不唯一), 14.24, 15.82, 16.0'"1111126, 三、解答题17.(1)原式=(-2123-13)+(334-14) …… 2分 =-22+324 =-1812…… 4分(2)原式=4+2(9-3×2) …… 2分=4+6=10 ……4分18. )32(36922x y x y -++-, = 229632y x y x -++- ……4分 =-6y +4x 2; ……6分当12-==y x ,时,原式=-6y +4x 2=-6×(-1)+4×22=6+16=22.……8分 19.(1)231x x -=+;解:移项得,2x -x =1+3,……2分 合并得, x =4. ……4分 (2)13312x x --=- 解:去分母得,6-(x -1)=2(3x -1),……2分 去括号得,6-x +1=6x -2,……3分 移项得,-x -6x =-2-6-1,30600S南北南北西东AB合并得,-7x =-9, 化系数为1得,x =97.……4分 20.因为C 、D 为线段AB 的三等分点 所以AC =CD =DB ……1分又因为点E 为AC 的中点,则AE =EC =12AC ……2分 所以,CD+EC=DB+AE……3分因为ED=EC+CD=9……4分 所以, DB+AE= EC+CD =ED=9 则AB =2ED =18.……6分或者设EC =x ,则AC =CD =DB =2x ,AB =6x ,……3分 因为ED =9,则有x +2x =9,解得x =3,……5分 则AB =6x =6×3=18.……6分21.设这台电脑的进价为x 元,由题意可列:……1分 5850×0.8-x =210,……4分 解得x =4470,……6分 答:这台电脑的进价为4470元.……7分22.(1)设当购买乒乓球x 盒时,两种优惠办法付款一样,由题意可知……1分 30×5+5×(x -5)= 5×30×0.9+x ×5×0.9,……4分去括号得,150+5x -25=135+4.5x 移项合并得,0.5x =10 化系数为1得,x =20. ……5分答:当购买乒乓球20盒时,两种优惠办法付款一样.……6分 (2)当购买30盒乒乓球时,去甲店购买要30×5+5(x -5) =150+5×25=275(元),……7分去乙店购买要5×30×0.9+x ×5×0.9=135+4.5×30=270元……8分 所以,去乙店购买合算.…………9分23.(1)能正确画出图形给4分(3)由题意可知30SAB ∠=︒,60SBA ∠=︒,180603090ASB ∠=︒-︒-︒=︒ AB =(12-8)×20=80千米 24.(1)45MON ∠=︒;……3分(2)能,因为∠AOB =900,∠BOC =02x , 所以∠AOC =900+02x ,……4分 因为OM 、 ON 平分∠AOC,∠BOC 的线所以∠MOC =21∠AOC =21(900+02x )=450+x 所以∠CON =21∠BOC =x ……5分所以∠MON =∠MOC -∠CON =450+x -x =450……6分 (3)能,因为∠AOB =α,∠BOC =β, 所以∠AOC =α+β,……7分 因为OM 、 ON 平分∠AOC,∠BOC 的线所以∠MOC =21∠AOC =21(α+β) 所以∠CON =21∠BOC =21β ……8分所以∠MON =∠MOC -∠CON =21(α+β)-21β =21α即12MON α∠=.……9分25.(1)设经过t s 后,点P 、Q 相遇,依题意可列 2t +3t =20, ……2分 解得,t =4 ……3分 答:经过4s 后,点P 、Q 相遇 ……4分(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为3060=2s 或83018060=+s , ……5分 设点Q 的速度为y m/s ,则有2y =20-4,解得,y =8, ……7分 解得 或8y =20, 解得y =2.5, ……9分答:点Q的速度为8m/s或2.5m/s.……10分11 / 11。