空间插值算法汇总
- 格式:docx
- 大小:12.37 KB
- 文档页数:5
空间插值方法汇总Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。
空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
一:距离加权反比法插值算法1:原理:设空间待插点为P(Xp,Yp,Zp),P点邻域内有已知散乱点Q i(x i,y i,z i),i=1,2,3….n;利用距离加权反比法对P点的属性值Zp进行插值。
其插值原理是待插点的属性值是待插点邻域内已知散乱点属性值的加权平均, 权的大小与待插点与邻域内散乱点之间的距离有关, 是距离的k(0<=k<=2)(k一般取2)次方的倒数。
其中:d i为待插点与其邻域内第i个点之间的距离。
2:克里金算法设研究区域为A, 区域化变量即欲研究的物理属性变量为{Z(x)∈A},x 表示空间位置(一维、二维或三维坐标), 在采样点x i(i=1,2,…n)处的属性值(或称为区域化变量的一次实现)为Z(x i)(i=1,2,…n),则根据普通克里金插值原理, 未采样点x0处的属性值Z(x0)估计值是n个已知采样点属性值的加权和, 即;λi为待求权系数。
假设区域化变量Z(x)在整个研究区域内满足二阶平稳假设:(1):Z(x)的数学期望存在且等于常数:E[Z(x)]=m(常数)(2):Z(x)的协方差Cov(x i,x j)存在,且只与两点之间的相对位置有关。
或满足本征假设(3)E[Z(x i)-Z(x j)]=0.(4)增量的方差存在且平稳:Var[Z(x i)-Z(x j)]= E[Z(x i)-Z(x j)]2经过无偏性要求:经推到可得:。
在无偏条件下使得估计方差达到最小,即其中:u 是拉格朗日算子。
可以得到求解权系数λi (i=1,2…n )的方程组:求出诸权系数λi (i=1,2…n )后,就可求出位采样点x 0处的属性值Z *( x 0).上述求解λi (i=1,2…n )的方程中的Cov (x i ,x j )若用变异函数表示时,其形式为:变异函数的定义为:由克里金插值所得的方差为:或。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
空间插值方法1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重,受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。
它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。
使用克里金插值需确定半变异函数的类型、步长、步数。
对于这种方法,原始的输入点可能会发生变化。
在数据点多时,结果更加可靠。
该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。
首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。
该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。
4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。
插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。
该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。
地理信息技术专业中的空间插值方法介绍地理信息技术专业中的空间插值方法是指通过对已有的地理信息数据进行分析和处理,以得到未知地点或像素点上的数值。
空间插值方法在地理信息系统中具有重要的应用价值,它能够对数据进行插值处理,填补数据缺失的区域,提高数据的空间分辨率,并为地理现象和趋势的研究提供有力支持。
本文将介绍地理信息技术专业中常用的空间插值方法及其原理。
一、反距离权重插值法反距离权重插值法(IDW)是地理信息技术专业中常用的一种插值方法。
它的原理是通过计算待插值点与已知点之间的距离关系,按照一定的权重来进行插值。
距离越近的点具有更大的权重,反之则权重较小。
IDW方法简单直观,适用于均匀分布的点数据。
然而,在处理非均匀分布的点数据时,IDW方法可能会产生较大的误差。
二、克里金插值法克里金插值法(Kriging)是一种以空间自相关性为基础的插值方法。
它通过对已知点的空间变异性进行分析,根据空间结构进行插值,能够更精确地估算未知点的值。
克里金插值方法利用样本点之间的空间关系,确定协方差函数,从而进行插值。
它能够量化空间变异性,并给出插值结果的置信度。
克里金插值法适用于具有明显空间相关性的数据。
三、三角网插值法三角网插值法(TIN)是一种基于地理信息系统中的三角网模型的插值方法。
它通过将地理空间划分为一系列不规则的三角形,根据三角形边界上的点来进行插值。
TIN方法可以克服均匀分布数据中的孔洞问题,对于不规则分布的数据具有较好的适应性。
然而,在处理大规模数据时,TIN方法的计算量较大。
四、径向基函数插值法径向基函数插值法(RBF)是一种基于径向基函数的插值方法。
它将待插值点与已知点之间的距离作为输入参数,利用径向基函数进行插值计算。
径向基函数可以为高斯函数、多孔径径向基函数等。
RBF 方法在处理不规则分布的数据时具有很好的性能,能够较精确地模拟数据的空间变异性。
然而,RBF方法对于大规模数据的计算量较大。
五、反距离加权插值法反距离加权插值法(IDW)是一种兼具反距离权重插值法和克里金插值法优点的方法。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
常见的插值方法及其原理插值是指在已知数据点的情况下,根据其中一种规则或算法,在这些数据点之间进行预测或估计。
常见的插值方法有:拉格朗日插值、牛顿插值、分段线性插值、样条插值和Kriging插值等。
1.拉格朗日插值方法:拉格朗日插值是一种基于多项式的插值方法。
它假设已知数据点的函数曲线可以由一个多项式来表示。
拉格朗日插值的原理是,通过确定多项式的系数,使多项式在已知数据点上满足给定的函数值。
具体地说,对于给定的一组已知数据点和对应的函数值,拉格朗日插值方法通过构造一个多项式,使得该多项式在每个数据点上的函数值等于给定的函数值。
然后,通过该多项式在插值点上的函数值来估计未知数据点的函数值。
2.牛顿插值方法:牛顿插值也是一种基于多项式的插值方法,其原理类似于拉格朗日插值。
它也是通过确定多项式的系数,使多项式在已知数据点上满足给定的函数值。
不同的是,牛顿插值使用了差商的概念,将插值多项式表示为一个累次求和的形式。
具体地说,对于给定的一组已知数据点和对应的函数值,牛顿插值方法通过差商的计算,得到一个多项式表达式。
然后,通过该多项式在插值点上的函数值来估计未知数据点的函数值。
3.分段线性插值方法:分段线性插值是一种简单而常用的插值方法。
它假设在两个相邻已知数据点之间的曲线是一条直线。
分段线性插值的原理是,通过连接相邻数据点之间的线段,构造一个连续的曲线。
具体地说,对于给定的一组已知数据点和对应的函数值,分段线性插值方法将曲线划分为若干小段,每一小段都是一条直线。
然后,在每个数据点之间的区域上,通过线性插值来估计未知数据点的函数值。
4.样条插值方法:样条插值是一种基于插值条件和光滑条件的插值方法。
它假设在两个相邻已知数据点之间的曲线是一个低次数的多项式。
样条插值的原理是,通过确定各个数据点之间的插值多项式系数,使得整个曲线在插值点上的各阶导数连续。
具体地说,对于给定的一组已知数据点和对应的函数值,样条插值方法将曲线划分为若干小段,每一小段都是一个低次数的多项式。
空间插值算法:
1、距离倒数乘方法 (Inverse Distanee to a Power ) 距离倒数乘方格网
化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于
一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点被给予一个几乎为0.0的权重。
换
言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒
数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法 (Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法 (Minimum Curvature )最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的
长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准
4、多元回归法(Polynomial Regression )多元回归被用来确定你的数据
的大规模的趋势和图案。
你可以用几个选项来确定你需要的趋势面类型。
多元回归实际上不是插值器,因为它并不试图预测未知的Z值。
它实际上是一个趋势面分析作图程序。
使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。
参数设置是指定多项式方程中X和Y 组元的最高方次。
5、径向基本函数法 (Radial Basis Function )径向基本函数法是多个数据
插值方法的组合。
根据适应你的数据和生成一个圆滑曲面的能力,其中的
复二次函数被许多人认为是最好的方法。
所有径向基本函数法都是准确的插值器,它们都要为尊重你的数据而努力。
为了试图生成一个更圆滑的曲面,对所有这些方法你都可以引入一个圆滑系数。
你可以指定的函数类似于克里金中的变化图。
当对一个格网结点插值时,这些个函数给数据点规定了一套最佳权重。
6谢别德法(Shepard's Method )谢别德法使用距离倒数加权的最小
乘方的方法。
因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。
谢别德法可以是一个准确或圆滑插值器。
在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。
圆滑参数是使谢别德法能够象一个圆滑插值器那样工作。
当你增加圆滑参数的值时,圆滑的效果越好。
7、三角网/ 线形插值法(Trian gulation with Lin ear In terpolatio n )三角网
插值器是一种严密的插值器,它的工作路线与手工绘制等值线相近。
这种方法是通过在数据点之间连线以建立起若干个三角形来工作的。
原始数据
点的连结方法是这样:所有三角形的边都不能与另外的三角形相交。
其结果构成了一张覆盖格网范围的,由三角形拼接起来的网。
每一个三角形定义了一个覆盖该三角形内格网结点的面。
三角形的倾斜和标高由定义这个三角形的三个原始数据点确定。
给定三角形内的全部结点都要受到该三角形的表面的限制。
因为原始数据点被用来定义各个三角形,所以你的数据是很受到尊重的。
8•自然邻点插值法(Natural Neighbor )自然邻点插值法
(NaturalNeighbor)是Surfer7.0才有的网格化新方法。
自然邻点插值法广泛应用于一些研究领域中。
其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待插点的权重,待插点的权重和目标泰森多边形成比例[9] o实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。
同时自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。
9. 最近邻点插值法最近邻点插值法(NearestNeighbor)又称泰森多边形方法, 泰森多边形(Thiesen,又叫Dirichlet或Voronoi多边形)分析法是荷兰气象学家
A.H.Thiessen提出的一种分析方法。
最初用于从离散分布气象站的降雨量数据中计算平均降雨量,现在GIS和地理分析中经常采用泰森多边形进行快速的赋值
[2]。
实际上,最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值作为待的节点值[3]。
当数据已经是均匀间隔分布,要先将数据转换为SURFER的网格文件,可以应用最近邻点插值法;或者在一个文件中,数据紧密完整只有少数点没有取值,可用最近邻点插值法来填充无值的数据点。
有时需要排除网格文件中的无值数据的区域,在搜索椭圆(SearchEllipse)设置一个值对无数据区域赋予该网格文件里的空白值。
设置的搜索半径的大小要小于该网格文件数据值之间的距离,所有的无数据网格节点都被赋予空白值在使用最近邻点插值网格化法,将一个规则间隔的XYZ数据转换为一个网格文件时,可设置网格间隔和XYZ数据的数据点之间的间距相等。
最近邻点插值网格化法没有选项,它是均质且无变化的,对均匀间隔的数据进行插值很有用同时,它对填充无值数据的区域很有效。
10. Moving Average (移动平均法)移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。
移动平均法适用于即期预测。
当产品需求既不快速增长也不快速下降
且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。
移动平均法根据预测时使用的各元素的权重不同移动平均法
是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。
因此,
当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显
示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
11. Local Polynomial (局部多项式法)
12. Modified Shepard's Method (改进谢别德法)。