质点系动量定理和质心运动定理
- 格式:ppt
- 大小:1.49 MB
- 文档页数:19
第八章 质心运动定理 动量定理一、目的要求1.质点系(刚体、刚体系)是动力学的主要力学模型,解决质点系(刚体、刚体系)动力学问题的主要方法有三类:(1)达朗伯原理;(2)动力学基本定理;(3)动力学普遍方程和拉格朗日方程。
2.对质点系(刚体、刚体系)的质心、动量有清晰的理解,能熟练地计算质点系(刚体、刚体系)的动量,能熟练地应用质点系的动量定理、质心运动定理(包括相应的守恒定律)求解动力学问题。
二、基本内容1.基本概念质点系的质心、质点系(刚体、刚体系)的动量、2.主要公式(1)质点系(刚体、刚体系)质心的计算1)矢径形式 M r m r i i c ∑= 或 Mr m r ic i c ∑= 2)直角坐标形式Mx m x i i c ∑=,M y m y i i c ∑=,M z m z i i c ∑= 其中 k z j y i x r i i i i ++=为第i 个质点到固定点O 的矢径。
k z j y i x r c c c c ++=为质点系的质心到固定点O 的矢径。
ic r 为第i 个刚体的质心到固定点O 的矢径。
m i 为第i 个质点的质量,i m M ∑=为质点系(刚体、刚体系)的质量。
(2)质点系(刚体、刚体系)动量的计算1)矢径形式 c i i v M v m P =∑=2)投影形式ix i x v m p ∑=,iy i y v m p ∑=,iz i z v m p ∑=,222z y x P P P P ++=注意:动量是矢量,需要时还要计算动量的方向。
(3)动量定理(质心运动定理)∑==n i (e)i F dt p d 1 )(1∑==n i (e)i c F a M 式中∑===n i c i i v M v M p 1 ,是质点系某瞬时的动量,∑=n i e i F 1)( 是质点系所受外力的主矢量。
c a 为质点系心的加速度。
三、重点和难点1.重点:(1)质点系(刚体、刚体系)质心、动量的计算。
动量定理质心运动定理动量定理质心运动定理质点的动量定理可以表述为:质点动量的微分,等于作用于质点上力的元冲量。
用公式d(mv),Fdt表达为 (17-7)d(mv),Fdt (17-8)tptp2211设时刻质点系的动量为,时刻质点系的动量为,将(17-8)式积分,积分区tt21间为从到,得t2p,p,Fdt21,t 1 (17-9)t2Fdt,I,tttF211记,称为力在到时间间隔内的冲量。
式(17-9)为质点系动量定理的积分形式,它表明质点系在某时间间隔内的冲量的改变量,等于作用在质点系上的外力主矢在该时间间隔内的冲量。
(e)(i)MFFiii对于质点系而言,设为质点所受到的外力,为该质点所受到的质点系内力,根据牛顿第二定律得dv(e)(i)im,F,F(e)(i)iiima,F,Fdtiiii 即mi除了火箭运动等一些特殊情况,一般机械在运动中可以认为质量不变。
如果质点的质量不dmv()(e)(i)ii,F,Fiidt变,则有上式对质点系中任一点都成立,n个质点有n个这样的方程,把这n个方程两端相加,得ndm(v),iinn()()ei,1i,,FF,,iidt,1,1iinn(e)(i)FF,,iii,1i,1 质点系的内力总是成对地出现,内力的矢量和等于零。
上式中是质点dp(e),F(e)RFdtR系上外力的矢量和,即外力系的主矢,记作,则上式可写为(17-10)1这就是质点系动量定理的微分形式,它表明:质点系的动量对时间的导数等于作用在质点系上外力的矢量和。
(e)dp,Fdt 将式(17-10)写成微分形式 Rtptptt222111 设时刻质点系的动量为,时刻质点系的动量为,上式从到积分,得t2(e)p,p,Fdt21R,t,I1 (17-11)p,p0 当外力主矢为零时,由上式可推出质点系的动量是一常矢量,即这表明当作用在质点系上的外力的矢量和为零时,质点系的动量保持不变,这就是质点系的动量守恒定理。
求腰长为a 等腰直角三角形均匀薄板的质心位置。
求腰长为等腰直角三角形均匀薄板的质心位置。
解:dm = 2xσdx a/ 2 y a 三角形质心坐标x 三角形质心坐标c是xc ∫ xdm = ∫ = ∫ dm ∫ 0 a/ 0 2 a = 2 3 2σxdx 2σx dx 2 O x dx x 这个结果和熟知的三角形重心位置一致。
这个结果和熟知的三角形重心位置一致。
11三、质心运动定理右边: 右边: r d 据质点系动量定理: 据质点系动量定理∑ F = (∑m v . n n i=1 i dt i i=1 i i d d d r (∑m v = ∑m ( = ∑m r. dt d t ∑m dt n 2 n n i=1 i i i=1 i 2 i=1 n i 2 n i=1 i 2 c i=1 i r ∑m r n 上式第二步分子, 上式第二步分子, 分母均乘以 dt 故质点系动量定理: 故质点系动量定理 2 上式中, 上式中, r dr 2 ∑ m, i=1 i c r 质心的加速度, 为质点系质心的加速度,用 aC 表示, r ∑F n i =1 i r = ma C ______称为质心运动定理. ______称为质心运动定理. 称为质心运动定理 12r ∑F n i =1 i r = ma C 此式表示,此式表示,质点系质心的运动与这样一个质点的运动具有相同的规律,运动具有相同的规律,该质点的质量等于质点系的总质量,质量,作用于该质点的力等于作用于质点系的外力的质心运动定律。
矢量和。
这个结论称为质心运动定律矢量和。
这个结论称为质心运动定律。
表明: 表明不管物体的质量如何 Y 分布,分布,也不管外力作用在物体的什么位置上,体的什么位置上,质心的运动就象是物体的质量全部都集中于此,集中于此,而且所有外力也 C 都集中作用其上的一个质点 O X 的运动一样。
的运动一样。
质心运动反映了质点系的整体运动趋势。
动量定理 质心运动定理质点的动量定理可以表述为:质点动量的微分,等于作用于质点上力的元冲量。
用公式表达为 Fv =)(m dt d(17-7)dt m d F v =)( (17-8)设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,将(17-8)式积分,积分区间为从1t 到2t ,得⎰=-2112t t dtF p p (17-9)记IF =⎰21t t dt ,称为力F 在1t 到2t 时间间隔内的冲量。
式(17-9)为质点系动量定理的积分形式,它表明质点系在某时间间隔内的冲量的改变量,等于作用在质点系上的外力主矢在该时间间隔内的冲量。
对于质点系而言,设)(e i F 为质点i M 所受到的外力,)(i i F 为该质点所受到的质点系内力,根据牛顿第二定律得)(i i (e)ii i m F F a += 即)()(i i e i iidt d m F F v +=除了火箭运动等一些特殊情况,一般机械在运动中可以认为质量不变。
如果质点的质量i m 不变,则有 )()()(i i e i i i dt m d F F v +=上式对质点系中任一点都成立,n 个质点有n 个这样的方程,把这n 个方程两端相加,得∑∑∑===+=ni i i ni e ini i i dtm d 1)(1)(1)(F F v质点系的内力总是成对地出现,内力的矢量和∑=ni i iF1)(等于零。
上式中∑=ni e iF1)(是质点系上外力的矢量和,即外力系的主矢,记作)(e RF ,则上式可写为)(e R dt d F p= (17-10)这就是质点系动量定理的微分形式,它表明:质点系的动量对时间的导数等于作用在质点系上外力的矢量和。
将式(17-10)写成微分形式dt d e R )(F p =设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,上式从1t 到2t 积分,得⎰=-21)(12t t e R dtF p p I =(17-11)当外力主矢为零时,由上式可推出质点系的动量是一常矢量,即0p p =这表明当作用在质点系上的外力的矢量和为零时,质点系的动量保持不变,这就是质点系的动量守恒定理。