盖斯定律的应用
- 格式:docx
- 大小:12.39 KB
- 文档页数:1
2021年高考化学总复习:盖斯定律的应用1.[2019新课标Ⅲ节选]近年来,随着聚酯工业的快速发展,氯气的需求量和氯化氢的产出量也随之迅速增长。
因此,将氯化氢转化为氯气的技术成为科学研究的热点。
回答下列问题:(2)Deacon直接氧化法可按下列催化过程进行:CuCl2(s)=CuCl(s)+12Cl2(g) ΔH1=83 kJ·mol− 1CuCl(s)+12O2(g)=CuO(s)+12Cl2(g) ΔH2=− 20 kJ·mol− 1CuO(s)+2HCl(g)=CuCl2(s)+H2O(g) ΔH3=− 121 kJ·mol− 1则4HCl(g)+O2(g)=2Cl2(g)+2H2O(g)的ΔH=_________ kJ·mol− 1。
2.[2017江苏]通过以下反应可获得新型能源二甲醚(CH3OCH3)。
下列说法不正确的是①C(s) + H2O(g)CO(g) + H2 (g) ΔH1 = a kJ·mol−1②CO(g) + H2O(g)CO2 (g) + H2 (g) ΔH 2 = b kJ·mol−1③CO2 (g) + 3H2 (g)CH3OH(g) + H2O(g) ΔH 3 = c kJ·mol−1④2CH3OH(g)CH3OCH3 (g) + H2O(g) ΔH 4 = d kJ·mol−1A.反应①、②为反应③提供原料气B.反应③也是CO2资源化利用的方法之一C.反应CH3OH(g)12CH3OCH3 (g) +12H2O(l)的ΔH =2dkJ·mol−1D.反应2CO(g) + 4H2 (g)CH3OCH3 (g) + H2O(g)的ΔH = ( 2b + 2c + d ) kJ·mol−16.[2017·11月浙江选考]根据Ca(OH)2/CaO 体系的能量循环图:下列说法正确的是A.ΔH5>0 B.ΔH1+ΔH2=0C.ΔH3=ΔH4+ΔH5D.ΔH1+ΔH2+ΔH3+ΔH4+ΔH5=03.[2019新课标Ⅱ节选]环戊二烯()是重要的有机化工原料,广泛用于农药、橡胶、塑料等生产。
谈盖斯定律的应用技巧摘要:盖斯定律在求算反应热中的应用,属于高考的新增热点,但学生计算起来费时且易算错。
本文通分步求解的方法,快速解决学生会而不对的困境,具有很强的实用性。
关键词:盖斯定律反应热热化学方程式盖斯定律在求算反应热中的应用,属于新课程高考的热点,经考不衰,如 2013年全国卷Ⅱ,2008-2010 年江苏高考、2009 和 2010 年广东高考等都出现盖斯定律的应用。
在高中化学教学中,盖斯定律是个难点,不是盖斯定律的内涵不容易理解,而是学生很难找到切入点,计算起来费时且易算错,所以寻找出一种快捷、高效的方法可以避免学生对盖斯定律的畏难情绪。
我在教学实践中总结出了分步求解的方法,可以快速解决目标热化学反应方程式和已知热化学方程式之间的关系,学生也很容易掌握,取得了不错的效果。
我现将分步求解法运用在盖斯定律中的应用技巧简述如下1.盖斯定律的涵义1840 年,俄国化学家盖斯在分析了许多化学反应的热效应的基础上,总结出一条规律:“一个化学反应,不论是一步完成,还是分几步完成,其总的热效应是完全相同的。
”这个规律被称作盖斯定律。
盖斯定律表明,一个化学反应的焓变(ΔH)仅与反应的起始状态和反应的最终状态有关,而与反应的途径无关。
但是在众多的化学反应中,有些反应的反应速率很慢,有些反应同时有副反应发生,还有些反应在通常条件下不易直接进行,因而测定这些反应的热效应就很困难,运用盖斯定律可方便地计算出它们的反应热。
因此,如何让学生充分理解和熟练运用盖斯定律就成为解决热化学问题的关键。
2.盖斯定律例题分析例1.(2013年全国卷2)在1200。
C时,天然气脱硫工艺中会发生下列反应① H2S(g)+ O2(g)=SO2(g)+H2O(g)△H1② 2H2S(g)+SO2(g)=S2(g)+2H2O(g)△H2③ H2S(g)+O2(g)=S(g)+H2O(g)△H3④ 2S(g) =S2(g)△H4则△H4的正确表达式为A.△H4=(△H1+△H2-3△H3)B.△H4=(3△H3-△H1-△H2)C.△H4=(△H1+△H2-3△H3)D.△H4=(△H1-△H2-3△H3)解析:经分析④是我们研究的目标热化学方程式,首先利用类似于数学中的消元法,将①②③已知热化学方程式进行系数处理和方程式加减(减就是将方程式逆向相加),转化为④,最后对反应热焓变进行同样关系处理即可。
应用盖斯定律计算反应热的常用方法1 虚拟途径法由A生成D可以有两个途径:(1)由A直接生成D,反应热为ΔH;(2)由A生成B,由B生成C,再由C生成D,每一步的反应热分别为ΔH1、ΔH2、ΔH3,则各反应热之间的关系如图1-2-5所示。
图1-2-52 加和法例如反应C(s)+12O2(g)===CO(g)的反应热无法直接测得,则可根据加和法由下面两个反应的反应热计算出来:①C(s)+O2(g)===CO2(g)ΔH1=-393.5 kJ/mol②CO(g)+12O2(g)===CO2(g)ΔH2=-283.0 kJ/mol则①-②得C(s)+12O2(g)===CO(g)ΔH3=-110.5 kJ/mol。
也可将该反应过程虚拟为如图1-2-6所示:图1-2-6则根据盖斯定律:ΔH1=ΔH2+ΔH3,即ΔH3=ΔH1-ΔH2=-393.5 kJ/mol-(-283.0 kJ/mol)=-110.5 kJ/mol,所以C(s)+12O2(g)===CO(g)ΔH3=-110.5 kJ/mol。
名师提醒应用盖斯定律计算反应热时的注意事项1.热化学方程式乘以某数(整数或分数)时,反应热数值也必须同时乘以该数。
2.热化学方程式相加减时,同种物质(相同状态)之间可相加减,反应热也随之相加减。
3.将一个热化学方程式逆向书写时,ΔH的符号必须随之改变,但其绝对值不变。
4.在设计反应过程中,可能会遇到同一物质三态(固、液、气)间的相互转化,状态由固→液→气变化时,会吸热;反之,会放热。
典例详析例3-4已知化学反应的热效应只与反应体系的初始状态和最终状态有关,如图1-2-7甲所示,有ΔH1=ΔH2+ΔH3。
根据上述原理,对图1-2-7乙中的反应热关系判断不正确的是图1-2-7A.A→F ΔH=-ΔH6B.A→D ΔH=ΔH1+ΔH2+ΔH3C.ΔH1+ΔH2+ΔH3+ΔH4+ΔH5+ΔH6=0D.ΔH1+ΔH6=ΔH2+ΔH3+ΔH4+ΔH5解析◆根据盖斯定律可知,反应热只与反应体系的始态和终态有关,A→F的反应热与F→A的反应热互为相反数,A项正确;A→D的反应热等于A→B、B→C、C→D的反应热之和,B项正确;完成整个循环,又回到初始状态,反应热之和为0,C项正确;F→B的反应热为ΔH1+ΔH6=-ΔH2-ΔH3-ΔH4-ΔH5,D项错误。
盖斯定律及应用练习题【基础达标】1.已知C(s)+H2O(g)=CO(g)+H2(g)ΔH=+130kJ•mol-12C(s)+O2(g)=2CO(g)ΔH=-220kJ•mol-1H-H、O=O和O-H键的键能分别为436 kJ•mol-1、a kJ•mol-1和462kJ•mol-1,则a为()A.496B.118C.350D.130【答案】A【解析】试题分析:已知热化学方程式①C(s)+H2O(g)=CO(g)+H2(g)△H=+130kJ/mol,②2C(s)+O2(g)=2CO(g)△H=-220kJ/mol,则根据盖斯定律可知②-①×2即得到热化学方程式O2(g)+2H2(g)=2H2O(g)△H=-(220+2×130)kJ/mol。
由于反应热等于断键吸收的能量与形成新化学键所放出的能量的差值,则akJ/mol+2×436 kJ/mol-2×2×462 kJ/mol=-(220+2×130)kJ/mol,解得a=496,答案选A。
考点:考查盖斯定律的应用2.已知CH4(g)+2O2(g)→CO2(g)+2H2O(g)ΔH== -Q1;2H2(g)+O2(g)→2H2O(g)ΔH== -Q2;H2O(g)→H2O(l)ΔH==-Q3常温下,取体积比为4:1的甲烷和H2的混合气体112L(标准状况下),经完全燃烧后恢复到常温,则放出的热量为()A.4Q1+0.5Q2B.4Q1+Q2+10Q3C.4Q1+2Q2D.4Q1+0.5Q2+9Q3【答案】D【解析】试题分析:本题涉及盖斯定律的内容,物质燃烧后恢复到常温,所以考虑水的状态,则甲烷燃烧的热方程式表示为:CH4(g)+2O2(g)→CO2(g)+2H2O(l)ΔH==-(Q1+2Q3);氢气燃烧的热化学方程式为:2H2(g)+O2(g)→2H2O(l)ΔH==-(Q2+2Q3),由题意判断甲烷的物质的量为5mol,氢气的物质的量为1mol,计算得到放出的热量为:4Q1+0.5Q2+9Q3。
盖斯定律的应用——反应热的比较、计算及热化学方程式的书写反应热是中学化学的重要内容,在近几年的高考中都有所涉及,特别是运用盖斯定律进行有关反应焓变的比较、计算以及热化学方程式的书写更是考查的重点和热点,该题型能够很好地考查学生综合分析问题的能力,命题角度灵活,但形式比较稳定,大都是与其他化学反应原理相互融合,往往都是以一定的工业生产为背景,在几个已知热化学方程式的基础上运用盖斯定律进行反应焓变的比较、计算以及热化学方程式的书写,在复习备考中应充分理解盖斯定律的本质,掌握解题的技能进行突破。
1.盖斯定律(1)内容对于一个化学反应,无论是一步完成还是分几步完成,其反应焓变都一样。
即:化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关。
(2)意义间接计算某些反应的反应热。
2.ΔH的比较要点(1)比较ΔH的大小时需考虑正负号,对放热反应,放热越多,ΔH越小;对吸热反应,吸热越多,ΔH越大。
(2)反应物和生成物的状态物质的气、液、固三态的变化与反应热的关系(3)参加反应物质的量:当反应物和生成物的状态相同时,参加反应物质的量越多,放热反应的ΔH越小,吸热反应的ΔH越大。
(4)反应的程度:参加反应物质的量和状态相同时,反应的程度越大,热量变化越大。
3.利用盖斯定律进行反应热计算的方法(1)运用盖斯定律的技巧——“三调一加”一调:根据目标热化学方程式,调整已知热化学方程式中反应物和生成物的左右位置,改写已知的热化学方程式。
二调:根据改写的热化学方程式调整相应ΔH的符号。
三调:调整中间物质的化学计量数。
一加:将调整好的热化学方程式及其ΔH相加。
(2)运用盖斯定律的三个注意事项①热化学方程式乘以某一个数时,反应热的数值必须也乘上该数。
②热化学方程式相加减时,物质之间相加减,反应热也必须相加减。
③将一个热化学方程式颠倒时,ΔH的“+”“-”随之改变,但数值不变。
(3)运用盖斯定律的三个模板AΔH1ΔH2B1.(2018·全国卷Ⅰ,28(2)①)采用N2O5为硝化剂是一种新型的绿色硝化技术,在含能材料、医药等工业中得到广泛应用。
盖斯定律的例题及解析一、什么是盖斯定律?盖斯定律,也称为网络效应定律或马太效应,是指在某个系统中,一些优势节点会越来越优势,而一些弱势节点则会越来越弱。
这种现象在社交网络、经济市场等领域都有体现。
二、盖斯定律的例题下面以社交网络为例,解释盖斯定律的具体运作方式。
假设有一个社交网络平台,其中有1000个用户,他们之间可以互相关注和互动。
其中有一个用户A拥有1000个粉丝,而其他用户只拥有10-20个粉丝。
根据盖斯定律,用户A的影响力将会越来越大,而其他用户的影响力则会逐渐减小。
三、盖斯定律的解析1. 原因分析这种现象可以通过以下原因进行解释:首先是“富者愈富”的原因。
在社交网络中,受欢迎的用户更容易获得更多的关注和互动机会。
这些机会进一步增加了他们的影响力和受欢迎程度。
相反地,在社交网络中不那么受欢迎的用户则很难获得这些机会,从而导致他们的影响力逐渐减小。
其次是“弱者愈弱”的原因。
在社交网络中,用户之间的关注和互动是基于一定的兴趣相似性。
因此,那些不受欢迎的用户可能会被忽视或被边缘化,他们很难获得更多的关注和互动机会。
这种边缘化进一步削弱了他们的影响力和受欢迎程度。
2. 盖斯定律的应用盖斯定律在许多领域都有广泛的应用。
例如:在商业领域中,盖斯定律可以解释为什么大公司越来越大,而小公司则越来越小。
大公司拥有更多的资源和市场份额,这使得它们更容易获得更多的客户和利润,并进一步扩大规模。
在科学研究领域中,盖斯定律可以解释为什么少数科学家拥有更多的发表论文、引用次数和奖项。
这些科学家通常可以获得更多资金、资源和合作机会,这使得他们能够进行更深入、更广泛的研究,并获得更多的成就。
在教育领域中,盖斯定律可以解释为什么一些学生比其他学生更容易获得好成绩。
这些学生通常拥有更多的资源、支持和机会,这使得他们能够更好地发挥自己的潜力并取得更好的成绩。
四、如何应对盖斯定律?虽然盖斯定律在许多领域都有广泛应用,但我们仍然可以采取一些措施来缓解其影响。
盖斯定律的应用
设计思路:例题一→展示叠加法步骤→总结出叠加法→例题二→分组讨论(学生首先按叠加法自主演算,然后重在讨论答案正误)→微视频→师生总结(优化解法)→提升
题(按优化法,精准写出各题表达式)
分组讨论:1、怎样选物质,选哪些物质?
2、△H前的正负符怎样确定?
3、△H前的计量数怎样转换?
4、焓变式运用时的注意事项?
优化解法:选一定一(从未知方程式中逐一
..选出在所有已知方程式中只出现1次的物质;
每个已知方程式仅使用1次)
同向为正(对照方程式,若反应物←←反应物,或生成物→→生成物,则△H前
取“+”)
异向为负(对照方程式,若反应物←→生应物,或生成物→←反应物,则△H取
前“-”)
计量数匹配(按选定物质在已知方程式中的计量数为准,同倍数转换未知方程式
中△H前的计量数)
焓变式精算(写出焓变表达式,进行精准运算)。