排列组合知识梳理
- 格式:doc
- 大小:129.50 KB
- 文档页数:5
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一1.公式:1.2.(1)(2) ;(3)三.组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:①;②;③;④若四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4)两种途径:①元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
(5)、顺序一定,除法处理。
排列组合基础知识排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1m 中不同的方法,第二类方法中有2m 种不同的方法......第n 类方法中n m 种不同的方法,那么完成这件事共有n m m m N +++= (21)种不同的方法。
(2)本质:每一类方法均能独立完成该任务。
(3)特点:分成几类,就有几项相加。
2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。
(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。
(3)特点:分成几步,就有几项相乘。
二、排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为m n P ,或记为m n A 。
(2)使用排列的三条件①n 个不同元素;②任取m 个;③讲究顺序。
(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---= 尤其:!,,110n P n P P n n n n ===2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为m n C 。
(2)使用三条件①n 个不同元素;②任取m 个;③并为一组,不讲顺序。
(3)计算公式12)...1()1)...(1()!(-+--=-==m m m n n n m n m n P P C m m m n mn尤其:m n n m n n n n n C C C n C C -====,1,,110例1.由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?A.226B.246C.264D.288解析:由于首位和末位有特殊要求,应优先安排,以免不合要求的元素占了这两个位置,末位有13C 种选择,然后排首位,有14C 种选择,左后排剩下的三个位置,有34A 种选择,由分步计数原理得:13C 14C 34A =288例2.旅行社有豪华游5种和普通游4种,某单位欲从中选择4种,其中至少有豪华游和普通游各一种的选择有()种。
排列组合知识点汇集引言排列组合是组合数学中的重要概念,它在各个领域都有广泛的应用。
本文将介绍排列组合的基本概念和常见问题,并提供一些解题的思路和步骤。
一、排列与组合的定义排列是指从一组元素中选取若干个元素按照一定的顺序排列的方式,而组合是指从一组元素中选取若干个元素按照任意的顺序组合的方式。
排列的计算公式为:P(n, m) = n! / (n-m)!组合的计算公式为:C(n, m) = n! / (m!(n-m)!)其中,n代表元素的总数,m代表选取的元素个数,“!”表示阶乘运算。
二、排列组合的应用1.抽奖问题:某活动中有n个奖品,参与者共有m人,每人只能获得一个奖品,求参与者获奖的可能性。
解题思路:将n个奖品看作是n个不同的元素,参与者的获奖情况可以看作是从n个元素中选取m个元素进行排列的方式。
使用排列的计算公式即可求解。
2.二项式展开:将一个二项式的幂展开成多项式。
解题思路:二项式展开可以看作是从n个元素中选取m个元素进行组合的方式。
使用组合的计算公式即可求解。
3.球的排列问题:某篮球队有10名队员,其中5名队员为前锋,5名队员为后卫。
现要求从中选出5名队员组成一支球队,其中至少有1名前锋和1名后卫。
解题思路:将前锋和后卫分别看作是两组不同的元素,求解的问题可以看作是从前锋中选取至少1名队员,从后卫中选取至少1名队员,然后将两个组合起来进行排列的方式。
使用组合和排列的计算公式即可求解。
三、排列组合问题的解题步骤解决排列组合问题的一般步骤如下:1.确定问题的条件:明确已知条件和需要求解的结果。
2.确定使用的计算公式:根据问题的条件和求解的结果,确定应该使用排列还是组合的计算公式。
3.进行计算:根据所选定的计算公式,将已知条件代入公式中进行计算。
4.得出结果:根据计算的结果,得出问题的答案。
四、常见排列组合问题举例1.甲、乙、丙、丁、戊五人排成一排,请问他们可以排成多少种不同的顺序?解题思路:根据问题的条件,需要求解的是五个元素的全排列问题。
排列组合基础知识点排列组合是组合数学的重要组成部分,它研究的是如何根据特定的规则从一个集合中选择或排列对象。
它不仅在数学中有广泛的应用,在计算机科学、统计学、金融学等领域也扮演着重要角色。
本篇文章将详细介绍排列组合的基础知识,包括其定义、性质,以及相关的公式和应用示例。
一、排列的概念排列是指从n个不同元素中,按照一定的顺序取出r个元素,所形成的不同序列。
排列强调顺序,因此a和b的排列与b和a是不同的。
排列的公式为:[ A(n, r) = ]其中,n!(n的阶乘)表示从1到n所有整数的乘积。
1. 阶乘的定义阶乘是一个自然数n的连续乘积,记作n!,其定义为:n! = n × (n-1) × (n-2) × … × 2 × 1,当n ≥ 1;0! = 1。
2. 排列示例设有5种不同颜色的球(红、蓝、绿、黄、白),要从中选取3种颜色并进行排列。
根据排列公式,计算方法如下:[ A(5, 3) = = = = 60 ]此时,我们可以得出60种不同的颜色排列方式,例如(红、蓝、绿)、(蓝、绿、黄)等。
二、组合的概念组合是从n个不同元素中,选择r个元素而不考虑顺序的方法。
组合只关注所选元素,不关心它们的排列顺序。
例如,从a、b、c三种元素中选出两种元素,组合为(ab, ac, bc)。
组合的公式为:[ C(n, r) = ]1. 组合示例继续使用上面的例子,即有5种颜色的球,从中选择3种颜色组合。
根据组合公式进行计算:[ C(5, 3) = = = = 10 ]此时,可以得出10种颜色组合方式,如(红、蓝、绿)、(红、蓝、黄)等。
三、排列与组合之间的联系与区别虽然排列和组合都是从一个集合中选择元素,但它们有本质上的区别。
顺序:排列关注顺序,选择a和b以及b和a,被视为两种不同情况。
组合不关注顺序,选择a和b以及b和a,被视为相同情况。
计算方法:排列使用的是A(n, r)公式。
排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列出的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同3,组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素的所有组合个数 mn Cmn C =!!()!n m n m -性质 mn C =n m n C - 11m m m n n n C C C -+=+排列组合题型总结 一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二 间接法当直接法求解类别比较大时,应采用间接法。
如上例中(2)可用间接法2435462A A A +-=252Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析::任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法) (2) 女生必须全分开 (插空法 须排的元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不同的排法二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
组合和排列知识点总结1. 组合和排列的定义组合和排列是两种基本的组合数学概念,它们都与集合相关。
在数学中,集合是由一些互不相同的对象组成的整体,而排列和组合则是从一个给定的集合中选取一定数量的对象并按照一定的规则进行排列或组合。
排列是指从一个集合中取出一定数量的对象,并按照一定的顺序进行排列,即排列是有序的。
假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,符合条件的排列个数称为排列数。
通常用P(n, m)表示排列数。
组合是指从一个集合中取出一定数量的对象,但不考虑其排列顺序,即组合是无序的。
假设集合中有n个对象,要从中取出m个对象,符合条件的组合个数称为组合数。
通常用C(n, m)表示组合数。
2. 排列的性质排列具有一些基本的性质,这些性质在排列的计算中具有重要的意义。
(1)排列的计算公式在排列中,通过一个简单的计算公式可以求出排列数。
假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,则排列数可以用以下公式计算:P(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。
(2)排列的性质排列具有如下的性质:- P(n, m) = n × (n-1) × … × (n-m+1)- P(n, n) = n!3. 组合的性质组合也具有一些基本的性质,这些性质在组合的计算中同样具有重要的意义。
(1)组合的计算公式在组合中,同样可以通过一个简单的计算公式求出组合数。
假设集合中有n个对象,要从中取出m个对象,组合数可以用以下公式计算:C(n, m) = n! / [m! × (n-m)!](2)组合的性质组合具有如下的性质:- C(n, m) = C(n, n-m)- C(n, 0) = 1- C(n, n) = 1- C(n, 1) = n- C(n, m) = C(n-1, m-1) + C(n-1, m)4. 组合和排列的应用组合和排列在实际中有着广泛的应用,它们在数学、计算机科学、统计学等领域都有着重要的作用。
排列组合知识点排列组合的相关知识点什么是排列组合•排列组合是数学中的一个重要概念,用于描述从指定元素集合中选择和排列元素的方法和规律。
排列•排列是指从n个不同元素中,按照一定的顺序取出m个元素,且每个元素只能取一次,所能得到的不同的有序数列的个数。
•使用排列的公式可以计算出排列的数量:–全排列:P(n) = n!,表示将n个元素全部进行排列的情况。
–部分排列:P(n,m) = n! / (n-m)!,表示从n个元素中取出m个元素进行排列的情况。
组合•组合是指从n个不同元素中,选择出m个元素,且不考虑元素之间的顺序,所能得到的不同的无序数列的个数。
•使用组合的公式可以计算出组合的数量:–C(n,m) = n! / (m! * (n-m)!),表示从n个元素中取出m 个元素进行组合的情况。
排列与组合的区别•在排列中,元素的顺序是重要的,而在组合中,元素的顺序是不重要的。
•例如从字母A、B、C中取出两个字母进行排列,可以得到AB、AC、BA、BC、CA、CB等6种情况。
而从A、B、C中取出两个字母进行组合,则只有AB、AC、BC三种情况。
应用场景•排列组合在许多领域都具有广泛的应用,如数学、计算机科学、概率与统计等。
•在数学中,排列组合是组合数学的分支之一,常用于解决计数问题。
•在计算机科学中,排列组合常被用于算法设计、数据压缩和密码学等领域。
•在概率与统计中,排列组合用于计算事件的可能性和统计分析。
总结•排列组合是数学中的重要概念,用于描述选择和排列元素的方法和规律。
•排列是有序的选择和排列元素的方式,而组合是无序的选择和排列元素的方式。
•排列组合在许多领域都有广泛的应用,如数学、计算机科学、概率与统计等。
排列组合知识点归纳总结
排列组合
1. 定义:排列是指将n个不同元素的一组按某种规律排成一列的过程;组合是指从n个不同元素中取任意多个元素一组组合,不考虑顺序称
作组合。
2. 公式:排列公式A(n,m):n(n-1)...(n-m+1);组合公式C(n,m):
n!/(m!(n-m)!)
3. 例题:
(1)从学校里的20个男生和10个女生中任取5人参加一次活动,这
次活动一共有多少种选择?
用排列的方法来求的话,总的选择数为
A(30,5)=30*29*28*27*26=653,800;用组合方法来求的话,总的选择数
为C(30,5)=30!/(5!*25!)=653,800。
(2)如何从10名男生中组成一个不相同的三人小组?
用排列的方法来求的话,总的选择数为A(10,3)=10*9*8=720;用组合
方法来求的话,总的选择数为C(10,3)=10!/(3!*7!)=120。
4. 实际应用:排列组合在数学中极为重要,其应用贯穿于数学当中的
很多领域,如余弦定理、泰勒公式、抛物线等。
诸如加密或者信息安全,以及网络安全等,其中也应用了排列组合的原理,以增强安全性。
同时,它还广泛会被用在生产调度、选号、玩游戏、医学等各种领域下。
关于排列组合的一些基础知识1. 排列:从n个元素中取出m个(m≦n),并按照一定的顺序排成一列,称为从n个元素中取出m个元素的排列。
2. 组合:从n个元素中取出m个(m≦n),并按照一定的方式进行组合,称为从n个元素中取出m个元素的组合。
3. 排列的公式:A(n,m)=n×(n-1)×(n-2)×...×(n-m+1)。
4. 组合的公式:C(n,m)=n×(n-1)×(n-2)×...×(n-m+1)÷m×(m-1)×(m-2)×...×2×1。
5. 重复排列:在排列时允许相同的元素重复出现,每个元素出现的次数与排列的顺序有关,这种排列称为重复排列。
6. 重复组合:在组合时允许相同的元素重复出现,每个元素出现的次数与组合的方式无关,这种组合称为重复组合。
7. 排列数的性质:若A(n,m)=0,则m<0或m>n;若0≦m≦n,则A(n,m)=A(n,n-m);若n=m则A(n,m)=1。
8. 组合数的性质:若C(n,m)=0,则m<0或m>n;若0≦m≦n,则C(n,m)=C(n,n-m);若n=m则C(n,m)=1。
9. 插空法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插空法。
10. 捆绑法:在排列或组合时,先将几个元素捆绑在一起,作为一个元素处理,然后再对其他元素进行排列或组合的方法称为捆绑法。
11. 插板法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插板法。
12. 隔板法:在解决有关问题时,将元素分成两部分,中间插入隔板,使得每部分元素的个数等于规定的个数,这种方法称为隔板法。
排列组合知识点排列组合是高中数学中的一个重要内容,它是指在一组元素中选取部分元素进行排列或组合的方式。
通过对元素的不同排列和组合,可以得到不同的结果,用于解决一些与选择、分配、摆放等问题有关的情景。
本文将以3000字详细介绍排列组合的基本概念、性质以及应用领域。
一、排列的基本概念和性质1. 排列的定义排列是指从一组元素中取出若干元素进行重新排列得到不同的序列。
这个序列的顺序是明确的,不同的排列方式得到的结果是不同的。
2. 排列的计算方法(1)全排列:从n个不同元素中取出m个元素进行排列,计算全排列的个数可以使用阶乘运算:P(n,m) = n!/(n-m)!(2)部分排列:从n个不同元素中取出m个元素进行排列,计算部分排列的个数可以使用阶乘运算:A(n,m)=n!/(n-m)!3. 排列的性质(1)排列具有顺序性:即不同的元素排列顺序不同时,得到的排列结果是不同的。
(2)排列的个数与元素个数有关:排列的个数与所选取的元素个数有关,当选取的元素个数与原集合中的元素个数相同时,排列的个数达到最大值。
(3)排列的个数与元素的重复性有关:当元素中存在重复元素时,排列的个数会减少。
二、组合的基本概念和性质1. 组合的定义组合是指从一组元素中取出若干元素进行组合,组合的结果不考虑元素的顺序。
2. 组合的计算方法从n个不同元素中取出m个元素进行组合,计算组合的个数可以使用组合数公式:C(n,m) = n!/[m!(n-m)!]3. 组合的性质(1)组合不考虑元素的顺序:组合的结果不受元素排列顺序的影响。
(2)组合的个数与元素的重复性有关:当元素中存在重复元素时,组合的个数会减少。
(3)组合的个数与元素个数有关:组合的个数受选取的元素个数和原集合的元素个数的影响。
三、排列组合的应用领域1. 概率统计排列组合在概率统计中具有重要的应用,用于计算事件的可能性。
例如,计算从一组数字中选取若干数字,得到某个特定数字的概率。
排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。
高中数学排列组合及概率的基本公式概念及应用一、排列组合的基本公式1.排列的基本公式:排列是从一组物体中选取一部分物体按照一定的顺序进行排列的方式。
对于n个不同的物体,如果选取其中的r个进行排列,那么排列的总数为P(n,r)=n!/(n-r)!,其中n!表示n的阶乘,即n!=n×(n-1)×(n-2)×...×2×12.组合的基本公式:组合是从一组物体中选取一部分物体,不考虑排列顺序的方式。
对于n个不同的物体,如果选取其中的r个进行组合,那么组合的总数为C(n,r)=n!/(r!×(n-r)!)。
1.排列的概念:排列是指从一组物体中选取若干个物体按照一定的顺序进行排列的方式。
在实际问题中,排列常常用于涉及位置、次序和顺序的计数问题。
应用举例:a.选取n个人中的r个人进行座位的排列问题。
b.选取n个数字中的r个数字进行排列组合的问题。
2.组合的概念:组合是指从一组物体中选取若干个物体,不考虑排列顺序的方式。
在实际问题中,组合常常用于涉及选择、挑选和组合的问题。
应用举例:a.随机抽取n张纸牌中的r张纸牌的组合问题。
b.从n个人中选取r个人进行团队的组合问题。
三、排列组合的应用1.定理应用:排列组合的概率问题中,常常可以利用排列组合的基本公式结合概率计算的定理来解决问题。
比如,使用乘法原理、加法原理、条件概率等定理来计算问题中所需的概率。
应用举例:a.在一副牌中,抽取连续的三张牌均为红桃的概率问题。
b.在一群人中,选取两个人的组合中至少有一名男性的概率问题。
2.实际问题应用:排列组合的概念和基本公式在实际问题中有着广泛的应用。
它们常常用于计数问题、组合问题、选择问题、排列问题等等。
应用举例:a.排队问题:计算n个人进行排队的方式有多少种。
b.选课问题:计算从n门课程中选择r门课程的组合有多少种。
总结起来,排列组合是高中数学中非常重要的概念和公式,可以用来解决许多实际问题。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类方法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m 〔m ≤n 〕个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m 〔m ≤n 〕个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:假设12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事〔审题〕 ②有序还是无序 ③分步还是分类。
高中数学排列与组合知识点归纳
数学中的排列与组合是高中数学中的重要内容之一。
下面对排
列与组合的相关知识点进行归纳总结。
排列
排列是指从给定元素集合中选取若干个元素按照一定的顺序排
列形成的一个整体。
以下是排列的相关知识点:
1. 排列的定义:排列是从$n$个不同元素中选取$r$个进行有序
排列的方式,记作$A_n^r$。
- 全排列:当$r=n$时,称为全排列,即从$n$个元素中选取
$n$个进行有序排列,全排列的数量为$n!$。
2. 公式计算方法:对于排列问题,可以使用公式计算:
- $A_n^r=\frac{n!}{(n-r)!}$。
3. 特殊情况:
- 环排列:当排列中的元素形成一个环状排列时,称为环排列。
组合
组合是指从给定元素集合中选取若干个元素,不考虑元素的顺序形成的一个整体。
以下是组合的相关知识点:
1. 组合的定义:组合是从$n$个不同元素中选取$r$个进行无序排列的方式,记作$C_n^r$。
- 组合数:组合数指的是从$n$个元素中选取$r$个进行组合的方式的数量。
2. 公式计算方法:对于组合问题,可以使用公式计算:
- $C_n^r=\frac{n!}{r! \cdot (n-r)!}$。
3. 组合的性质:
- 对称性质:$C_n^r=C_n^{n-r}$。
综上所述,排列与组合是高中数学中常见的概念与计算方法,掌握它们有助于解决相关的概率、统计等数学问题。
排列组合知识点总结一、排列组合的基本概念1.1 排列的概念排列是指从给定的元素中按照一定的顺序选取若干元素的方式。
例如,从元素集合{a, b, c}中选择2个元素,按照顺序选择的话可能得到的排列有ab, ac, ba, bc, ca, cb。
可以看出,排列与元素的顺序有关。
通常情况下,从n个元素中取出m个元素,按照顺序排列的方式有n*(n-1)*(n-2)* ... *(n-m+1)种。
1.2 组合的概念组合是指从给定的元素中按照一定的规则选取若干元素的方式,但是不考虑元素的顺序。
例如,从元素集合{a, b, c}中选择2个元素,组合的情况有ab, ac, bc,并且ba, ca, cb这三种情况都属于ab, ac, bc中的一种。
通常情况下,从n个元素中取出m个元素,不考虑顺序的组合方式有C(n,m) = n! / (m! * (n-m)!)种。
1.3 排列组合的关系排列和组合是紧密相关的,它们之间的关系可以通过以下公式表示:A(n,m) = n! / (n-m)!C(n,m) = A(n,m) / m!也就是说,排列是组合乘以选取的元素顺序的情况。
二、排列组合的性质2.1 基本性质(1)排列和组合的个数都是离散的,不能是负数,也不能是小数。
(2)从n个元素中取出m个元素的排列个数一定是比组合个数多的,即A(n,m) > C(n,m)。
2.2 乘法原理乘法原理是排列组合问题中的重要原理,它指出,如果一个问题可以分解为多个步骤,每个步骤有若干种选择,那么整个问题的解法个数就等于各个步骤选择方式的乘积。
例如,如果有4个选择项,分别为A、B、C、D,每个选择项都有3种情况,那么根据乘法原理,一共有3*3*3*3=81种选择方式。
2.3 加法原理加法原理是排列组合问题中的另一个重要原理,它指出,如果一个问题可以分解为多个独立的子问题,那么整个问题的解法个数就等于各个子问题解法个数之和。
例如,从n个元素中取出m个元素的排列个数等于从n个元素中取出m个元素放在前面或者放在后面的情况之和。
排列组合知识点总结排列组合是数学中一个重要的分支,它在解决许多实际问题中都有着广泛的应用,比如抽奖、选座位、安排比赛等等。
下面让我们一起来详细了解一下排列组合的相关知识点。
一、基本概念1、排列从 n 个不同元素中,任取 m(m≤n)个元素按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
根据排列的定义,两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同。
排列数用 A(n, m) 表示。
2、组合从 n 个不同元素中,任取 m(m≤n)个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。
组合数用 C(n, m) 表示。
二、排列数与组合数的计算公式1、排列数公式A(n, m) = n(n 1)(n 2)…(n m + 1) = n! /(n m)!2、组合数公式C(n, m) = n! / m!(n m)!三、排列组合的基本性质1、排列的性质(1)A(n, n) = n!(2)A(n, m) = nA(n 1, m 1)2、组合的性质(1)C(n, 0) = C(n, n) = 1(2)C(n, m) = C(n, n m)四、解决排列组合问题的常用方法1、特殊元素优先法对于存在特殊元素的问题,优先考虑特殊元素的排列或组合。
2、捆绑法当要求某些元素必须相邻时,可以将这些元素看作一个整体,与其他元素一起进行排列,然后再考虑这些相邻元素的内部排列。
3、插空法当要求某些元素不能相邻时,先将其他元素排列好,然后在这些元素之间及两端的空位中插入不能相邻的元素。
4、间接法有些问题直接求解较为复杂,可以先求出总的排列或组合数,然后减去不符合要求的排列或组合数。
5、分类讨论法当问题包含多种情况时,需要对不同情况进行分类讨论,然后将各种情况的结果相加。
五、常见的排列组合问题类型1、排队问题例如,n 个人排成一排,共有多少种不同的排法;某些人必须相邻或不能相邻的排法等。
考研数学高数知识点:排列组合核心一、协议关键信息1、排列组合的定义与基本概念排列的定义:____________________________组合的定义:____________________________排列数公式:____________________________组合数公式:____________________________2、排列组合的基本性质排列的性质:____________________________组合的性质:____________________________3、常见的排列组合题型无限制条件的排列组合问题:____________________________有限制条件的排列组合问题:____________________________分组分配问题:____________________________可重复排列组合问题:____________________________4、解题方法与技巧分类加法计数原理与分步乘法计数原理的应用:____________________________捆绑法:____________________________插空法:____________________________隔板法:____________________________排除法:____________________________二、协议内容11 排列组合的定义111 排列排列是指从 n 个不同元素中取出 m(m≤n)个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
用符号 A(n,m) 表示。
112 组合组合是指从 n 个不同元素中取出 m(m≤n)个元素组成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。
用符号 C(n,m) 表示。
12 排列数公式A(n,m) = n! /(n m)!13 组合数公式C(n,m) = n! / m! (n m)!21 排列组合的基本性质211 排列的性质A(n,n) = n!A(n,m) = A(n,n m)212 组合的性质C(n,m) = C(n,n m)C(n,m) + C(n,m 1) = C(n + 1,m)31 常见的排列组合题型311 无限制条件的排列组合问题这类问题通常直接使用排列数或组合数公式进行计算。
排列组合知识梳理1•分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有m1种不冋的方法,在第2类办法中有m2种不同的方法,…,在第类办法中有m n种不同的方法,那么完成这件事共有:种不同的方法.2•分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有m i种不同的方法,做第2步有m2种不同的方法,…,做第步有m n种不同的方法,那么完成这件事共有:N m i m2 L m n种不同的方法.3•分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1•认真审题弄清要做什么事2•怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3•确定每一步或每一类是排列问题(有序)还是组合优序)问题,元素总数是多少及取出多少个4•解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一、选择题1 .下面问题中,是排列问题的是()A .由1,2,3三个数字组成无重复数字的三位数B .从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合2.乘积m(m+ 1)(m+ 2)(m+ 3)…(m+ 20)可表示为()2A . A m21 B . A m 1 C . A m +20D . A m 1+20 3.已知 3A §—1 = 4A 8—2,则 n 等于()A . 5B . 7C . 10D . 14 n +1 ! . n I 4•给出下列4个等式:①n != n + 1 :②A m = nA m -11;③A m = n m | :④ n + i n — m I彳 n — 1 IA m 」」 ------ - ,其中正确的个数为() m — n !A . 1B . 2C . 3D . 45誉()A . 12B . 24C . 30D . 366•用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有() A . 24 个B . 30 个C . 40 个D . 60 个一.特殊元素和特殊位置优先策略例1.由0,123,4,5可以组成多少个没有重复数字五位奇数练习题:1.种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法1•某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 ___________2.要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A. 1 440 种 B . 960 种C. 720种D. 480种三.不相邻问题插空策略例3•—个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?元素相离冋題可先把没有位置蓼求的元素进行扌非队再把不相邻元素拖入中间和两练习题:1•某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目•如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为____2.三位老师和三位学生站成一排,要求任何学生都不相邻,则不同的排法总数为()A. 720B. 144C. 36D. 12四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法定序问题可以用倍缩法『还可转化为占位插练习题:1.10人身高各不相等,排成前后排,每排5 人,要求从左至右身高逐渐增加,共有多少排法?五•重排问题求幕策略例5•把6名实习生分配到7个车间实习,共有多少种不同的分法1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目•如果将这两个节目插入原节目单中,那么不同插法的种数为竺2.某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法78六•环排问题线排策略—般也n个不同元素作圆fl綁列,共有(》L)!种排法攻0<从n个不同元素中®ttl m个元素作圆n 练习题:6颗颜色不同的钻石,可穿成几种钻石圈120七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法一般地,元素分成多排的排列冋题,可归结为一排考虑匚再井段研练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是346例2.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合知识梳理
1.分类计数原理(加法原理)
完成一件事,有类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第类办法中有n m 种不同的方法,那么完成这件事共有:
种不同的方法.
2.分步计数原理(乘法原理)
完成一件事,需要分成个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第步有n m 种不同的方法,那么完成这件事共有:
种不同的方法.
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略
一、选择题
1.下面问题中,是排列问题的是( )
A .由1,2,3三个数字组成无重复数字的三位数
B .从40人中选5人组成篮球队
C .从100人中选2人抽样调查
D .从1,2,3,4,5中选2个数组成集合 2.乘积m (m +1)(m +2)(m +3)…(m +20)可表示为( )
A .A 2
m B .A 21m C .A 20m +20
D .A 21m +20
3.已知3A n -18=4A n -29,则n 等于( )
A .5
B .7
C .10
D .14
4.给出下列4个等式:①n !=
(n +1)!n +1;②A m n =n A m -1n -1;③A m
n =n !(n -m )!
;④A m -
1n -1=
(n -1)!
(m -n )!
,其中正确的个数为( )
A .1
B .2
C .3
D .4
5.A 67-A 5
6
A 45
=( )
A .12
B .24
C .30
D .36
6.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有( )
A .24个
B .30个
C .40个
D .60个
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
练习题:1.种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
练习题:
1.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为
2.要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()
A.1 440种B.960种
C.720种D.480种
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
练习题:
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为
2.三位老师和三位学生站成一排,要求任何学生都不相邻,则不同的排法总数为()
A.720 B.144
C.36 D.12
四.定序问题倍缩空位插入策略
例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法
练习题:
1.10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
练习题:
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为42
2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87
六.环排问题线排策略
例6. 8人围桌而坐,共有多少种坐法?
练习题:6颗颜色不同的钻石,可穿成几种钻石圈120
七.多排问题直排策略
例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是346
例2.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有
522 522480
A A A 种不同的排法
乙
甲丁
丙
例3.解:分两步进行第一步排2个相声和3个独唱共有5
5
A种,第二步将4舞蹈插入第一步排
好的6个元素中间包含首尾两个空位共有种4
6
A不同的方法,由分步计数原理,节目的不同
顺序共有54
56
A A种
例4
例5.解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有6
7种不同的排法
例6.解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人4
4A 并
从此位置把圆形展成直线其余7人共有(8-1)!种排法即!
H
F
D C A
A B C D E A
B E G
H G F
例7
前 排后 排
一
班二班三班四班五班六班七班
例11。